| dentifying and Validating Irregular M utual Exclusion
Synchronization in Explicitly Parallel Programs

Diego Novillot, Ronald C. Unraly and Jonathan Schaeffer

! Red Hat Inc., Sunnyvale, CA 94089, USA
{dnovi |l |l o, runrau}@ edhat . com

2 Computing Science Department, University of Alberta, Edtoa, Alberta, Canada T6G 2H1
j onat han@s. ual berta. ca

Abstract. Existing work on mutual exclusion synchronization is baseda
structural definition of mutex bodies. Although correctstétructural notion fails

to identify many important locking patterns present in s@ragrams. In this pa-
per we present a novel analysis technique for identifyinguauexclusion syn-
chronization patterns in explicitly parallel programs. W&e this analysis in a
new technique, calletbck-picking, which detects and eliminates redundant mu-
tex operations. We also show that this new mutex analysistque can be used
as a validation tool in a compiler. Using this analysis, a piben can detect irreg-
ularities like lock tripping, deadlock patterns, incontplenutex bodies, dangling

| ock andunl ock operations and partially protected code.

1 Introduction

In this paper we present a novel analysis technique foriigém mutual exclusion syn-
chronization patterns in explicitly parallel programs. g¢ly this analysis to develop a
new technique, callelck-picking, to detect and eliminate redundant mutex operations.
We also show that this new mutex analysis technique can likassa validation tool

in a compiler. We build on a concurrent data-flow analysisfaork called CSSAME
(Concurrent Static Single Assignment with Mutual Excluspronouncedesame) [6]

to analyze and optimize the synchronization framework dhltask and data parallel
programs. We have implemented these algorithms and apgny th several concurrent
and sequential applications.

2 TheCSSAME Form

The CSSAME form is a refinement of the Concurrent SSA (CSSaméwork [3] that
incorporates mutual exclusion synchronization analysisléntify memory interleav-
ings that are not possible at runtime due to the synchrdaizatructure of the program.
CSSAME extends CSSA to include mutual exclusion synchaiitm and barrier syn-
chronization [5].

Like the sequential SSA form, CSSAME has the property thatyeuse of a vari-
able is reached by exactly one definition. Two merge opesat@ used in the CSSAME
form: ¢ functions andr functions. A¢ function merges all the incoming control reach-
ing definitions to create a new definition for the variablen€ol reaching definitions
are those that reach a us@ia sequential flow of execution (i.e., the definition hasrbee

made by the same thread). The second merge operatorasftimetion, which merges
concurrent reaching definitions. Concurrent reaching diefits are those that reach a
useu from other threads.

3 Motivation and Overview

Given an arbitrary statemestin a program and a lock variable, a mutex structure
analyzer should be able to answer the question “daesecute under the protection of
lock L?". The answer to that question should be onalefays, never or sometimes.
To be conservatively correct, the compiler trea¢ser and sometimes as equivalent.
Furthermore, if the analysis determines that stateraeéatsometimes protected and
sometimes not, this information could be used to warn the akeut an anomalous
locking pattern.

Existing work on mutual exclusion synchronization is baseda structural defi-
nition of mutex bodies [2, 4, 6]. A mutex body is indicated byair of | ock and
unl ock nodes. All the graph nodes dominated by ltleee k node and post-dominated
by theunl ock node are part of the mutex body. Although correct, this motibmutex
body fails to identify some valid locking patterns presensome programs.

For example, consider the code fragment in Figure 1, whiglais of a quicksort
algorithm taken from the TreadMarks DSM system. We are ésted in the mutual
exclusion sections created by the lock variabfl. Notice that a structural definition
of mutex bodies will identify no mutex bodies in this funetid he onlyl ock/unl ock
pair that might qualify as a mutex body are the stateméntandU; (lines3 and37
respectively). However, the presence of otheck andunl ock operationsin between
these statements forces the compiler to disregard thisagadr valid mutex body. A
closer inspection reveals that the only statement thatuggeavithout lock protection
is the busy wait statement (line 24).

4 Detecting mutex structures

A mutex structure for lock variabl& is the set of all the mutex bodies fdrin the
program. To detect mutex structures, the intermediateesgmtation for the program
is modified so that (a) every graph node contains a useddr lock variable in the
program, and, (b) for each lock variahlethe graph entry node is assumed to contain
anunl ock(L) operation (i.e., variables are initially “unlocked”).

Mutex structures are detected using sequential reachifiigjtéen information for
each lock variablel. Nodes that are only reached by definitionsIofoming from
| ock(L) nodes are protected hly. Nodes that can be reached by at least one
| ock(L) node are not protected bfy. Using this information we build an initial set
of mutex bodies for each individuabck(L) node in the graph. This initial set is then
refined by merging mutex bodies with common nodes [5]. Thitemanalysis frame-
work can be used as a validation tool in a compiler. Usingdhaslysis, a compiler can
detect irregularities like [5]:

Lock Tripping. Let L be a lock variable and be al ock(L) node. Suppose thatis
reached by othdrock(L) nodes. If all the definitions come from otHewck(L)

1 int PopWorKTaskElementxtask 20 U, = unlock(TSL);
2 21 /* Wait for work. This is the only
3 L, =lock(TSL); 22 * statementnot protected by TSL.
4 while (TaskStackTop ==0) { 23 */
5 if (++NumWaiting == NPROCS)Y 24 S, = while (pauseflag) ; /+ busy-wait x/
6 /* All the threads are waiting for work. 25 L, = lock(TSL);
7 * We are done. 26 if (NumWaiting == NPROCS)
8 */ 27 U, = unlock(TSL);
9 lock (pauselock); 28 return DONE:
10 pauseflag = 1; 29 ’
11 unlock(pauselock); 30 — — NumWaiting;
12 U, = unlock(TSL); 31} /x endif ++NumWorking == NPROCS:/
13 return DONE; 32} /# while task-stack empty/
14 } dse { B 33 /% Pop a piece of work from the stack/
15 if (NumWaiting ==1) { 34 TaskStackTop —;
16 lock(pauselock); 35 task—>left = TaskStack[TaskStackTop].left;
17 pauseflag = 0; 36 task—>right = TaskStack[TaskStackTop].right;
18 unlock(pauselock); 37 U, = unlock(TSL);
19 } 38 return O;
39 }

Fig. 1. Locking pattern in functiorlPopWork()

nodes, the program is guaranteed to trip over lbckt runtime. If only some def-
initions come from other ock(L) nodes, the program may or may not trip over
lock L.

Deadlock. Let L and M be two different lock variables such that in thréBdthere is
al ock(L) node thatreachesaack(M node. In another thredf} al ock(M
node reacheskock(L) node. If bothT} andT> can execute concurrently, then
the program may deadlock at runtime.

Incomplete mutex bodies. Let By, (n) be a partially built mutex body faf such that
no node inBr,(n) is anunl ock(L) node. At runtime, if lockZ is acquired at,
it will not be released.

Dangling unlock operations. Let z be an unlock node fof. such that the set of
reaching definitions foll atz does not include &ock(L) node. This indicates
that the calling thread is releasing a lock that it has notied.

5 Lock-picking

Sometimes it is possible to remove synchronization oparatirom a program without
affecting its semantics. For example, mutual exclusiorcByonization is unnecessary
in a sequential program and can be safely removed. In thitoeewe describéock-
picking, a transformation that finds and removes superfll@mck andunl ock oper-
ations. We say that a mutex body canlbek-picked if its lock and unlock nodes can be
removed. An important property of lock picking is thatldies not need to examine the
mutex bodies of the program. Only the lock and unlock nodesaalyzed.

The lock-picking algorithm [5] examines the lock nodes feery mutex body in the
program. The decision to lock-pick a mutex body is based embsence af functions
for one or more lock variables at each mutex body lock node. dtbsence of func-
tions for lock variables at lock nodes means that there anourrent threads trying

double Sum = 0;
parloop (p, 0, N) {

for (i = 0; i < M; i++) {
S;=7(Sy Sy, o)
Ry =m(R;, R;, Ry):
lock(R,);
for =0;j < M; j++) {
sum.reduction(A[il[j]);

}
unlock(R,);

double Sum = 0;
parloop (p, 0, N) {

for (i = 0; i < M; i++) {
S, =7(S,, S, S,)
R = 7T(R0, R, R,)
lock(R,);
for (=0;j < M; j++) {
S, =7m(Sy: S, Sy)
lock(S,);

double Sum = 0;
parloop (p, 0, N) {
for (=00 < M; i++) {
R, =7(R,, R, R,)
lock(R,);
for =0;j <M j++) {
Sum = Sum + A[i[j];

}
unlock(R,);

Sum = Sum + A[[; }
} unlock(S,); -
) }
} unlock(R,);
sum.reduction@ouble x) })
S, =7($: S, S) }
R,=7(R, R, R,)
lock(s,);
Sum = Sum + x;
unlock(S,);
}

(a) Original CSSAME form. (b) CSSAME form after in- (c) After lock-picking.

lining and~ pruning.

Fig. 2. Effects of lock-picking on nested mutex bodies.

to acquire that lock. These conditions are typically disged using whole program
analysis. For example, consider the program in Figure A{ag. inner loop calls the
functionsum_reduction to update a global reduction variable. Sirsoen_reduction is a
generic reduction function, it locks the variable beforéindahe reduction. However,
as a result of inlining, reduction lock is no longer necessary because the reduction is
always protected by lock (Figure 2(b)). Whersum.reduction is inlined, the use oR

at the lock node folS becomes a protected use andritfunction can be removed [6]
(Figure 2(c)). In this case we say that the mutex structurkfik S is nested inside the
mutex structure folR.

6 Experimental Results

We selected programs originally written in Java because ntieipated optimization
opportunities due to the thread-safe nature of its libgarfeince Java libraries are
thread-safe, application programs may spend up to halféfxecution time performing
unnecessary synchronization [1]. The key reason for théstead is that the libraries
are generic and are not specific to an individual applic&ioontext. Hence, they have
to be conservative in the assumptions they make. Therefdren considered within
the context of an actual program it might turn out that mosthef synchronization
operations are not necessary.

Table 1 shows the improvements obtained by applying lockipg to sequential
Java programs found in the JGL abstract class library thesgrgms. We executed
both the Java and C versions of these programs; in both dasesdults were similar.

UnoptimizedOptimized Relative
Benchmark | time (secs)|time (secgSpeedup

Array (1,000) 23 200 1.15
Array (10,000 547 534 1.02
Map (3,000) 32 300 1.07
Map (30,000) 273 227 1.20
Sort (3,000) 32 300 1.07
Sort (30,000) 407 327 1.24

Table 1. Effect of lock-picking (LP) on sequential Java programs.

In general, we obtained performance improvements betwé&eariti 24% when lock-
picking was applied. The performance gains obtained by vémathe unnecessary
locks are directly related to this particular implemematof mutual exclusion. Since
these are sequential programs, all the synchronizatiomese is caused by the actual
call tol ock andunl ock. There is no lock contention. An alternative to removing
the locks would have been to use a more efficient mutual exeius/nchronization
implementation. We are convinced that a combination of danpptimizations and
efficient lock implementations is the best approach in tltases.

7 Conclusions

Synchronization analysis techniques are important in eimtext of an optimizing com-
piler for explicitly parallel programs. By reducing the nbar of memory conflicts, they
simplify subsequent analysis and allow more aggressiienggztions to be applied.

In this paper we have developed a new technique to analyze&ameurrency for
mutex synchronization that can handle locking patternsapported by existing tech-
niques. This allows the analysis of more complex mutualwesioh synchronization
patterns in explicitly parallel programs. We have showr this analysis can help de-
tect common locking irregularities in parallel programisidfly, we apply this analysis
to remove mutex synchronization when it can be proven sumer§l.

References

[1] D. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin Lockeatherweight Synchroniza-
tion for Java. IPACM SIGPLAN 98, June 1998.

[2] A. Krishnamurthy and K. Yelick. Analyses and Optimizais for Shared Address Space
ProgramsJ. Paralldl and Distributed Computing, 38:130-144, 1996.

[3] J. Lee, S. Midkiff, and D. A. Padua. Concurrent statigginassignment form and constant
propagation for explicitly parallel programs. L€PC’ 97, August 1997.

[4] S. P. MasticolaSatic Detection of Deadlocks in Polynomial Time. PhD thesis, Department
of Computer Science, Rutgers University, 1993.

[5] D. Novillo. Compiler Analysis and Optimization Techniques for Explicitly Parallel Pro-
grams. PhD thesis, University of Alberta, February 2000.

[6] D. Novillo, R. Unrau, and J. Schaeffer. Concurrent SSAnfran the Presence of Mutual
Exclusion. InICPP '98, pages 356—364, August 1998.

