
Experience with Parallel Programming Using Code TemplatesAjit Singh,1 Jonathan Schae�er,2 Duane Szafron,2asingh@etude.uwaterloo.ca, jonathan@cs.ualberta.ca, duane@cs.ualberta.ca1 University of Waterloo, 2 University of Alberta,Dept. of Electrical and Computer Eng., Dept. of Computing Science,Waterloo, Ontario, Edmonton, Alberta,Canada N2L 3G1 Canada T6G 2H1AbstractFor almost a decade we have been working at developing and using template-based models for parallelcomputing. Template-based models separate the speci�cation of the parallel structuring aspects fromthe application code that is to be parallelized. A user provides the application code and speci�es theparallel structure of the application using high-level icons, called templates. The parallel programmingsystem then generates the code necessary for parallelizing the application. The goal here is to provide amechanism for quick and reliable development of coarse-grain parallel applications that employ frequentlyoccurring parallel structures. Our initial template-based system, FrameWorks, was positively receivedbut had a number of shortcomings. The Enterprise parallel programming environment evolved out ofthis work. Now, after several years of experience with the system, its shortcomings are becoming evident.Controlled experiments have been conducted to assess the usability of our system in comparison withother systems. This paper outlines our experiences in developing and using these systems. A list ofdesirable characteristics of template-based models is given. FrameWorks and Enterprise systems arediscussed in the context of these characteristics and the results of our usability experiments. Many ofour observations are relevant to other parallel programming systems, even though they may be based ondi�erent assumptions. Although template-base models have the potential for simplifying the complexitiesof parallel programming, they have yet to realize these expectations for high-performance applications.1

Experience with Parallel Programming Using Code Templates 21 IntroductionAlong with the growing interest in parallel and distributed computing, there has been a corresponding in-crease in the development of models, tools and systems for parallel programming. Consequently, practitionersin the area are now faced with a somewhat di�cult challenge: how to select parallel programming tools thatwill be appropriate for their applications. There is no easy answer. The decision is a function of manyparameters including some that are speci�c to the user and their computing environment. These include thetype of parallelism available in the application (for example: �ne- or coarse-grained; data parallel or not;pipeline or master-slave), the target architecture(s) (for example: shared or distributed memory), languageconstraints and performance expectations. Other parameters are speci�c to the tool and its capabilities,including its feature set (portability, fault tolerance) and usability (ease of use,
exibility, expressive power).As is evident from the formation of user groups such as the Parallel Tools Consortium, there is a concern inthe community about the lack of post-development analysis and evaluation for various tools and technologiesthat are being proposed. Typically, researchers envision a new tool or technology, develop it and, dependingon their initial experiences, report it in the literature. With few exceptions, long-term experiences withparallel programming systems and their relationships with similar systems are hardly ever reported.Many di�erent approaches have been taken towards the development of parallel programming models.A new parallel programming language is one approach (for example, a procedural language such as Orca[1], or a functional language like Sisal [2]). However, practical considerations, such as legacy code and thedemand for Fortran/C-based languages, often make this an impractical choice. Alternatives that allow theprogrammer to take advantage of the existing code and expertise in common sequential languages have foundmuch wider acceptance. One such approach includes providing libraries for parallelization (PVM [3], P4 [4]and MPI [5] are examples). Another approach is to extend an existing sequential language with compilerdirectives (High Performance Fortran [6]), or keywords (for example, Mentat [7] and PAMS [8]).A relatively new alternative has begun to emerge that allows a programmer to bene�t from the existingcode and knowledge of a sequential program, while minimizing the modi�cations that are required forparallelization. The programmer provides a speci�cation of the parallel structuring aspects of the applicationin the form of code annotations. One interesting approach to code annotation is to recognize that there arecommonly occurring parallel techniques. A parallel programming tool can support these techniques byproviding algorithmic skeletons [9], or templates, that capture the parallel behavior. The user provides thesequential application code and selects the templates required to parallelize the application (such as in PIE

Experience with Parallel Programming Using Code Templates 3[10] and HeNCE [11]). The system then generates the necessary parallel code. Template-based modelsseparate the speci�cation of the parallel structuring aspects { such as synchronization, communication andprocess-processor mapping { from the application code that is to be parallelized. A template implementscommonly occurring parallel interactions in an application-independent manner. The goal here is to providean easy approach for the initial development and restructuring of coarse-grain parallel applications that relieson commonly used parallelization techniques.This paper discusses our long-term experiences with two template-based parallel programming systems forcoarse-grained parallelism. Our research began in 1986 when we used templates to experiment with di�erentparallel structures for a computer animation application [12]. We quickly realized that the approach wasmore general, and could be used to build a larger class of parallel applications. Building on this success, theFrameWorks parallel programming tool was developed [13, 14, 15]. Our initial experience with FrameWorkswas encouraging. However, for a number of reasons described later in this paper, it was not possible to evolvethe system beyond a certain point. Consequently, an entirely new project, called Enterprise, was initiated.Enterprise is a template-based parallel programming environment which o�ers a much wider range of relatedtools for parallel program design, coding, debugging and performance tuning [16, 17, 18, 19, 20, 21]. It hasbeen publicly available since 1993 (http://web.cs.ualberta.ca/~enter).Several other parallel programming systems have relied on techniques that are similar to the approachused by us (for example [22, 11, 23, 24, 25, 26, 10]). Many of our results and experiences with FrameWorksand Enterprise are applicable to such systems, as well as other high-level parallel programming systems.Before we delve into details, it is useful to clarify a couple of points regarding our use of the term\template." In the past, techniques based on the use of application-independent common parallel structureshave often been described under di�erent names such as algorithmic skeletons [9], model programs based onparallel programming paradigms [27, 28], and parallel program archetypes [29]. In addition to us, some otherresearchers also have recognized or used the term \template" to refer to such techniques [28, 29, 30, 10].Although the underlying details of these techniques vary signi�cantly, they all have the common goal ofspecifying commonly occurring parallel structures in the form of application-independent and reusable code.For the last ten years, we have used the term \template-based" to refer to this technique. At this point, itshould also be pointed out that our use of the term \template" here is quite distinct from C++ templates.Our usage is restricted to the context of parallel programming, where it is used to denote a prepackagedset of application-independent characteristics. This has no intended relationship with the C++ templates

Experience with Parallel Programming Using Code Templates 4which are used to build generic classes in sequential programs.In this paper we look at template-based parallel programming models from two viewpoints. First, asthe designers, we can address the di�culties in the design and implementation of these tools. Second, wehave had considerable interaction with users developing template-based parallel applications. Controlledexperiments, which compared Enterprise with a number of tools including PVM, give insights about thestrengths and weaknesses of the template-based approach. The result is that although template-basedmodels have tremendous potential for bridging the gap between sequential and parallel code, there stillremain a number of shortcomings that must be addressed before the technology will be widely used.Section 2 describes the template-based approach. Section 3 explains the distinctions between this ap-proach and other high-level techniques for parallel programming. Section 4 outlines the objectives for anideal template-based parallel programming tool and discusses their signi�cance. Section 5 brie
y describesFrameWorks and its shortcomings. These problems with FrameWorks led to the design of Enterprise, asdescribed in Section 6. Section 7 describes our experiences with template-based models and the lessonslearned. Extending the template model to other aspects of parallel programming is discussed in Section8. Section 9 describes the requirements for future template-based tools. Finally, Section 10 presents ourconclusions.This paper may seem to be overly critical of template-based approaches. Our intent is not to discourageresearch in this area. Rather, we believe that far too many papers in the parallel computing literature arelong on praise and short on criticism. It is our hope that the issues discussed in this paper can be seriouslytackled by the research community, so the full potential of template-based tools can be realized.2 Template-based ProgrammingIn the context of parallel programming, a template represents a prepackaged set of characteristics which canfully or partially specify the nature of scheduling, communication, synchronization and processor bindingsof an entity. Templates implement various types of interactions found in parallel systems, but with thekey components { the application-speci�c procedures { unspeci�ed. A user provides the application-speci�cprocedures and the tool provides the glue to bind it all together. The templates abstract commonly occurringstructures and characteristics of parallel applications. The objective here is to allow users to develop parallelapplications in a rapid and easy manner.

Experience with Parallel Programming Using Code Templates 5For example, consider a graphics animation program (Animation) consisting of three modules (Gener-ate(), Geometry(), and Display()). It takes a sequence of graphical images, called frames, and animatesthem. Generate() computes the location and motion of each object for a frame. It then calls Geometry()to perform actions such as viewing transformations, projection and clipping. Finally, the frame is processedby Display() which performs hidden-surface removal and anti-aliasing. Then it stores the frame on the disk.After this, Generate() continues with the computation of the next frame and the whole process is repeated.Figure 1 shows the structure of a sequential version of the animation program.(Figure 1 should be placed here.)A simple way to parallelize this application would be to let the three modules work in a pipelined manneron di�erent processors. After computing a frame, Generate() passes it to Geometry() for processing andstarts working on the next frame. Similarly, Geometry() passes its output to Display() and then receive itsnext frame fromGenerate(). Therefore, all three modules work in parallel on di�erent frames (see Figure 2a).Now, if Display() takes much longer to do its processing as compared to Generate() and Geometry() (which isgenerally the case in reality; hidden-surface removal and anti-aliasing require much more time than the othercomponents of the program), more than one instance of Display() can be initiated. This is possible becausethe processing of each frame is independent. Similarly, if the performance of Geometry() is to be improved,several instances of it may be initiated as well. This situation is shown in Figure 2b where Geometry() andDisplay() have several active instances.(Figure 2 should be placed here.)This parallel version of Animation contains two of the commonly-used structures for parallel computing,namely the pipeline and the replication. Consider parallelizing this application on, for example, a network ofworkstations. Parallel program development would require a signi�cant amount of time and e�ort if a low-level tool was used (for example, Unix sockets [31] or a message-passing library such as MPI). Further, theparallelism would be explicit in the code, increasing the complexity of the program. Each time the program-mer wanted to experiment with a di�erent parallel structure for the application, additional programminge�ort would be required to rewrite the code. Moreover, such an e�ort would be replicated, knowingly orunknowingly, by other programmers while writing other applications.Template-based parallel programming systems provide skeletons (templates) of implementations of suchparallel structures. A user simply provides sequential modules of code and selects the appropriate templates

Experience with Parallel Programming Using Code Templates 6to structure the parallel application. As explained later, the templates of FrameWorks (or Enterprise) canbe used to quickly generate the parallel structures shown in Figure 2. The procedural relationships in thediagram indicate that the three modules interact in a pipeline manner and that Geometry() and Display() canhave multiple instances that execute independently from each other. The choice of template indicates whichcommunication pattern the system automatically generates. The resulting parallel program automaticallyspawns the processes on available processors, establishes the communication links and ensures the propercommunication and synchronization. From the user's point of view, all the coding is sequential; all theparallel aspects are generated by the system. By separating the application-speci�c code from the parallelimplementation, template-based development tools aim to decrease program development time and reducethe number of program errors due to parallelization.In addition to FrameWorks and Enterprise, there are several other template-based parallel systems inthe literature (for example [22, 11, 23, 24, 25, 26, 10]). Typically these systems di�er on several dimensionsincluding the selection of templates available to the user, restrictions on the code associated with templates,restrictions on the data that can be passed between templates, and correctness properties (such as deadlock)of the generated program. It is the approach to these issues that distinguishes one system from another.3 Templates Versus Other High-level TechniquesSeveral di�erent high-level models have been used for the design of parallel programming tools. This sec-tion compares the important properties of template-based systems to those of other well-known, high-leveltechniques for building parallel applications.A template encapsulates certain behavior in a parallel environment. A programmer using a template isconcerned only with its speci�ed behavior. The actual implementation may vary from environment to envi-ronment depending on, among other things, the architecture and the operating system. In some ways, thisis analogous to programming with abstract data types, which provide well-de�ned means for manipulatingdata structures while hiding all the underlying implementation details from the user.Macros and message-passing libraries are popular implementations of high-level parallel models. However,the separation of application code and parallelization code is a key di�erence between templates and thesemethods. For example, the programmer must explicitly insert macros or library functions in the applicationcode. On the other hand, templates are non-intrusive: there need not be any reference in the user's sequential

Experience with Parallel Programming Using Code Templates 7code to the templates. This has important implications both for new parallel program development and forthe restructuring of existing parallel applications.Application-speci�c parallel libraries provide a second form of high-level abstraction for parallel program-ming. For example, PBLAS implements library routines for parallel applications based on linear algebra.These routines hide the underlying details of the parallel solution from the user. The user only needs tosupply the data for a particular instance of the problem. There are two fundamental di�erences betweenapplication-speci�c libraries and templates. First, libraries provide an application-speci�c parallel solution;templates are application-independent. The application-independent nature of templates has also been em-phasized by other researchers [28, 29, 10]. Second, a programmer using templates has the freedom to choosebetween di�erent parallel solutions to a problem; application-speci�c libraries usually provide a single solu-tion.New programming languages are a third technique for supporting high-level abstractions for parallel pro-gramming [32, 1]. Although the approach has some advantages, a serious disadvantage is that a programmercannot make use of the existing code for the sequential version of an application. Some argue that parallelapplications should be written from scratch. However, this argument is not consistent with the way complextasks are usually solved. Initially, the emphasis is on �nding a (sequential) solution to the task. It is onlywhen the solution begins to take a signi�cant amount of execution time that people start thinking aboutparallelizing the application. However, by this time a large investment has been made in the sequentialsolution. In a template-based system, the programmer can often reuse the existing sequential legacy code.While developing parallel applications, programmers often think in terms of certain high-level abstrac-tions, such as master-slave, pipeline, or divide-and-conquer. Re�nement of these abstractions to low-levelprimitives is postponed until the implementation phase. Template-based systems attempt to directly sup-port these abstractions. The user speci�es the required abstractions, and the system generates the requiredcode. To achieve the desired behavior, the system may have to insert code at many places in the user'ssequential code. This is an important di�erence from techniques such as macro calls where the expandedcode is localized at the point of the macro call.The concept of templates is consistent with Simon's views on chunking of knowledge [33]. According tothis view, people do not generally think in terms of individual low-level operations while solving complextasks. Rather, they organize their thoughts in terms of strategies which consist of chunks of low-leveloperations structured in certain ways.

Experience with Parallel Programming Using Code Templates 8While templates encourage code reuse, they do not eliminate the need to rewrite sequential code toadapt it to a parallel environment. Like any other parallel tool, some code rewriting or restructuring maybe necessary to expose the parallelism, satisfy the programming constraints of the tool, or achieve improvedperformance.4 Desirable Characteristics of Template-Based ModelsAs we gain more insight into how programmers develop parallel applications, and how di�erent template-based systems can be built, we get a better understanding of characteristics that should be (or could be)present in template-based systems. In this section, we outline what we feel are the important characteristicsof the ideal template-based model. No tool presently exists that supports all of these features. The list isused in this paper to serve as a benchmark for analyzing FrameWorks, Enterprise and other systems. Inthe following discussion, each of the characteristic is given a short name which is shown inside parentheses.These names are used throughout the paper to refer to the corresponding characteristics.4.1 Structuring the ParallelismTemplate-based systems should allow the fewest possible restrictions on how the user can structure theparallelism in an application. The most important structural properties are:1. Separation of Speci�cation (Separation): This is the central feature of a template-based system. Itmeans that it should be possible to specify the templates (i.e., the parallelization aspects of the appli-cation) separately from the application code. This characteristic is crucial for rapid prototyping andperformance tuning of a parallel application. It also allows for the application code and its paralleliza-tion structures to be evolved in a semi-independent manner.2. Hierarchical Resolution of Parallelism (Hierarchy): This allows the re�nement of a component in aparallel application graph by expanding it using the same model. That is, templates can include othertemplates. Therefore, there is no need to have separate models for \programming-in-the-large" and\programming-in-the-small."3. Mutually Independent Templates (Independence): It is not su�cient to de�ne some templates that canbe used with other templates. The meanings of all templates should be context insensitive so that they

Experience with Parallel Programming Using Code Templates 9can be used with other templates.4. Extendible Repertoire of Templates (Extendible): It should be possible for a user to extend the set oftemplates available.5. Large Collection of Useful Templates (Utility): The system should be useful over a wide range ofapplications.6. Open Systems (Open): It should be possible for the programmer to include lower-level mechanisms,such as explicit message passing, in their application. The absence of such a feature results in aclosed system where the only applications that can be developed are those whose required parallelstructures match the templates. This is a very di�cult requirement as it has signi�cant implicationsfor application development, debugging, and performance tuning.4.2 ProgrammingTemplates may impose constraints on how users write sequential code.1. ProgramCorrectness (Correctness): The system should o�er some guaranteed properties of correctness.For example, absence of deadlocks, deterministic execution, and fault tolerance are some desirablecorrectness features.2. ProgrammingLanguage (Language): The system should build on an existing commonly-used language.Ideally, there should be no changes to the syntax or semantics of the language. This facilitates reuseof existing sequential code and makes it possible to take advantage of existing expertise in sequentialprogramming.3. Language Non-Intrusiveness (Non-Intrusiveness): A system may satisfy the language objective, butforce the user to change sequential code to accommodate limitations in the parallel programmingmodel. For example, to develop a parallel application using a message-passing library, the user mayhave to appropriately restructure the code and insert calls to the message-passing library in the code.The only way to properly eliminate this problem and also satisfy the language constraint is to have acompiler that automatically parallelizes the code. Unfortunately, for coarse-grained applications, therequired compiler technology does not exist.

Experience with Parallel Programming Using Code Templates 104.3 User SatisfactionThe system must satisfy a number of performance constraints, both at program development time and atrun-time. These include:1. Execution Performance (Performance): The maximum performance possible, subject to the combina-tion of templates chosen by the user, should be achievable. There will always be limitations to theachievable performance. The complexity and interdependence of components external to the system(communication subsystem, operating system, network, etc.) make it very di�cult to abstract andstill attain the highest possible performance.2. Support Tools (Support): The system should provide a complete set of design, coding, debugging andmonitoring tools that support the template-based model. These tools must support the same level ofabstraction as the programming model.3. Tool Usability (Usability): The ideal tool should have a high degree of usability. It should be easy tolearn and easy to use. Usability assessments have been neglected in the literature [20].4. Application Portability (Portability): The tool should allow the user to port applications to a numberof di�erent architectures. Some performance losses may be expected for a poorly-chosen architecture,but the program should still run.5 Outline of FrameWorksThis section provides a brief overview of the FrameWorks' model and system. A more complete descriptioncan be found in [13, 14, 15].FrameWorks represents our initial attempt at developing a template-based system. In the FrameWorksmodel, an application consists of a �xed number of modules which are written using an extended version ofa high-level language (C). A module consists of a set of procedures, exactly one of which is speci�ed as theentry procedure. The entry procedure of a module can be called by other modules in the application in amanner similar to local C procedure calls. A module may also have local procedures which may be calledonly from within the module. There are no common variables among the modules. Each application hasone main module, that contains the main() procedure. The main module may or may not have an entryprocedure.

Experience with Parallel Programming Using Code Templates 115.1 The Interconnection StructureFrameWorks provides a set of templates for specifying the interconnection among communicating modules.A module's complete interconnection with other modules can be described by a 3-tuple:(input-template, output-template, body-template).For each type of template, the user must select one of the choices available and specify the input and outputlinks for each module. This information is used by the system to generate an expanded version of a modulecontaining the low-level code for parallel synchronization, scheduling and communication. To distinguish anoriginal module from its expanded version, the latter is referred to as a process.Input templates describe the interface through which a process receives its input. There are three optionsfor input templates: initial, in-pipeline, and assimilator (Figure 3a). A process with an initial template doesnot receive any input from other modules. This template is used only by the main module of the application.A process using an in-pipeline receives its input from any of its input processes and serves them in a �rst-come-�rst-served manner. In the case of an assimilator template, the process takes exactly one input fromeach of its input processes before calling the entry procedure of the enclosed module.(Figure 3 should be placed here.)Similarly, there are three output templates: out-pipeline, manager, and terminal (Figure 3b). A processwith an out-pipeline template can call any of its output processes. A manager template is used for executinga �xed number of copies of each of its output processes. A process whose output is marked as terminal doesnot call any other process.A body template is used to assign additional characteristics to a module which modify the module'sexecution behavior in the distributed environment. The use of a body template is optional. There are twochoices for the body template: executive and contractor (Figure 3c). The executive template causes theprocess to have its input, output and error streams directed to the user's terminal. The contractor templateis useful for computationally intensive processes of an application by dynamically utilizing idle processorsat run time. When a module's body is declared as contractor, the run-time environment executes a variablenumber of replicas of the given module. Each of these replicas is known as an employee of the contractor.A contractor process hires an unspeci�ed number of employee processes to get the job done. The designerof the application does not take part in the hiring and �ring of employee processes; the user simply speci�es

Experience with Parallel Programming Using Code Templates 12that the given process should function as a contractor. Process management is performed by the run-timeenvironment and is transparent to the designer.5.2 Communication Among ModulesModules communicate with each other using programmer-speci�ed structured messages called frames. Aframe is similar to a C structure except that pointer type variables are not allowed. For each link betweentwo modules, the programmer speci�es two frames: an input frame (a structure containing all the inputparameters needed for a call) and, if necessary, an output frame (containing all the reply or output valuesreturned). Execution of an application is initiated by the main() procedure of the main module. Modulesinteract with each other using FrameWorks' call statements:call name(inputframe);oroutputframe = name(inputframe);where name is the name of the module called.The two forms of FrameWorks calls shown above operate in the non-blocking and blocking modes, respec-tively. The non-blocking mode implies that the calling module will not wait for the completion of the call.Instead it will continue with its own execution as soon as the called module has received the data. In theblocking mode, the calling module waits until a reply frame is returned via another FrameWorks' construct,the reply statement. Within the called module, if the statementreply(outputframe);is encountered, the data in outputframe is returned to the calling module. After the called module returns,it starts waiting to serve another incoming call.(Figure 4 should be placed here.)As an example, to structure the graphics application discussed in Section 2, the user simply attaches inputand output templates to the three modules, as shown in Figure 4a. The only required change to the sourcecode is to extend the normal procedure call to Geometry() and Display() into FrameWorks' non-blocking

Experience with Parallel Programming Using Code Templates 13call statements. To replicate the execution of Geometry() or Display() one simply attaches the contractortemplate to these modules (Figure 4b). No further modi�cations to the code are required. The systemcreates and manages execution of variable number of instances of Geometry() and Display() modules. Theexact number of instances employed depends on the work load of these modules as well as availability oflightly loaded processors on the network.5.3 Experience and Lessons of FrameWorksFrameWorks was a prototype system used to demonstrate the feasibility of template-based concepts. Ourexperience with FrameWorks indicated that in the case of existing sequential applications, reasonable perfor-mance gains could be obtained using the simple modi�cations needed to create a coarse-grain parallel versionof the applications. In several cases, partitioning of the complete application into modules was possible whilekeeping most of the code of the sequential version intact. In some cases, however, more e�cient partitioningof modules required a signi�cant amount of restructuring. In the case of applications that were designedwith FrameWorks in mind, the amount of work to switch between the sequential and parallel version wasquite small. In such cases, experimenting with di�erent templates often required either no modi�cations oronly a small number of modi�cations within the modules.Although the initial experience with FrameWorks was encouraging, gradually several problems with themodel and the system became apparent. The major limitations included:1. The parallelism was expressed in the code (call and reply) and in the graphical user interface (violatingthe separation and non-intrusiveness objectives). The consequence was that changes in the templatespeci�cation had to be mirrored in the code, increasing the chance of user error.2. FrameWorks required the user to specify as many as three templates to fully describe the parallelstructure of a process. There were some subtle constraints on how these templates could be combined,eliminating illegal and impractical combinations. Users often found these constraints confusing (poorusability).3. The blocking version of the call primitive is a source of ine�ciency. In this case, the calling moduleis blocked waiting for the reply frame even though it may not immediately need it to proceed with itscomputation (resulting in decreased performance).4. The call and reply primitives can use only a single frame as a parameter for exchanging data. Frames

Experience with Parallel Programming Using Code Templates 14are limited to non-pointer data, restricting the parameter passing possibilities. Since sequential Cprograms often use pointers for passing data to functions, these restrictions often required signi�cantmodi�cations to the sequential code to support the FrameWorks method of parameter passing (failingthe non-intrusiveness objective).5. For its time, FrameWorks was quite novel in its approach toward structuring parallel applications.After its publication, we had several requests for the software from other researchers and practitioners.However, the FrameWorks system was not an easily portable system. The main reason for this was itsdependence on a home-grown message-passing library and user-interface management tools. Althoughthese tools helped us quickly develop the prototype system, porting FrameWorks to a new systemmeant installing all the tools and libraries it used. Some of the tools in turn depended on other locallydeveloped research tools. These constraints made the job of porting FrameWorks to other sites verydi�cult (violating the portability objective).6 Enterprise Parallel Programming SystemEnterprise is not just a parallel programming tool; it is a parallel programming environment. It is a completetool set for parallel program design, coding, compiling, executing, debugging and pro�ling. A detaileddescription can be found in [16, 17, 18, 19, 20, 21].6.1 Improvements in Enterprise over FrameWorksEnterprise represents an advancement over FrameWorks in several ways:1. Enterprise combines the three-part templates of FrameWorks into single units, called assets, thatrepresent all the useful cases. This eliminates the issue of illegal or impractical combination of partialtemplates (improving usability). Enterprise also introduces some new templates (improved utility).2. In Enterprise, the use of FrameWorks' call and reply keywords was eliminated. By using a pre-compiler,Enterprise automatically di�erentiates between a procedure-call and a module-call based on the ap-plication graph (called the asset diagram). In e�ect, all the parallel speci�cations are in the assetdiagram, not in the user code. This creates an orthogonal relationship between the application code(programming model) and the asset diagram (meta-programming model). Enterprise largely satis�esthe separation objective.

Experience with Parallel Programming Using Code Templates 153. Enterprise allows templates to be hierarchically combined to form a parallel program, almost withoutlimitation (satisfying the hierarchy objective).4. A useful debugging feature is that Enterprise programs can be run sequentially or in parallel oftenwithout changes to the code, asset diagram or recompiling. Also, the events in a parallel programexecution can be logged, so that the program can be deterministically replayed.5. An analysis of the operational model of FrameWorks' templates proved that a template would not causea deadlock due to interactions within its components [34]. The analysis also showed, however, thatdeadlock is still possible in an application where modules make blocking calls to one another in a cyclicmanner. Use of the assimilator template was also shown to cause a deadlock under some situations.Learning from this, Enterprise eliminated the assimilator template. It also restricted the applicationgraph to be only tree-structured. This eliminated the possibility of an Enterprise application gettinginto a deadlock situation either due to its internal operation or due to cycles in the application's callgraph. The user can, however, still write code to cause a deadlock. For example, an asset may bein an in�nite loop due to some programming error thus resulting in an inde�nite wait for the entireapplication. These deadlock properties contribute towards the correctness objective.6. In FrameWorks, when a module call is made that returns a result, the caller is blocked until the calleereplies. Enterprise uses futures [35] to let the caller proceed concurrently until it needs to access results.In e�ect, Enterprise uses compiler technology to postpone synchronization as long as possible. Theresult is improved performance. Enterprise has the synchronization implicit in the code; in Frameworksit is explicit.7. Unlike FrameWorks, Enterprise module calls are not restricted to a single parameter. Moreover, Enter-prise uses its pre-compiler to take care of marshaling and unmarshaling of parameters. This eliminatesthe need for frames and allows parallel procedure calls to look like sequential procedure calls. Further,Enterprise allows pointers to be passed as parameters, although the system does not support passingpointer data that itself contains pointer data. This considerably improves the non-intrusiveness of thesystem.8. FrameWorks used analogies to illustrate the operations of its templates (for example, manager, master-slave and contractor). However, it was not quite consistent in its approach. Often it mixed these

Experience with Parallel Programming Using Code Templates 16with somewhat unclear terminologies, such as in-pipeline or assimilator. Enterprise relies on a singleconsistent analogy of a human organization to apply, document, and explain parallel structures. Humanorganizations are excellent examples of parallel systems. The analogies are intended to reduce theperceived di�culty of learning parallel programming, improving the usability of the system.9. Enterprise has been implemented with the portability objective in mind. The system is implementedon top of existing, easily-accessible technology. Its user interface supports X-Windows and was writtenin Smalltalk. The pre-compiler was built using the Sage tools [36]. The run-time library can use anyone of three message-passing kernels: PVM [3], ISIS [37] and NMP [38]. All these systems are availableon a large number of systems.6.2 Enterprise Programming ModelConsider a call from a module A() to a module B():Result = B(Param1, Param2, ..., ParamN);/* some other code */Value = Result + 1;The sequential semantics of such a call is that A() calls B(), passing it N parameters, and then blockswaiting for the return value(s) from B() before resuming execution. Enterprise preserves the e�ects of thesequential semantics but allows A() and B() to execute concurrently. When A() calls B(), the parametersto B() are packaged into a message (marshaled) and sent to the process that executes B(). After callingB(), A() continues with its execution until it tries to access Result to calculate Value. If B() has yet notcompleted execution, then A() blocks until B() returns the Result. These so-called futures signi�cantlyincrease the concurrency without requiring any additional speci�cation from the user. In e�ect, a future isthe synchronization primitive in Enterprise. For many applications, the sequential code looks identical tothe parallel code and has equivalent semantics.Enterprise allows pointer type parameters in module calls. The macros IN(), OUT() and INOUT() canbe used to designate input, output and input-output type parameters. For example, consider the followingprogram segment where A() calls B():

Experience with Parallel Programming Using Code Templates 17int Data[100], Result;...Result = B(&Data[60], INOUT(10));/* some other code */Value = Data[65] + 1;The second parameter, INOUT(10), indicates that 10 items of parameter Data are to be used for input as wellas output. Here, the module call to B() sends elements 60..69 of Data to B(). When B() �nishes executing,it copies 10 elements back to A(), overwriting data locations 60..69. A() will block when it accesses Data[65]if the call to B() has not yet returned. It should be noted that due to weak typing in C, it is not alwayspossible to deduce the length of the pointer type argument. Therefore, an additional parameter indicatingits length is necessary.In fact, these macros are not necessary. If they were not included in Enterprise, then all pointer parameterswould be treated as INOUT, preserving the sequential semantics. However, performance would be lowersince all pointer data would be copied both on asset call and return. The macros have been included so thatprogrammers can give the system important guidance to improve communication e�ciency.6.3 Enterprise Meta-Programming ModelThe meta-programming model of Enterprise consists of templates, called assets, and a few basic operationsthat are used to combine di�erent assets to achieve the desired parallel structures. As in FrameWorks,sequential code is attached to assets to get a complete parallel application. Enterprise currently supportsassets whose icons are given in Figure 5.(Figure 5 should be placed here.)Enterprise: It represents a program and is analogous to an entire business organization. By default, everyenterprise asset contains a single individual. A developer can transform this individual into a line,department or division, thus facilitating hierarchical structuring and re�nement.Individual: It represents a slave in traditional parallel programming terminology and is analogous to aperson in an organization. It does not contain any other assets. In terms of Enterprise's programmingcomponent, it represents a procedure that executes sequentially. An individual has source code and

Experience with Parallel Programming Using Code Templates 18a unique name. When an individual is called, it executes its sequential code to completion. Anysubsequent call to that individual must wait until the previous call is �nished. If a developer enteredall the code for a program into a single individual, the program would execute sequentially.Line: A line is analogous to an assembly or processing line (it is usually called a pipeline in literature). Itcontains a �xed number of heterogeneous assets in a speci�ed order. The assets in a line need notnecessarily be individuals; they can also be other lines, departments or divisions. Each asset in the linere�nes the work of the previous one and contains a call to the next. For example, a line might consistof an individual that takes an order, a department that �lls it, and an individual that addresses thepackage and mails it. The �rst asset in a line is a receptionist. A subsequent call to the line waits onlyuntil the receptionist has �nished its task for the previous call, not until the entire line is �nished.Department: A department represents a master/slave relationship in the traditional parallel computingterminology and is analogous to a department in an organization. It contains a �xed number ofheterogeneous assets and a receptionist that directs each incoming communication to the appropriateasset. All assets execute in parallel.Division: It represents a divide-and-conquer computation and contains a hierarchical collection of individualassets among which the work is distributed. When created, a division contains a receptionist anda representative that represents a leaf node. Divisions are the only recursive assets in Enterprise.Programmers can increase a division's breadth by replicating the representative. The depth of recursioncan be increased one level at a time by transforming the representative (leaf node) into a division. Thisapproach lets developers specify arbitrary fanout at each level.Service: It represents a monitor and is analogous to any asset in an organization that is not consumed byuse and whose order of use is not important. It cannot contain or call any asset but other assets cancall it. A wall clock is an example of a service; anyone can query it to �nd the time and the order ofaccess is not important.Enterprise provides a small set of building blocks from which users can construct complex programs usinga simple mechanism. The user begins by representing a program as a single enterprise asset containing asingle individual. This \one person business" represents a sequential program. Four basic operations are usedto transform this sequential program into a parallel one: asset expansion, asset transformation, asset additionand asset replication. Using the analogy, the simple business grows into a (possibly complex) organization.

Experience with Parallel Programming Using Code Templates 19The initial Enterprise asset can be expanded to reveal its internal structure; a single individual. Theindividual asset can then be transformed into a composite asset like a department, line or division and thecomposite assets can be expanded to reveal their default components. Component assets can be added tolines and departments. If there are more calls to an asset than it can handle in a reasonable time, the assetcan be replicated to produce multiple identical copies. If a call to a replicated asset has not returned bythe time a subsequent call is made to the asset, one of the replicas transparently handles the call. Finally,component assets at any level can be replicated and expanded so a program can consist of a hierarchy ofassets to an arbitrary level. (Figure 6 should be placed here.)The graphics example of Section 2 can be parallelized in Enterprise with minimal changes to the orig-inal source code (mostly pointer parameters). Contrast the Enterprise asset diagram in Figure 6 to theFramework's diagram in Figure 4. Note the hierarchical composition: Figure 6a shows Animation as a sin-gle organization or enterprise. Expanding the icon reveals its inner structure, a line of assets (Figure 6b).Expanding that shows that the line consists of three individuals (Generate(), Geometry(), and Display()),one of which is replicated up to eight times (Figure 6c). The diagrams are easily modi�ed. For example, toreplicate Geometry(), the user need only select replication from Geometry()'s menu and specify the numberof copies. This new parallel program will now run without any additional changes to the user's code.Consider the parallel polynomial multiplication example of Figure 7a [21]. The program can be describedas a line of two assets: a receptionist, PolyMult(), and a division,Mult(). PolyMult() reads in the coe�cientsof the polynomials to be multiplied. It then calls Mult() to recursively do the multiplication. The code forMult() is shown in Figure 7a. To make this program run properly using Enterprise, the pointer parametersmust be followed by an additional size parameter with an INOUT designation (not shown). These smallchanges violate the non-intrusiveness requirement.Figure 7b shows the parallel structure of the program. Inside the double line rectangle is the expansionof the enterprise asset. Inside the dashed-line asset is the expansion of the line consisting of the two assets,PolyMult() and Mult(). The asset Mult() has been expanded as a division. Inside the division is anotherdivision. Here the division is replicated three times (because of three recursive calls to Mult()). The diagramshows the depth of recursion (two levels). Figure 7c shows the result of expanding the diagram into astandard call graph showing all of the processes (including the hidden Enterprise processes). The simplediagram of Figure 7c corresponds to a complex structure of 18 processes.

Experience with Parallel Programming Using Code Templates 20(Figure 7 should be placed here.)An interesting property illustrated by the PolyMult() example is that Enterprise can execute an assetsequentially or in parallel at run-time. Mult() is recursive and if there are processes available to do therecursion in parallel, it is done in parallel. Once the recursion reaches the depth of the asset diagram tree,subsequent calls are processed sequentially.Enterprise eliminates the possibility of certain types of common parallelization errors. For example, asmentioned earlier, it eliminates cyclic calls thus protecting users against a common cause of deadlocks. Errorssuch as waiting for a message (such as a reply) that will not be sent is checked by the system. Similarly, amissing connection error is prevented by checking asset calls to nonexistent assets. Also, the system handlespacking and unpacking of parameters for message communication thus eliminating a common error in parallelprogramming.The preceding has suggested that Enterprise comes close to satisfying the separation of speci�cationobjective. While largely true, there are two important places where this is violated. First, assets correspondto procedure/function calls in the user code. Changes in the asset diagram (for example, adding a new asset)must be re
ected in the code, and visa-versa. Second, the asset diagram may force the user to restructuretheir code to achieve the desired parallelism. For example, replicating an asset isn't bene�cial if there is onlya single call to that asset. To maximize performance, the user might have to rewrite the code so that theasset gets called many times (by dividing the work of one call into multiple computationally-smaller calls).7 Lessons and ExperiencesThere are several parallel programming systems that employ techniques similar to those found in Frame-Works/Enterprise (for example [22, 11, 23, 24, 25, 26, 10]). All these systems can be viewed as template-based.This section presents a critical evaluation of template-based parallel programming tools. It is intended toillustrate the large gap between current technology and what has to be improved before it can gain wideacceptance. Emphasis is placed on areas that require further research work.7.1 Separation of Speci�cationThe signi�cance of separating (sequential) application program components from how these componentsinteract has long been recognized. In early systems, component interaction was speci�ed in separate text

Experience with Parallel Programming Using Code Templates 21�les [39]. The advent of workstation technology and their graphical user interfaces (GUI) greatly enhancedthe ease, e�ciency and e�ectiveness of specifying parallel structures [11, 24, 40].Many of the systems that employ a separation of speci�cations between parallel structuring and appli-cation code are based on the data-
ow model. Example systems are CODE [24], DGL [41], LGDF [42]and Paralex [43]. Typically, in these systems the programmer describes the data-
ow using a graph, wherenodes represent processes or programs and links represent the
ow of data between nodes. A node can beginexecution when all the links incident to that node have their inputs available. Some of these models alsoprovide hierarchical resolution of parallelism [24, 40]; others don't [43, 42, 41]. In a pure data-
ow model it isdi�cult to describe loops, self-loop arcs and static/dynamic node replication. For this reason, some systemsmodify the model to introduce these additional constructs. For example, CODE supports replicated nodes.Several models based on control-
ow that address the separation objective have emerged. Examplesystems include CAPER [44], PIE [10], and Parallel Utilities Library (PUL) [45]. The PIE system (Pro-gramming and Instrumentation Environment) supports implementation templates for master-slave, recursivemaster-slave, heap, pipeline and systolic multidimensional pipeline [10]. In PIE, a template can have anotherimplementation template as part of it, thus facilitating the hierarchical resolution of parallelism. As anotherexample, the parallel language PAL is a procedural language with a language construct called molecule [46].A molecule can be used to de�ne one of several types of parallel computation (SIMD, sequential, pipelined,data-
ow, etc.). The PUL system [45] provides high-level templates for task as well as data parallelism. Italso supports templates for parallel I/O.Separate speci�cation-based parallel computation models are also not limited to procedural programminglanguages. For example, Cole's algorithmic skeletons [9] and P3L [22] are designed using the functionalprogramming model. Similarly, Strand uses logic programming to design its templates [47].Some researchers advocate using application-independent parallel program skeletons not only for buildingparallel applications but also for educating programmers or documenting the solution strategies in parallelcomputing. A Programming Paradigm [27, 28] for parallel computing is de�ned as a class of algorithmsthat solve di�erent problems but have the same control structure. A parallel program archetype [29] isa program design strategy for a class of parallel problems along with the associated program designs andexample implementations. In both of these works, there is an added emphasis on enhancing developers'understanding of common classes of parallel problems.The separation of speci�cation between parallel structuring (meta-programming model) and the user

Experience with Parallel Programming Using Code Templates 22code is important as it allows relatively independent evolution of the two. However, complete separation is(currently) not possible as the meta-program needs to connect to the user code at some point. This is trueabout Enterprise as well as all other similar systems that we are aware of.Enterprise attempted to preserve the semantics of sequential C. Again, it was not possible to completelyachieve this. There are semantic di�erences between the programming and meta-programmingmodels. Also,the distributed memory model and futures force some subtle changes in semantics that can confuse someusers. For example, in a MIMD model, each process has its own copy of the variables that may be declaredas global variables in the original sequential program. This means that all information required by anasset, including access to the caller's global variables, must be added as extra parameters to the asset call.Depending on the application, this could require a major restructuring of the user's code. This is a sourceof many programming errors by �rst-time Enterprise users.The above points illustrate that there are
aws in the Enterprise model. Similar weaknesses exist inother template-based models. All coarse-grained, distributed-memory systems that we are aware of requirethe user to make some changes to their sequential code for parallelization. The ideal orthogonal relationshipbetween sequential code and parallel speci�cations is hard to achieve since the needs of the programmingmodel and the meta-programming model are sometimes contradictory.7.2 Trade-o�sAn important weakness of any template-based model is that not all parallel algorithms can be readilyexpressed using the available repertoire of templates (a�ecting the utility of the system). For example,an algorithm that relies on a group of processes using peer-to-peer communication (as used, for example,in mesh problems) cannot be supported using current Enterprise assets. Although this problem can bealleviated somewhat as new assets are designed, it will never really disappear. There are two main reasonsfor this. First, it is probably impossible to predetermine a set of templates that can represent an arbitrarycommunication topology without reducing the level of the templates to a \connect-the-dots" approach.Second, there are certain trade-o�s involved in designing a high-level parallel programming system. Thedi�culty in supporting peer-to-peer communication lies not with the implementation, but rather with thecon
ict that in such a system it may no longer be possible to o�er any correctness guarantees such as anabsence of deadlocks.

Experience with Parallel Programming Using Code Templates 237.3 PerformanceOften a solution generated by a high-level tool, such as Enterprise, may not achieve the same performanceas a solution hand-crafted by an expert using a low-level communication library such as PVM. There areseveral reasons for this performance degradation:1. An Enterprise template may include a hidden process. For example, the department asset is imple-mented via a representative process that manages various assets in the department. Although theadditional process means that there is some performance overhead, its presence is desirable becauseit avoids splitting the code between several interacting processes and duplicating this code in all theassets. This would result in a poorly engineered system that would be di�cult to understand andmaintain. However, a particular instance of this type of application may be hand-crafted by a userwithout a representative process thus achieving better e�ciency.2. Asset calls sometimes transfer more data than necessary. The user knows exactly how much data topass and can optimize a program to minimize it. Enterprise does not have the same intimate knowledgeof the application as the user, and will always err on the side of transferring too much.3. The Enterprise-generated code includes a lot of error checking. A hand-crafted application may wantto eliminate most of it.4. Enterprise provides facilities for collecting debugging and performance monitoring information. Evenif these facilities are not used, they still create (small) run-time overhead.5. Being a high-level system, Enterprise deals with general structures rather than speci�c instances. Forexample, the divide-and-conquer asset (division) uses generalized code that is valid for any speci�edvalues for depth and width. This results in some overhead in the form of extra code.6. A user can use PVM to construct arbitrary communication graphs, exploiting communication short-cuts to improve performance. This is not possible in Enterprise or FrameWorks.7. Enterprise is built on PVM. Therefore, even though it may be possible to apply certain performanceenhancements to Enterprise, performance of an Enterprise application cannot exceed that of the bestpossible PVM implementation.

Experience with Parallel Programming Using Code Templates 24In summary, the trade-o� is between better software engineering in exchange for possibly slower executionperformance. The degree to which other similar systems [11, 24, 45] would su�er the performance loss woulddepend on whether these systems have similar reasons or not.Although speed-up is only one factor in judging the utility of a parallel programming system, there is asegment of the parallel programming community that demands near peak performance from their applica-tions. However, with the availability of relatively inexpensive multi-processor machines and the wide-spreaduse of networked single-processor workstations, more and more people are turning towards parallel comput-ing. For such users, a shorter learning curve, ease of program design, development and debugging are justas important as speed-up. A tool that quickly achieves a performance improvement, even though it mayprovide less than peak performance, may be quite acceptable. The debate over peak performance is akinto a similar debate in the sequential programming world over the use of high-level compilers and fourth-generation tools instead of highly e�cient assembly language programming. Hardly anyone now questionsthe utility of high-level language compilers.7.4 UsabilityA motivation for developing FrameWorks and Enterprise was to construct a parallel programming systemwith a high degree of usability. The system should be easy to learn, easy to use and, because of the high-level templates, capable of constructing correct parallel programs quickly. Our experience with Enterprise,as well as feedback from the user community, seemed to support these claims. Still, it was felt that somecomparative assessment of Enterprise should be made to determine how well it fared against, for example,a low-level message-passing library.In 1993, we conducted a controlled experiment in consultation with a cognitive psychologist [48, 20].Half of the graduate students in a parallel/distributed computing class solved a problem using Enterprisewhile the rest used NMP [38], a PVM-like library of message-passing primitives. The student accounts weremonitored to collect statistics on the number of compiles, program executions, editing sessions and loginhours. When the students submitted their assignment for grading, the quality of their solution (speedup)was measured and the number of lines of code written was counted. Full details of the experiment can befound in [20].The results of this experiment were a mixed bag of expected results as well as surprises. The statisticssupport our initial expectation that students would do less work with Enterprise, but get a more e�cient

Experience with Parallel Programming Using Code Templates 25solution with NMP. Enterprise students wrote 66% fewer lines of code than the NMP students, in additionto doing fewer edits, compiles and test runs. However, the NMP solutions ran 27% faster. One surprisingresult was that even though Enterprise users wrote less code, they had 26% more login hours than the NMPstudents. A detailed examination of the logged data revealed three main causes for this:1. Better tool support: Enterprise users frequently used the animation feature of the system to replay acomputation. This tool provided useful run-time information, but was quite slow to run.2. Usability: The Enterprise compiler preprocessed the user's code several times before generating C codeto be compiled. Consequently, compilations were at least 4-fold slower, something that all users foundfrustrating.3. Performance: Since NMP performance was better, Enterprise users spent more time trying to improvethe performance of their solution.A second experiment was conducted in 1995 to assess three tools: Enterprise, PVM and PAMS (acommercially available tool that allows loop iterations to be done in parallel [8]). A graduate class of 20students was divided into three groups, each group using a di�erent parallel programming tool to do eachassignment (graph theory related, sorting and tree searching). The students were asked to evaluate the toolused.As expected, PVM solutions produced the best performance (on two of the assignments it was signi�cantlybetter than Enterprise/PAMS), with Enterprise and PAMS producing slower, but comparable, results. Thecode inserted into the sequential program by PVM users averaged over 100 lines more than code insertedby Enterprise/PAMS users. Super�cially, it seems like an obvious trade-o�: better performance for moreprogramming e�ort expended. However, things were not as they seemed: Enterprise/PAMS users spent morelogin time working on their assignments, typically from 33% to 100% additional hours. Again a seeminglyparadoxical result appears: students using the high-level tools wrote less code but spent more time developingit. Why? Gradually three reasons emerged:1. Performance: Graduate students are highly competitive. Before the start of the experiment, they werewarned that some tools might perform signi�cantly better than others on a particular assignment.They were encouraged to be competitive (get the best speedups) within the group that was usingthe same tool, and not to compete with students using the other tools. Despite this, many of theEnterprise/PAMS students tried very hard to get PVM-like speedups. They tried numerous clever

Experience with Parallel Programming Using Code Templates 26ways of circumventing the programming model, but were rarely rewarded with better performance.Enterprise and PAMS students said that for each assignment there was an \obvious" way to parallelizethe program, and this they could do quickly and easily. However, after their initial success, they foundit very hard to improve performance.2. Understanding: Many students had di�culty grasping the notion that Enterprise would take care of\everything" for you. Templates hide a lot of detail from the user. If an asset made a call to anotherasset, even though the code and semantics of the call look sequential, the students knew it was beingdone in parallel. They felt they needed to understand how Enterprise worked which, of course, isdefeating part of the purpose of a high-level tool.3. Language: Both PAMS and Enterprise make subtle changes to the host programming language (C)semantics. Even though these semantic di�erences were properly documented in the manuals, this wasstill a source of confusion for some students. Programming in PVM, in contrast, was as easy as writingsequential code to many students. Even though they had to write more PVM code, the students foundthat they needed to know less than 10 PVM routines and, once these routines were learned, writingparallel code was easy.The data suggests that the students most dissatis�ed with Enterprise/PAMS were the ones who did their�rst assignment with PVM. In PVM, the user has complete control over the parallelism and can do whateveris desired. When these users tried Enterprise/PAMS, they quickly became frustrated at the lack of controlthey had. In the �nal class evaluation of the tools, lack of user control over the parallelism was cited asthe biggest disadvantage of Enterprise/PAMS. We could summarize the implications of these experimentsas follows:1. These experiments and feedback from WWW users demonstrate that the Enterprise model and itssupport tools can be used to develop parallel programs. All too often, research tools are evaluated solelyby the research group that developed the technology. There is a concern in the parallel programmingcommunity that the functionality and usability of parallel programming environments is often nevervalidated [24].2. If the goal of a user is to quickly generate an initial version of a parallel application, Enterprise (andPAMS) can be termed as \easy-to-use" systems as compared to PVM. However, if the goal is to get aparallel solution where performance is the overriding concern, communication libraries may provide a

Experience with Parallel Programming Using Code Templates 27better alternative. For reasons outlined earlier, it is very hard for Enterprise to generate code that isas e�cient as the one generated by hand-crafted solutions.3. Some users, particularly those who have worked with the low-level tools, do not like to lose the controland the
exibility that such tools provide. In systems like FrameWorks or Enterprise, where a usermust develop a parallel program using only the high-level constructs provided by the system, the lackof openness may be counterproductive. A possible solution might be to have more open and extendiblesystems where a user may use templates if desired, but can also access low-level primitives for e�ciencyand
exibility. We discuss the issue of open and extendible systems further in Section 9.4. A high-level system should not introduce changes in the semantics of the underlying sequential lan-guage. In trying to preserve sequential compatibility, both Enterprise and PAMS introduce subtlechanges to the semantics. These changes make the systems harder to learn and understand and, there-fore, make it more di�cult to develop and debug applications. Subtle changes were harder for thestudents to deal with; obvious changes (such as new keywords or library calls) were easier, since theywould be more explicit in the code.7.5 Template-Based Models and Low-Level Communication LibrariesEnterprise has a simple interface that allows it to use a variety of communication packages (PVM, ISIS andNMP). Enterprise can be viewed as a software layer on top of, for example, PVM. The question arises as towhat the user gains and loses by moving to a higher level of abstraction in their code.There are two main goals of the Enterprise system: to create a high-level programming environment thatis easy to use, and to promote code reuse by encapsulating parallel programming code into templates. Forexample, Enterprise's model allows the user to achieve a near complete separation of speci�cation. There isnothing in the user's code that indicates it is intended for parallel execution (other than optional parametermacros for performance). The use of a pre-compiler allows the Enterprise system to automatically insertcommunication, parameter packing and synchronization code into the user's application. In contrast, withPVM the user must explicitly address these issues by inserting PVM library calls into the code (violatingthe non-intrusiveness objective). It is the user's responsibility to structure the code so that a compiler
agcan be used to selectively include/exclude the parallel code.Enterprise o�ers the user additional bene�ts. For example, the model allows for the hierarchical use of

Experience with Parallel Programming Using Code Templates 28the templates, thus ensuring deadlock-free structuring of applications. Also, the user has the assurance thatthe generated code for the speci�ed structures is correct. Both points contribute to the correctness objective.In moving to a higher-level model, such as Enterprise, the user has lost something. Most noticeable isthe possible decreased performance. Message passing libraries allow for more
exibility; the user can easilytune a system to maximize performance. Further, these libraries have a large support infrastructure thathas resulted in them being made available on most major platforms (excellent portability).The choice between PVM and a higher-level tool is not easy. The decision can be simpli�ed to a tradeo�between execution performance and software engineering. High-level parallel programming tools have thepotential to enable users to build parallel applications more quickly and reliably. In return, they may haveto accept (slightly) worse performance.8 Expanding the Role of TemplatesMost template-based parallel programming models use their templates to represent control
ow. However,there are several more areas where the application of the template-based approach holds promise.1. Templates for parallel I/O: There are a number of commonly occurring parallel I/O access patterns.These patterns can be abstracted into a set of useful templates. An Enterprise-based implementationinvolves the user annotating (through the asset diagram) each �le with an appropriate template [49].For example, the user can designate a �le to be a diary or a newspaper, again using analogies to describethe data access patterns.2. Templates for shared memory: Work is proceeding on enhancing Enterprise with distributed sharedmemory. Users specify the shared memory and its access templates via the user interface and thecompiler analyses the user's code to insert locks in the appropriate places. Templates correspond todi�erent access protocols, including facilities to preserve sequential semantics, guarantee deterministicexecution or allow for chaotic results [50].3. Templates for Data Parallelism: Templates can be used to describe alignment and distribution of dataon processors (as in HPF [6]). The system can then generate SPMD code for the �ne-grain data-parallel solution for the given function or segment of code. However, this approach is not suitable forapplications that require redistribution or realignment of data during execution.

Experience with Parallel Programming Using Code Templates 299 A Next Generation ToolTemplates represent a powerful abstraction mechanism. We believe templates have the potential to makeas strong an impact on the art of parallel programming as macros and code libraries. However, from ourexperiences with FrameWorks and Enterprise, we have learned a number of lessons that must be rememberedwhen developing new template-based tools:1. Open Systems: Enterprise provides a high-level parallel programming model that the user must use.There are no facilities for the user to step back from the model to access lower-level primitives toachieve better performance, or to accommodate an application for which a suitable template is notavailable. For example, even though Enterprise generates PVM code, this code is hidden from the user.There is no easy way to use Enterprise to generate a correct PVM program, and then incrementallytune this program to achieve better performance. A high-level template-based tool must allow the userthe possibility of accessing lower-level primitives. Also, it should be possible to develop an applicationpartially with the use of templates and partially by using low-level communication primitives [51].2. Extendibility: FrameWorks and Enterprise support a �xed number of templates. It is di�cult add newtemplates to the system. An important step towards enhancing the utility of a template-based modelwould be to design a system that provides a standard interface for attaching templates to the user code.In such a system, it may be possible for the user to develop new templates. As long as the templatesare mutually independent, it should be possible to integrate them into the rest of the system. Thiswould result in a system that is extendible and can support a large number of templates [51].3. Portability: It is imperative to continue building on top of existing, established technology. Somede facto standards seem to be emerging. For example, PVM (and possibly MPI soon) is currentlyadequate as the lowest-level building block. PICL seems to be a popular choice for parallel programinstrumentation [52]. Given the signi�cant e�ort required to build a parallel programming system, itseems foolhardy to continue to invent, when one can reuse. Also, the widespread availability of thesetools on di�erent platforms enhances the portability of the system.4. Language: Many parallel programming tools make (subtle) changes to the semantics of an existingsequential language. We believe this is a mistake. Changing a programming language's semantics canincrease the user's learning curve and result in di�culties in understanding and debugging parallelcode.

Experience with Parallel Programming Using Code Templates 305. Importance of Compiler Technology: Our research would greatly bene�t from better compiler technol-ogy. For example: some of the semantic confusion in Enterprise could be eliminated; static analysisof the code can do a better automatic job of code reorganization to improve concurrency and delaysynchronization, thereby improving performance; compilers can uncover data dependencies, possiblyuncovering programming errors at compile-time rather than at run-time;
ow control analysis canidentify communication patterns that can assist in the initial process-processor mapping (Orca, forexample, uses compile-time analysis to help distribute the data [53]).6. Trade-O�s: Should we build a tool for the inexperienced user or the experienced user? For example, itis conceivable to build an open and extendible system such as outlined in item 1 and 2 above. However,in such a system, it may no longer be possible to give the correctness guarantees that Enterprise o�ers.The requirements of users vary with their skill and experience levels. For the former, simplicity of themodel and ease of use are the most important considerations. For the latter, performance is often theonly metric that matters.10 ConclusionsWho are the potential users of parallel computing technology? There will always be a user community thatuses parallel computing to squeeze even the last nano-second of performance out of a machine. We claim thisgroup is a very small percentage of the potential user community. Local area networks of workstations arecommonplace and the popularity of low-cost multi-processor shared-memory machines is rapidly growing.However, few people take advantage of the parallelism in these architectures. Many people want theirprograms to run faster but are unwilling to invest the time necessary to achieve this.Consider the sequential world. With a simple optimization
ag on a compile (-O), the user can getincreased performance. To further improve performance, the user must read the compiler manual page to�nd any other optimization options that might be applicable (for example, in-lining functions). If betterperformance is still required, users will take the next step and use a tool to analyze their programs (such asan execution pro�ler). They will use this feedback to modify their code.For most users, sequential program improvement stops at the compiler level. Ideally, the same shouldbe true for coarse-grained parallel program development (such as is seen with vectorizing compilers). Giventhat compilation techniques are still in their infancy for coarse-grained applications, the next logical step

Experience with Parallel Programming Using Code Templates 31is to provide a tool that allows users to parallelize their application with minimal e�ort. Template-basedmodels o�er real prospects of making this a reality.Rather than putting forward yet another model for building parallel applications, this paper was meantto consolidate an existing approach to parallel programming. Usability experiments of Enterprise have addeda new dimension to our understanding of how programmers with little or no experience in parallel computingbuild their parallel applications. There are a number of researchers working on similar high-level systemsfor parallel programming. A strong research interest in this area is evident from the fact that recently amailing list was started on the Internet to discuss issues speci�c to skeleton or template-based approaches(the list has over 150 members, skeletons@dcs.ed.ac.uk). We hope that our experience in developing twosuch models into working systems, as well as the results of our experiments in estimating the usability ofparallel programming systems, will be useful to researchers and practitioners in this area.Perhaps the most damning comment on the state-of-the-art of parallel programming tools for coarse-grained parallelism is the continued wide-spread popularity of PVM/MPI. No matter how clever the im-plementation, template-based parallel programming tools cannot achieve the performance of hand-craftedsolutions. However, there comes a point where the software engineering considerations gained by using ahigh-level tool out-weigh the incremental gain in performance. Unfortunately, we are not yet at that stage:the gap between the performance possible from a tool such as FrameWorks/Enterprise versus PVM is largeenough that serious users will continue to program in PVM for the foreseeable future.We have identi�ed several areas (in Sections 8 and 9) where e�ort is necessary to enhance the usabilityof the template-based systems. Work on several of these issues is in progress [50, 49, 51]. Template-basedtechniques alone may not be enough to provide an easy to use, high-level parallel programming system thatsupports quick prototyping and restructuring of parallel applications, and supports code reuse. However, webelieve that template-based techniques will play a signi�cant role in building the ideal parallel programmingsystems of the future.11 AcknowledgmentsThe constructive comments from Ian Parsons, Greg Wilson, and Stephen Siu are appreciated. This re-search was conducted using grants from the Natural Sciences and Engineering Research Council of Canada(OGP8173 and OGP0155467) and IBM Canada Ltd.

Experience with Parallel Programming Using Code Templates 32References[1] H. Bal, M. Kaashoek, and A. Tannenbaum. \Orca: A Language for Parallel Programming of DistributedSystems". IEEE Transactions on Software Engineering, 18(3):190{205, 1992.[2] J. Feo, D. Cann, and R. Oldehoeft. \A Report on the Sisal Language Project". Journal of Parallel andDistributed Computing, 10(4):349{366, 1990.[3] G. Geist and V. Sunderam. \Network-Based Concurrent Computing on the PVM System". Concurrency:Practice and Experience, 4(4):293{311, 1992.[4] R. Butler and E. Lusk. \Monitors, Messages, and Clusters: The P4 Programming System". ParallelComputing, 20(4):547{564, 1994.[5] D. Walker. \The Design of a Standard Message Passing Interface for Distributed Memory ConcurrentComputers". Parallel Computing, 20(4):657{673, 1994.[6] D.B. Loveman. \High Performance Fortran". IEEE Parallel and Distributed Technology, 1(1):25{42,February 1993.[7] A. Grimshaw, W.T. Strayer, and P. Narayan. \Dynamic Object-Oriented Parallel Processing". IEEEParallel and Distributed Technology, 1(2):33{27, 1993.[8] W. Karpo� and B. Lake. \PARDO - A deterministic, Scalable Programming Paradigm for DistributedMemory Parallel Computer Systems and Workstation Clusters". In Supercomputing Symposium '93,Calgary, pages 145{152, 1993.[9] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Programming. MIT Press, Cam-bridge, Mass., 1989.[10] Z. Segall and L. Rudolph. \PIE: A Programming and Instrumentation Environment for Parallel Pro-cessing". IEEE Software, 2(6):22{37, 1985.[11] A. Baguelin, J. Dongarra, G. Giest, R. Manchek, and V. Sunderam. \Graphical Development Tools forNetwork-Based Concurrent Computing". In Supercomputing'91, pages 435{444, 1991.[12] M. Green and J. Schae�er. \Frameworks: A Distributed Computer Animation System". In CanadianInformation Processing Society, Edmonton, pages 305{310, 1987.

Experience with Parallel Programming Using Code Templates 33[13] A. Singh, J. Schae�er, and M. Green. \Structuring Distributed Algorithms in a Workstation Environ-ment: The FrameWorks Approach". In International Conference on Parallel Processing, volume II,pages 89{97, 1989.[14] A. Singh, J. Schae�er, and M. Green. \A Template-Based Tool for Building Applications in a Multi-computer Network Environment". In D. Evans, G. Joubert, and F. Peters, editors, Parallel Computing89, pages 461{466. North-Holland, Amsterdam, 1989.[15] A. Singh, J. Schae�er, and M. Green. \A Template-Based Approach to the Generation of DistributedApplications Using a Network of Workstations". IEEE Transactions of Parallel and Distributed Systems,2(1):52{67, January 1991.[16] P. Iglinski, S. MacDonald, D. Novillo, I. Parsons, J. Schae�er, D. Szafron, and D.Woloschuk. \EnterpriseUser Manual, Version 2.4". Technical Report No. 95-02, Department of Computing Science, Universityof Alberta, 1995.[17] G. Lobe, D. Szafron, and J. Schae�er. \The Enterprise User Interface". In TOOLS 11 (Technology ofObject-Oriented Languages and Systems), pages 215{229, 1994.[18] S. MacDonald, D. Szafron, and J. Schae�er. \An Object-Oriented Run-time System for Parallel Appli-cations". In TOOLS 14 (Technology of Object-Oriented Languages and Systems), to appear 1996.[19] J. Schae�er and D. Szafron. \Software Engineering Considerations in the Construction of ParallelPrograms". In High Performance Computing: Technology and Applications, pages 271{288. ElsevierScience Publishers B.V., Netherlands, 1995.[20] D. Szafron and J. Schae�er. \An Experiment to Measure the Usability of Parallel Programming Sys-tems". Concurrency: Practice and Experience, 8(2):146{166, 1996.[21] J. Schae�er, D. Szafron, G. Lobe, and I. Parsons. \The Enterprise Model for Developing DistributedApplications". IEEE Parallel and Distributed Technology, 1(3):85{96, 1993.[22] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. \P3L: A Structured Approachto High-Level Parallel Language, and its Structured Support". Concurrency: Practice and Experience,7(3):225{255, 1995.

Experience with Parallel Programming Using Code Templates 34[23] A. Bartoli, P. Cosini, G. Dini, and C.A. Prete. \Graphical Design of Distributed Applications ThroughReusable Components". IEEE Parallel and Distributed Technology, 3(1):37{51, 1995.[24] J.C. Browne, M. Azam, and S. Sobek. \CODE: A Uni�ed Approach to Parallel Programming". IEEESoftware, pages 10{18, July 1989.[25] J.C. Browne, S. Hyder, J. Dongarra, K. Moore, and P. Newton. \Visual Programming and Debuggingfor Parallel Computing". IEEE Parallel and Distributed Technology, 3(1):75{83, 1995.[26] L. Schafers, C. Scheidler, and O. Kamer-Fuhrmann. \TRAPPER: A Graphical Programming Environ-ment for Industrial High-Performance Applications". In Parallel Architectures and Languages Europe,pages 403{413, 1993.[27] P. Brinch Hansen. \Studies in Computational Science: Parallel Programming Paradigms". PrenticeHall, Inc, 1995.[28] P. Brinch Hansen. \Search for Simplicity: Essays in Parallel Programming". IEEE Computer SocietyPress, pages 422{446 (Chapter 22), 1996.[29] K. M. Chandy. \Concurrent Program Archetypes". In International Parallel Programming Symposium,1994. Keynote Address.[30] M. Danelutto and S. Pelagatti. \Parallel Implementation of FP Using a Template-Based Approach".In Proc. of the 5th Int, Workshop on Implementation of Functional Languages, pages 7{21, Sept. 1993.[31] S. Le�er, M. McKusick, M. Karels, and J. Quarterman. The Design and Implementation of 4.3 BSDUnix Operating System. Addison-Wesley Publishing Company, Inc., 1990.[32] G. Andrews, R.A. Olsson, M.A. Co�n, I. Elsho�, K. Nilsen, T. Purdin, and G. Townsend. \An Overviewof the SR Language and Implementation". ACM Transactions on Programming Languages and Systems,10(1):51{86, 1988.[33] H.A. Simon and W.G. Chase. \Skill in Chess". American Scientist, 61:394{403, August 1973.[34] A. Singh. A Template-Based Approach to Structuring Distributed Algorithms Using a Network of Work-stations. PhD thesis, Dept. of Computing Science, University of Alberta, 1992.

Experience with Parallel Programming Using Code Templates 35[35] A.R. Halstead. \MultiLisp: A Language for Concurrent Symbolic Computation". ACM Transactionson Programming Languages and Systems, 7(4):501{538, 1985.[36] D. Gannon, J. Lee, B. Shei, S. Sarukkai, S. Narayana, and N. Sundaresan. \SIGMA II: A Tool Kit forBuilding Parallelizing Compilers and Performance Analysis Systems". In Programming Environmentsfor Parallel Computing, pages 17{36, North Holland, Netherlands, 1992.[37] K. Birman, A. Schiper, and P. Stephenson. \Lightweight Causal and Atomic Group Multicast". ACMTransactions on Computer Systems, 9(3):272{314, 1991.[38] T. Marsland, T. Breitkreutz, and S. Sutphen. \A Network Multiprocessor for Experiments in Paral-lelism". Concurrency: Practice and Experience, 3(1):203{219, 1991.[39] J.C. Browne, A. Tripathi, S. Fedak, A. Adiga, and R. Kapur. \A Language for Speci�cation andProgrammingof Recon�gurable Parallel Structures". In International Conference on Parallel Processing,pages 142{149, 1982.[40] T.G. Lewis and Rudd W.G. \Architecture of the Parallel Programming Support Environment". InIEEE COMPCON, pages 589{594, 1990.[41] R. Jagannathan, A.R. Downing, W.T. Zaumen, and R.K.S. Lee. \Data
ow Based Technology forCoarse-Grain Multiprocessing on a Network of Workstations". In International Conference on ParallelProcessing, pages 209{216, August 1989.[42] D.C. DiNucci and R.G. Babb II. \LGDF Parallel Programming Model". In IEEE COMPCON, pages102{107, 1989.[43] O. Babaoglu, L. Alvisi, A. Amoroso, and R. Davoli. \Paralex: An Environment for Parallel Programmingin Distributed Systems". Technical Report UB-LCS-91-01, Department of Mathematics, University ofBologna, Italy, 1991.[44] B. Sugla, J. Edmark, and B. Robinson. \An Introduction to the CAPER Application ProgrammingEnvironment". In International Conference on Parallel Processing, pages 107{111, August 1989.[45] L. Clarke, R. Fletcher, S. Trevin, R. Bruce, and S. Chapple. \Reuse, Portability and Parallel Libraries".In Programming Environments for Massively Parallel Distributed Systems, pages 171{182, BirkhauserVerlag, Basel, Switzerland, 1994.

Experience with Parallel Programming Using Code Templates 36[46] Z. Xu and K. Hwang. \Molecule: A Language Construct for Layered Development of Parallel Programs".IEEE Transactions on Software Engineering, 15(5):587{599, May 1989.[47] I. Foster and S. Taylor. \Strand: A Practical Parallel Programming Tool". In North American Confer-ence on Logic Programming, M.I.T. Press, 1989.[48] D. Szafron and J. Schae�er. \Experimentally Assessing the Usability of Parallel Programming Systems".In Programming Environments for Massively Parallel Distributed Systems, pages 195{201, BirkhauserVerlag, Basel, Switzerland, 1994.[49] I. Parsons, R. Unrau, J. Schae�er, and D. Szafron. \A Template Approach to Parallel I/O". ParallelComputing, to appear in 1996.[50] D. Novillo. \High-Level Representations for Distributed Shared Memory". Technical report, Departmentof Computing Science, University of Alberta, 1995.[51] S. Siu. \Openness and Extensibility in Design-Pattern-Based Parallel Programming Systems". Master'sthesis, Electrical and Computer Engineering Dept., University of Waterloo, 1996.[52] G. Geist, M. Heath, B. Peyton, and P. Worley. \PICL: A Portable Instrumented CommunicationLibrary". Technical Report ORNL/TM-11130, Mathematical Sciences Section, Oak Ridge NationalLaboratory, 1990.[53] H. Bal and M. Kaashoek. \Object Distribution in Orca using Compile-Time and Run-Time Tech-niques". In Object-Oriented Programming Systems, Languages and Applications (OOPSLA), pages162{177, 1993.

Experience with Parallel Programming Using Code Templates 37/* Definition of structures used by functions *//* geometry.h contains the structure for polytbl, objtbl, etc. */#include "geometry.h"#define MAXIMAGES 120struct generategeometry {int imagenumber;struct obj objtbl[MAXOBJ];};struct geometrydisplay {int imagenumber, npoly;struct polygon polytbl[MAXPOLY];};main() /* Generate */{ struct generategeometry work;int image;for(image = 0; image < MAXIMAGES; image++){ /* loop through images */ComputeObjects(work); /* Modeling and motion computation */Geometry(work); /* Send further processing to Geometry */}}Geometry(struct generategeometry work){ struct geometrydisplay frame;DoConversion(work, frame); /* View transformation on the image */Display(frame); /* Send data to Display for further processing */}Display(struct geometrydisplay frame){ DoHidden(frame); /* Hidden surface removal and anti-aliasing */WriteImage(frame); /* Store image on disk */} Figure 1: Structure of the Animation Application.

Experience with Parallel Programming Using Code Templates 38
Generate

Geometry GeometryGeometry ...

Display Display Display Display...

Geometry

Display

Generate

Figure 2b: A Parallel Version with ReplicationsFigure 2a: A Parallel VersionFigure 2: Potential Parallelizations of Animation.
Executive

...

...

...

Q R
P P P R

P
RQ

Out-pipelineTerminal Manager

P Q Q R SR P

Initial AssimilatorIn-pipeline

Figure 3a: Input Templates.

Figure 3b: Output Templates.

Figure 3c: Body Templates.

ContractorFigure 3: FrameWorks Templates.

Experience with Parallel Programming Using Code Templates 39
...

...

Generate

Geometry

Display Display

Geometry

Generate

Figure 4a: Line. Figure 4b: Line with Replications.Figure 4: Parallel Versions of the Animation Program Using FrameWorks.

Figure 5: Enterprise Assets.

Experience with Parallel Programming Using Code Templates 40

Figure 6: The Animation Program in Enterprise.

Experience with Parallel Programming Using Code Templates 41/* Multiply two polynomials together, with coefficients in Pointer1 and *//* Pointer2 arrays, and put the product coefficients in the Answer- *//* Pointer array. */Mult(Pointer1, Pointer2, N, AnswerPointer){ localvars Result1, Result2, Result3, Cross1, Cross2;if(N == 1) {AnswerPointer[0] = Pointer1[0] * Pointer2[0];} else {/* Multiply the low and high order terms */Mult(Pointer1, Pointer2, N/2, Result1);Mult(&Pointer1[N/2], &Pointer2[N/2], N/2, Result2);/* Low and high crossover terms */Cross1 = CrossOverTerms(Pointer1, Pointer2, N/2);Cross2 = CrossOverTerms(Pointer2, Pointer1, N/2);Mult(Cross1, Cross2, N/2, Result3);/* Sequentially combine results to give the answer */Combine(Result1, Result2, Result3, N, AnswerPointer);}return;} (a) Polynomial Multiplication Pseudo-Code.

Figure 7: Polynomial Multiplication in Enterprise.

