
Generating Parallel Programs from the Wavefront Design Pattern

John Anvik, Steve MacDonald, Duane Szafron, Jonathan Schaeffer, Steven Bromling and Kai Tan
Department of Computing Science, University of Alberta

{janvik, stevem, duane, jonathan, bromling, cavalier} @ cs.ualberta.ca

Abstract
Object-oriented programming, design patterns, and

frameworks are common techniques that have been used
to reduce the complexity of sequential programming. We
have applied these techniques to the more difficult
domain of parallel programming. This paper describes
CO2P3S, a pattern-based parallel programming system
that generates parallel programs from parallel design
patterns. We demonstrate CO2P3S by applying a new
design pattern called the Wavefront pattern to three
problems. We show that it is quick and easy to use
CO2P3S to generate structurally correct parallel programs
with good speed-ups on shared-memory computers.

1. Introduction
Parallel programming potentially offers substantial

performance improvements to computationally-intensive
problems. To realize this potential, programmers must
develop highly concurrent algorithms that can execute on
massively-parallel systems. The need for such algorithms
and systems arises from complex problems in fields such
as computational biology and chemistry. These problems
can take hours, days, or weeks of processing time.
Unfortunately, designing efficient, highly concurrent
algorithms that effectively exploit multiprocessor
computer systems is a daunting task that usually falls on a
small number of experts. While the range of problems that
can benefit from parallelism appears almost boundless,
the range of solutions to these problems exhibits a degree
of commonality. By extracting the communication and
synchronization elements from these parallel solutions,
we can find common patterns in the design that captures
the experience in building parallel programs. This idea is
known in sequential programming as design patterns [5].

In this paper we describe several parallel programs
that use wavefront computations. Each element computes
a value that depends on the computation of a set of
previous elements. The computation typically flows from
one region to another as shown in Figure 1, and this flow
is what gives the wavefront its name. In Figure 1, each
element depends on the values to its north (N), west (W)
and northwest (NW). The wavefront frontier is denoted
by the thick black stair-case line. At the point of the
computation of Figure 1, elements above the frontier have
been computed and elements below it have not.
Concurrency can be obtained by using different
processors to compute multiple elements at the same time,

as long as each element is computed after the elements
that it depends on. For example, if 4 processors were
available, 4 of the 5 shaded elements just below the
frontier could be computed concurrently.

3

4

NW

W

N
1

2

3

4

4

4

5

5

5 6

6

7

Figure 1: A wavefront computation.
To increase the granularity of the computation for

each processor, the individual elements can be grouped
into larger blocks and each block can be assigned to a
processor. For example, Figure 1 shows 16 blocks, each
containing 6x6 = 36 elements. However, in evaluating a
block, elements on the boundary require values from
adjacent blocks. This boundary exchange defines the
communication and synchronization structure. The
numbers in Figure 1 show the concurrency. In time step 1,
only the single block labeled 1 can be computed. In time
step 2, the two blocks labeled 2 can be computed, each by
a different processor. In time step 3, three processors can
be used. In time step 4, all 4 processors can be used. In
time steps 5, 6 and 7, the number of processors used is 3,
2 and 1 respectively. To increase processor utilization,
more blocks could be created. However, this will reduce
the granularity of each block.

Wavefront computations form a pattern that is
recognized by experienced parallel programmers, with a
few details that vary from application to application. In
object-oriented computing, design constructs that can be
re-used between applications are often expressed as
design patterns [5], which capture design experience at an
abstract level. By their nature, design patterns are
applicable to different problem domains, each with its
own individual characteristics and concerns. A design
pattern is a description of a solution to a general design
problem that must be adapted for each use. Once a user
elects to use a design pattern, most of the basic structure
of the application can be inferred. We want to take
advantage of this knowledge in a more concrete manner.

2

To do so, we look to object-oriented frameworks
from sequential programming [6]. Frameworks are a set
of classes that implement the basic structure of a specific
kind of application. This structural code defines the
classes in the application and the flow of control through
these classes. The user of a framework must subclass the
framework classes to provide implementations of key
components and compose these classes into an
application. Frameworks are similar to libraries in some
respects. However there is an important difference. When
a library is used, a programmer must define the structure
of the application and make calls to the library code.
Conversely, a framework defines the structure of an
application and the programmer supplies code for specific
application-dependent routines. Frameworks allow
programmer to reuse the overall design of an application,
and capitalize on the use of object-oriented techniques
such as encapsulation and code reuse. Frameworks can
reduce the effort required to build applications [6].

We can combine frameworks and design patterns by
considering the application domain of the framework to
be the implementation of a pattern. For instance, consider
the description of a Wavefront design pattern. Most
wavefront algorithms share the same basic structure with
only a few application-dependent properties. We can
encapsulate this structure into a framework that
implements a basic wavefront. The structural code uses
classes that define the application-dependent properties of
a wavefront without implementing them, such as the
function that computes the value of an element from the
value of its predecessors. A user of this wavefront
framework supplies these properties by either providing
subclasses that contain the needed implementation or by
composing framework-supplied classes that modify the
basic structure to better fit the application.

CO2P3S generates correct framework code from a
design pattern description of the application structure. In
contrast, other systems provide the ability to specify the
structure with patterns but rely on the user to write
application code that matches the parallel specification.
High-level parallel programming tools have failed to
become mainstream for a number of reasons, including
lack of generality and mediocre application performance.
The concept of design pattern templates introduced in
CO2P3S is a major step in addressing these concerns.
Section 2 describes design pattern templates and
frameworks. Section 3 describes the Wavefront design
pattern template and its parameters. Section 4 gives three
example problems that illustrate how this single new
CO2P3S design pattern (the Wavefront) can be used to
generate several parallel programs that run on a shared-
memory computer. These programs show how CO2P3S
can quickly create parallel programs that are structurally
correct and provide good parallel performance with little
coding effort. Section 5 presents an implementation of the

Wavefront design pattern template. Finally Section 6
provides our conclusions and discusses future work.

2. Pattern Templates and Frameworks
A design pattern has several variations on its

structure and implementation to accommodate many
applications. Therefore, a design pattern is really a family
of solutions to a family of problems. For example, the
Wavefront pattern has several variations. Recall that each
element in a wavefront computation relies on values from
neighboring elements. The designation of dependent
neighboring elements is one variation of the Wavefront
pattern. Figure 1 illustrated one dependency set {W, N
and NW}. In Section 4 we describe a biological sequence
alignment algorithm that has this dependency set, and two
other applications with different dependency sets.

To exploit patterns as families of solutions, we
introduce an intermediate form called a design pattern
template. A template represents the basic structure of the
pattern with parameters to specialize the template for
common alternatives. Patttern templates are a
parametrically related family of solutions, much like the
patterns they are based upon. Using these templates, a
user can select the member of the family that best
represents the structure required for an application. For
example, the neighbor dependency set is one parameter
for the Wavefront design pattern template.

The usefulness of a pattern template must be
balanced against its generality. More parameters provide a
large number of alternative structures, at the expense of
specification complexity. Conversely, fewer parameters
may mean that some aspects of the basic structure cannot
be modified using the template. This could limit the range
of applications to which the template may be applied.
Striking this balance requires consideration of the
alternatives on a pattern-by-pattern basis.

A pattern-based method can be used to build parallel
programs from a palette of different design pattern
templates. The first step is to select the pattern template(s)
that represents the best parallel structure for an
application. This step is not addressed by our research. It
is possible for users to select a pattern template that is
inappropriate for a particular problem. However, there are
several methodologies for finding the best parallel
structure for an application [3,4]. In addition, there are
parallel design pattern languages (such as [9]), which
describe a set of patterns that guide users to the most
appropriate parallel structure for a problem.

The user selects one or more pattern templates and
then supplies the required parameters. Each pattern
template requires some class names for the generated
framework class. In addition, there are other template-
specific parameters, such as the neighbor dependency set
for the Wavefront pattern.

3

Once the pattern(s) and its parameter(s) have been
specified, the system (CO2P3S in our case) generates the
code that implements the specific pattern structure. This
framework consists of abstract classes that implement the
parallel structure of the pattern (concurrency,
communication, and synchronization), a set of concrete
classes for inserting user application code, and any
required collaborator classes. The structural code defines
the flow of control in the framework based on a set of
collaborating abstract classes. A user supplies subclasses
that override hook methods to implement a specific
application. These subclasses are invoked from the
structural code through the use of well-known sequential
patterns like the Strategy or the Template Method [5]. The
complete application is created when the user combines
the framework-generated classes with application-specific
subclasses.

Two crucial aspects of CO2P3S are that the generated
frameworks correctly implement the pattern structure and
that structural parts are hidden from the user. The user can
only supply sequential hook method implementations to
the framework at this layer. The user starts with the
correct structure and cannot introduce errors into it. This
allows the user to concentrate on the application rather
than on the parallel framework code that executes it. This
is an improvement over current parallel programming
systems, which still require that the user consider parallel
structure issues during program development.

The implementation details of the framework are
hidden from the programmer. To change the parallel
structure of a program, the user changes a parameter for
the pattern template and regenerates the framework code.
Although this new framework may introduce additional
hook methods that need to be implemented, hooks that
were previously implemented are included in the
regenerated framework automatically. Alternately, to
obtain larger structural changes, the programmer may
select a completely different design pattern. In this case,
the programmer will need to implement different hook
methods; application code will need to be moved from the
old hook methods to the new ones.

For example, the framework for the Wavefront
pattern template uses a Strategy pattern to handle different
dependency sets. In a normal framework, the user creating
an instance of a wavefront would need to create the
correct strategy object and supply it to the wavefront
framework. Our approach allows the user to specify the
parameters in the template, and the generated framework
internally composes the wavefront classes with the correct
strategy. The user does not even know how the
dependency sets are handled in the framework, but simply
treats the generated framework as a wavefront with the
desired dependency sets. Further, a user interface ensures
that dependency sets are always specified, so that a
correct structure is always created.

The structural code in the framework correctly
handles the difficult aspects of the parallel structure, such
as communication, synchronization, and creating the
concurrency. In contrast, if users had to write this code by
hand, the program writing effort would increase
substantially. The structural code is not only a significant
amount of the code for a complete application, it is also
the code that is the most error prone, and the most
difficult to debug. Generating this complex code saves
users the time of writing and, more importantly,
debugging the structure of the pattern template. Instead,
users can concentrate on their applications.

An important feature of the generated frameworks is
that the concrete classes that are created include default
implementations for all of the hook methods. Together
with the generated mainline method, the frameworks can
be compiled and executed immediately after they are
generated. In the Wavefront framework, the computation
is a trivial one that propagates correctly over all of the
elements. This allows a programmer to start with a
working parallel program and incrementally modify it.

Overall, the most important aspect of the frameworks
is that they are structurally correct. Further, the
frameworks implement all of the communication and
synchronization, so the user does not need to include any
parallel code in the hook methods for their application.
This approach to correctness is unique, represents an
improvement over existing parallel programming systems,
and can only improve their usability.

3. Wavefront Design Pattern Template
Our design-pattern-based approach to parallel

programming is independent of programming language
and parallel architecture. However, we have implemented
a system using multithreaded Java code targeted at
shared-memory multiprocessor machines and a
distributed memory version is under development. The
CO2P3S parallel programming system is the realization of
our goal to build a system based on parallel design pattern
specifications and object-oriented frameworks [7,8]. It
currently supports several design pattern templates. In this
paper we introduce a new design pattern template called a
Wavefront, that supports the computation of elements that
depend on a set of elements that must be computed first.
The template parameters can be divided into two
categories, design parameters and performance
parameters. A design parameter affects the parallel
structure of the generated framework. A performance
parameter only affects the performance of the code. One
kind of performance parameter is a debugging parameter.
A debugging parameter is turned off after the application
is debugged to improve performance.

The Wavefront pattern template has three design
parameters:

4

1. The name for the the Wavefront element class.
2. The shape of the element matrix. The default choice

is a Full Matrix shape in which all elements of a
rectangular matrix are computed. The second choice is
Triangular, which supports computations over half
of a matrix. The third choice is Banded which represents
computations along a band of elements centered around
the diagonal. Each of these different matrix shape choices
will be illustrated by a separate problem in Section 4.

3. The dependency set for an element. Figure 1
illustrated the dependency set {N, W, NW}. Not all
groups of directions form legal dependency sets. For
example any set that contains opposite directions is illegal
since they generate cyclic dependencies that result in
deadlock. The user interface prevents a programmer from
selecting illegal dependency sets.

The Wavefront template has three performance
parameters:

1. The notification method used to inform elements
that a dependency constraint has been satisfied. One
choice is Push, where elements signal their dependents
upon completion. The other choice is Pull, where
dependents poll their prerequisites for completion status.

2. The type of wavefront elements. If the type is
primitive, then the user selects the specific primitive type
and static methods are generated in the element class with
the appropriate argument types and return types. If the
element type is an object then instance methods are
generated to operate on instances of the element class.

3. Whether the application needs access to non-
neighboring elements. For example, in Figure 1, an
element is directly dependent on three neighbors. If the
element can actually be computed from the values of
these three neighbors, the neighbors-only parameter
would have the value true. However, if the element
required all elements to the west of it, as well as the north
and northwest neighbors, the neighbors-only parameter
would be false. Notice that the dependency set would still
be {N, W, NW} since once these values are available, the
element can be computed.

Figure 2 is a screenshot of the CO2P3S Wavefront
template that illustrates these six parameters. The element
class is called SAElement, the shape is full matrix and the
graphic shows the matrix with a wavefront. The
dependency set is {N, W, NW} since these directions are
shaded medium (green in the interface). The invalid
opposite directions are shaded dark (red in the interface).
The NE and SW directions are shaded light (grey in the
interface) since they are unselected but not invalid. If one
of them was selected, the other would become invalid.
The three performance parameters are: push, element type
int, and neighbors-only equals true.

The Wavefront pattern template is highly
customizable and all parameters except for the class name
have a large impact on the framework code generated.

The selection of element type determines whether static or
instance methods are generated. The shape of the matrix
has an impact on the blocking strategy and the iteration
code. The dependency set determines the number of
different methods required to compute the elements and
the signatures of these methods. The neighbors-only
parameter indicates whether neighbor elements or the
whole matrix are used as method parameters.

Figure 2: The CO2P3S Wavefront pattern
template.

The only class the user implements is the wavefront
element class. This class has three responsibilities:
providing an initialization method that is called for each
wavefront element, implementing the wavefront
operations on a wavefront element, and supplying a
method to be used for reducing the matrix after the
computation is complete. The user is supplied with stubs
for the appropriate hook methods depending on the
parameters specified at framework creation time. For
example, there are three groups of generated hook
methods for the parameter choices of Figure 2, a single
initialization method, a single reduction method to gather
the results and four static methods that compute elements:
int operateCorner(int row, int col);

int operateLeft(int north, int row, int col);

int operateTop(int west, int row, int col);

int operateInterior(int north, int northwest,
int west, int row, int col);

The framework invokes the appropriate method
based on the location of the element. Each method has
appropriate dependent elements as arguments and returns
the computed element. Each method also has the row and
column indexes as arguments in case the computation
depends on these values as well.

To use the Wavefront framework, the user creates a
Wavefront object and uses it to launch the computation.
The Wavefront object is instantiated by supplying the
height and width of the matrix, the number of threads to

5

be used, an initializer object (or null if no object is
needed), and a reducer object (or null if no object is
required). Optionally, the Wavefront object can be created
with a blocking factor that specifies the minimum number
of blocks of wavefront elements to create along each axis
of the matrix. If no blocking factor is supplied, a default
factor is used. The value for this default (100 blocks by
100 blocks) has been determined empirically, and is
acceptable across a number of applications. The
framework is responsible for partitioning the matrix into
blocks, creating threads, and executing the computations.
The user simply has to launch the computation, which
returns when all of the wavefront elements have been
computed and the matrix has been reduced.

4. Using the Wavefront Pattern
In this section, we describe the development of three

applications that use different parameter values of the
Wavefront. We concentrate on the pattern specification
and the application code written by the user, and show
that we are able to obtain reasonable performance gains
without having to modify the generated code.

4.1 Biological Sequence Alignment Using
Dynamic Programming

Consider a dynamic programming matrix (DPM) that
is generated by a biological sequence alignment
algorithm, as shown in Figure 3 [10]. The computation
proceeds from the top left corner to the bottom right
corner. Except for the top row and left column, each
element in the DPM depends on the values of three
elements in the directions, N, W and NW, as well as some
application specific data structures. The Wavefront
parameters for this application are shown in Figure 2.

- T L D K L L K D
- 0 -10 -20 -30 -40 -50 -60 -70 -80
T -10 20 10 0 -10 -20 -30 -40 -50
D -20 10 20 30 20 10 0 -10 -20
V -30 0 22 20 30 32 22 12 2
L -40 -10 20 22 20 50 52 42 32
K -50 -20 10 20 42 40 50 72 62
A -60 -30 0 10 32 42 40 62 72
D -70 -40 -10 20 22 32 42 52 82

Figure 3. A dynamic programming matrix for
biological sequence alignment.

In this application, the four operate hook methods
were implemented as follows. The operateCorner()
method returns 0. Note that the row and column indexes
are not used in this case. The operateLeft() and
operateTop() methods return the fixed values on the
le f t and top edge r e spec t ive ly . The
operateInterior() method computes the element
value based on the three adjacent elements, N, W and NW

and some application-specific data structures. In this case
the row and column indices are used to access these data
structures. Specifically, the value for an element in a
given row, r, and column, c, is:
Formula 1: DPM[r, c] = max (W - gapPenalty, N - gapPenalty,

NW + score(r, c)).
In the simplest case, the gap penalty is a fixed

constant. The score is a function that maps two letters that
represent amino acids to an integer representing their
similarity. For example, if we are computing the value of
the element in the fourth row (V) and third column(L) of
Figure 2, we would use score(4, 3). The score function
can be represented by a similarity matrix with constant
entries, like score(4, 3) = similarity[V, L] = 12. If we use
a gap penalty of 10, then Formula 1 yields:
Formula2: DPM[4, 3] = max (W - 10, N - 10, NW + score(4,3))

= max (DPM[4, 2] - 10, DPM[3, 3] - 10, DPM(3, 2)
+ 12) = max(0-10, 20-10, 10+12) = 22.

In this example, the initialization method does
nothing. The reducing method simply collects the optimal
alignment score, the element at the bottom left corner.

The performance of the sequence alignment
application is given in Table 1. These speedups are not
necessarily the best that can be achieved, as the blocking
factor greatly affects the results. They are meant to show
that for a little effort, it is possible to quickly build a
parallel program with reasonable speedups. Once we
decided to use the Wavefront pattern template, the correct
parallel structure for the specific wavefront that solves
this problem was generated in a matter of minutes. Using
the available sequential code, the remainder of the
application was implemented in about an hour.

Processors Time (sec) Speedup
sequential 40.5 -
2 22.6 1.79
3 15.3 2.65
4 11.6 3.48

Table 1: Wall clock times and speedups for the
sequence alignment example.

The program was run using two 10,000 character
sequences and the default blocking strategy was used (100
blocks by 100 blocks). It ran using a native threaded Java
implementation from SGI (Java 1.3) with optimizations
and JIT turned on. The execution environment was an
SGI Origin with 4 processors and 1GB of RAM. The
virtual machine was started with 512MB of heap space.
The speedups are based on the average wall clock time for
ten executions compared to a sequential program
executing on a native threaded virtual machine. The
speedups only include computation time and exclude
initialization, reduction, and output. From Table 1, we can
see that the problem scales well up to four processors.

6

4.2 The Skyline Matrix Problem
The Cowichan problem set [13] is used for evaluating

the expressive power and performance of parallel
programming systems. It contains two problems that can
be solved using the Wavefront pattern. One of these
problems is the LU-Decomposition of a skyline matrix.

A skyline matrix is a square matrix where each sub-
diagonal row and supra-diagonal column has a (possibly
zero-length) prefix of zero-valued elements. While any
matrix can be viewed as satisfying the skyline property,
those matrices that have a substantial zero-element
portion hold the most interest. Sparse matrices with
elements clustered near the diagonal are good examples of
skyline matrices. An example of a skyline matrix is given
in the left side of Figure 4.

Doolittle's Method is used to perform the LU-
Decomposition of a skyline matrix [1]. The value of an
element aij is computed using Formula 3 or Formula 4.
Formula3: Lij = aij - sum(lik * ukj) / ujj (lower triangular).
Formula4: Uij = aij - sum(lik * ukj) (upper triangular).

These formulas generate the following dependency
relationships that are shown in the right side of Figure 4:

• Elements in the lower triangle are dependent on all
elements to its left in the same row and all elements from
the upper triangle in the same column.

• Elements in the upper triangle are dependent on all
elements above it in the same column and all elements of
the lower triangle in the same row.

Figure 4: A skyline matrix and its dependency

relationships.
As Figure 4 shows, the dependency set of an

individual matrix element is {W, N}, the matrix shape is
banded, and the neighbors-only flag is false. The banded
matrix shape generates two static hook methods to
compute the size of the bands.
int startRow(int column);

int startColumn(int row);

The framework uses these methods to compute the
size of the band. The startRow() method is called by
the framework, once for each column and the
startColumn() method is called once for each row.

Four operate methods corresponding to the ones
described in Section 3 are also generated. However, since
elements in this application depend directly on non-
neighboring elements, the operate methods require access
to non-neighboring elements. This means that the entire
matrix is used as a parameter to each of the operate
methods. This also means that the particular neighbors, W
and N are omitted as parameters since they can be
accessed from the matrix. These parameters are replaced
with an instance of the Matrix class that can be used to
access the data in the matrix. For example, the
operateInterior() method becomes:
int operateInterior(Matrix m, int row, int col);

As before, the row and column are the indices of
the element to be computed. Inside of this method, the
programmer needs to access the matrix elements. Since
the programmer does not know the internal structure of
the Matrix class, an accessing method is provided:
int getElement(int row, int col);

It is dangerous to set the neighbors-only parameter to
false since the programmer has access to all of the matrix
elements, even those that may not have been computed
yet. The programmer is trusted to access only the
computed values. The solution to this problem is to throw
an exception when the program tries to access an
uncomputed value. However, since this check is
expensive, it should be turned off after the user is done
testing and ready to generate production code. This is an
example of a debugging performance parameter, but we
have not implemented it yet.

The program was run on a 50% full 1,000 x 1,000
matrix of random values using the same
hardware/software configuration as the sequence
alignment problem. The performance results are shown in
Table 2. The times are the average of ten executions. The
default blocking strategy produced near linear speedups.

Processors Time (sec) Speedup
sequential 64.1 -
2 35.3 1.81
3 21.7 2.96
4 16.4 3.92

Table 2: Wall clock times and speedups for the
skyline matrix example.

4.3 The Matrix Product Chain Problem
Our final example of the Wavefront pattern is another

problem from the Cowichan problem set. The Matrix
Product Chain (MPC) problem can be solved using a
dynamic programming matrix (DPM) [13]. The goal is to
find the best order for multiplying a series of matrices to
minimize the number of computations. For example, for
matrices A, B, C, and D having sizes 6 x 3, 3 x 5, 5 x 12,

7

and 12 x 2 respectively, the cost of doing the
multiplications ranges from 186 for A(B(CD)) to 594 for
((AB)C)D). The minimum cost for the multiplications can
be found by using the upper triangular portion of a DPM
where the values represent the least cost ordering of
multiplications for multiplying matrices Mi to Mj. The
value of an element is calculated by finding the least cost
of multiplying Mi to Mk and Mk+1 to Mj for i < k < j and
then using those values to find the cost of multiplying the
resulting matrices. Since the values of the matrix may be
found in a diagonal-by-diagonal way, this problem is
suited to the Wavefront pattern.

Unlike the previous two examples, in which elements
were calculated from the top left-hand corner to the
bottom right-hand corner, the MPC problem calculates
from the diagonal of the matrix to the top right-hand
corner. This changes the pattern template parameters. The
matrix shape is triangular as opposed to full-matrix or
banded. The dependency set is now {S, W} instead of
{W, N, NW} or {N, W}. Due to the triangular shape of
the matrix and the inclusion of S in the dependency set,
the corner elements are now found along the diagonal and
the remaining elements are interior elements. Therefore,
only two operation methods are generated:
operateCorner() and operateInterior().
Finally, this problem has non-neighbor dependencies so
the operate methods have a Matrix parameter as described
in the skyline matrix problem.

Although these are all of the changes that the
programmer might notice, there is another internal change
in the framework. In the previous two examples, the
initial working set contained a single element (the top
left-hand corner). However, the initial working set for a
triangular shaped matrix with dependency set {S, W}
contains all elements along the diagonal. It is one of the
major advantages of our approach that the user does not
have to be aware of such structural changes.

In this example, the initialization method sets all the
costs along the diagonal to 0 and all other costs to a
maximum value. The reduction method stores the top
right-hand value in the reducer object. The
operateInterior() method uses an application-
specific array, dimension[], created and initialized by
the programmer:

minCost = Integer.MAX_VALUE;
for(k = row to column-1) do
cost = aMatrix.getElement(row,k) +
aMatrix.getElement(k+1,column)
+ dimension[k+1] + dimension[column+1];

if (cost < minCost)
minCost = cost;

end do;
return minCost;

The program was run using the same
hardware/software configuration as the previous two

problems. Matrices of random dimensions between 10
and 100 were used and the matrix was divided into 10 x
10 blocks. This is an example where the default blocking
factor is inappropriate for the problem. Since the top right
corner must access elements on the entire length and
width of the matrix, it represents the largest piece of
work. Since it is also the final piece of work, only a single
thread will be performing the calculations for that block.
Therefore we would like to minimize the block size to
increase the amount of parallelism without creating
unnecessary overhead. The performance results are shown
in Table 3. Again the speedups are based on the average
wall clock time for ten executions. Note that despite the
disproportional amount of computation in the last few
blocks, the application has near-linear speedup. This is
due to experimentally fine-tuning the application by
finding a good block size for this application.

Processors Time (sec) Speedup
sequential 87.9 -
2 44.2 1.99
3 29.7 2.96
4 22.4 3.93

Table 3: Wall clock times and speedups for the
matrix product chain example.

5. The Wavefront Implementation
The delegation of work to threads in the Wavefront

pattern is handled by a work queue. Access to the work
queue is via a controller object. The controller handles
requests to add and remove work from the queue, as well
as tracking the amount of work completed so that it can
stop the threads when the computation has finished.

We define two kinds of synchronization for the
workflow. In diagonal synchronization, an element is
added to the work queue when all elements of the
previous diagonal have completed their computation. In
prerequisite synchronization, an element is added to the
work queue as soon as its prerequisite constraints have
been satisfied. In Figure 1 the numbers represent time
steps in either diagonal or prerequisite synchronization
when 4 processors are used. However, in general,
diagonal synchronization is slower than prerequisite
synchronization. For example, Figure 5 shows the same
wavefront matrix as Figure 1, but with more blocks. The
left matrix is labeled by time steps for diagonal
synchronization and the right matrix is labeled by time
steps for prerequisite synchronization. In both cases, 4
processors are used.

CO2P3S uses prerequisite synchronization for the
Wavefront. However, it easy to compute the theoretical
maximum speedup in the case of diagonal
synchronization as a function of the number of blocks and
processors. This theoretical maximum can be used to
experimentally determine the amount of overhead for the

8

Wavefront pattern (not counting synchronization waits).
Table 4 shows speedups for a version of the sequence
alignment example that uses diagonal synchronization and
shows how close they come to the theoretical limit. The
difference between these two values gives an indication of
the relative overhead for the Wavefront framework. This
is a fairly small overhead considering how rapidly a
wavefront application can be created. Note that the
speedups with prerequisite synchronization given in Table
1 are better (as they should be).

Figure 5: Diagonal and prerequisite
synchronization with 4 processors.

Processors Actual
speedup

Theoretical
speedup

Relative
overhead

2 1.66 1.99 17%
3 2.41 2.94 18%
4 3.04 3.88 22%

Table 4: Theoretical versus actual speedup.

6. Conclusions and Future Research
In this paper, we described a new approach to writing

parallel programs that is based on generating structural
framework code from a pattern description of the
problem. We demonstrated that this approach can be used
to build correct, working parallel programs that yield
performance benefits. We have also shown that our
design pattern templates provide a family of framework
solutions that can be applied to different problems. Three
of the example problems discussed in the paper, sequence
alignment, skyline matrices and matrix product chain, are
all implemented with the same Wavefront pattern
template. Additional applications using different patterns
can be found in [8].

The frameworks generated by CO2P3S were
originally targeted at shared memory multiprocessors. We
are currently creating distributed memory versions of the
pattern templates, taking advantage of the facilities
available in JINITM [11] and JavaSpacesTM [12]. We have
also customized RMI to use a more compact serialization
scheme to improve performance.

A recurring problem in programming systems based
on design patterns is that they are limited by the set of
patterns they support. We are currently working on a tool
called Meta-CO2P3S [2] that can be used to add new
patterns to CO2P3S. The original version of CO2P3S did

not include the Wavefront template described in this
paper. It was added recently using Meta-CO2P3S.

Current research also includes finding new patterns to
add to CO2P3S and improving the support for distributed
patterns. Future research will address tool support.
Currently, CO2P3S supports program development,
compilation, execution and pattern addition. Debugging
and performance tools will be needed to produce a fully
featured, mature parallel programming environment.

Acknowledgements
This research was supported by grants from the

Natural Science and Engineering Research Council of
Canada and PENCE.

References
1. D. Bouman. Parallelizing a Skyline Matrix Solver using

Orca, Student report, http://
www.cs.vu.nl/~bal/cowican.html, 1995.

2. S. Bromling. Meta-programming with Parallel Design
Patterns, Master's thesis, Department of Computing
Science, University of Alberta, 2002.

3. K. Mani Chandy and S. Taylor. An Introduction to Parallel
Programming. Jones and Bartlett Publishers, 1992.

4. I. Foster. Designing and Building Parallel Programs.
Addison-Wesley, 1995.

5. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, Massachusetts, 1994.

6. R. Johnson. Frameworks = (components + patterns).
Communications of the ACM, 40(10):39-42, October 1997.

7. S. MacDonald, D. Szafron, and J. Schaeffer. Object-
oriented pattern-based parallel programming with
automatically generated frameworks. In Proceedings of the
5th USENIX Conference on Object-Oriented Technology
and Systems (COOTS'99), pages 29-43, 1999.

8. S. MacDonald. From Patterns to Frameworks to Parallel
Programs. PhD thesis, Department of Computing Science,
University of Alberta, 2001.

9. B. Massingill, T. Mattson, and B. Sanders. Patterns for
parallel application programs. In Proceedings of the Sixth
Pattern Languages of Programs Workshop (PLoP'99),
1999. Proceedings available at http://st-
www.cs.uiuc.edu/~plop/plop99/proceedings/.

10. S. Needleman and C. Wunsch, A general method
applicable to the search for similarities in the amino acid
sequences of two proteins. Journal of Molecular Biology,
48, 443-445, 1970.

11. Sun Microsystems. JINITM Technology Architectural
Overview. Available at http:// www.sun.com
/jini/whitepapers/architecture.html, 1999.

12. Sun Microsystems. JavaSpacesTM Service Specification.
Available at http:// www.sun.com/jini/specs/jini1.1html/js-
title.html, 2000.

13. G. Wilson. Using the Cowichan problems to assess the
usability of Orca. Proceedings of IFIP Working Conference
on Programming Environments for Massively Parallel
Distributed Systemsy, 183-193, 1994.

1 2 3 4 5 7
2 3 4 5 7 9
3 4 5 7 9
4 5 7 9
6 8 9
8 1110

11
11

11
12

12
12

13
13 14

1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 8
4 5 7 8
6 7 8
7 98

9
9

9
10

10
10

11
11 12

