
Concurrent SSA Form in the Presence of Mutual Exclusion�
Diego Novillo Ron Unrau Jonathan Schaeffer

Department of Computing Science, University of Alberta
Edmonton, Alberta, Canada

E-mail: fdiego,unrau,jonathang@cs.ualberta.ca
Abstract

Most current compiler analysis techniques are unable to
cope with the semantics introduced by explicit parallel and
synchronization constructs in parallel programs. In this pa-
per we propose new analysis and optimization techniques
for compiling explicitly parallel programs that use mutual
exclusion synchronization. We introduce the CSSAME form,
an extension of the Concurrent Static Single Assignment
(CSSA) form that incorporates mutual exclusion into a data
flow framework for explicitly parallel programs. We show
how this analysis can improve the effectiveness of constant
propagation in a parallel program. We also modify a dead-
code elimination algorithm to work on explicitly parallel
programs. Finally, we introduce lock independent code mo-
tion, a new optimization technique that attempts to minimize
the size of critical sections in the program.

1. Introduction

Although recent advances in parallelizing compilers and
data-parallel languages have been impressive [4, 8], there
are important problem domains for which parallelizing the
best sequential algorithm or data layout yields sub-optimal
performance relative to an implementation that is explicitly
parallel from the outset. Furthermore, popular systems like
Java incorporate parallel constructs at the language level
and commodity multiprocessors are becoming increasingly
popular. For these reasons, we believe that there is a need
for compilers that accept explicitly parallel programs, and
that the demand for such compilers will increase.

To correctly compile and optimize explicitly parallel pro-
grams the compiler must have an innate knowledge of the
parallelism in the program and the semantics of synchro-
nization primitives. In addition to the standard optimiza-
tion techniques used by sequential compilers, an optimiz-
ing parallel compiler should exploit the parallel structure�To appear in the 1998 International Conference on Parallel Processing
(ICPP' 98), Minneapolis, Minnesota, August 1998.

of the program to achieve better performance. Unfortu-
nately, standard optimization techniques used in sequential
programs cannot be directly applied to explicitly parallel
programs because they may generate incorrect transforma-
tions [11]. This has motivated recent developments that
have started to uncover the potential benefits of analysis
and optimization techniques for explicitly parallel programs
[3, 7, 13]. Like any incipient technology, these techniques
are still in their primitive stages, especially when compared
to their sequential counterparts.

Initial work by Shasha and Snir proposed re-ordering
memory references in a program to increase concurrency
while maintaining the sequential consistency dictated by
the code [13]. Midkiff and Padua demonstrated that a di-
rect application of optimization techniques designed for se-
quential languages fail on explicitly parallel programs [11].
Grunwald and Srinivasan developed data-flow equations to
compute reaching definition information on explicitly paral-
lel programs withcobegin/coend parallel sections [3].
However, their work only deals with a weak memory con-
sistency model dictated by the PCF Fortran standard. Par-
allel sections are required to be data independent; memory
updates are done at specific points in the program using the
copy-in/copy-out model. Synchronization is limited
to event-based synchronization usingSet andWait op-
erations. Knoop, Steffen and Vollmer developed a bitvector
analysis framework for parallel programs with shared mem-
ory and interleaving semantics [6]. They show how to adapt
standard optimization algorithms to their framework. How-
ever, they do not incorporate synchronization operations
in their analysis. Lee, Midkiff and Padua propose a Con-
current SSA framework (CSSA) for explicitly parallel pro-
grams and interleaving memory semantics [7]. They only
consider event-based synchronization and impose some re-
strictions on the input program.

A major limitation of existing techniques for optimiz-
ing explicitly parallel programs is the restricted knowledge
about synchronization in the program. To the best of our
knowledge, the only synchronization construct recognized
is a subset of event-based synchronization (i.e.,Set and

Wait usually with noClear). We see this as a severe
limitation because event synchronization can only be used
to describe a small class of parallel algorithms. One of the
goals of our work is to incorporate knowledge about com-
mon synchronization structures into the compiler so it can
perform more aggressive optimizations. As a first step to
that goal, we have extended the Concurrent Static Single
Assignment (CSSA) form [7] to handle mutual exclusion
synchronization. Specifically, we� extend the concurrent control flow graph used by Leeet
al. (Section 3.1) and show how to detect mutual exclusion
synchronization in a parallel program (Section 3.3),� introduce the CSSAME1 form, an extension to the CSSA
form to account for the semantics introduced by mutual ex-
clusion synchronization (Section 4),� show how CSSAME can improve the effectiveness of the
Concurrent Sparse Conditional Constant (CSCC) propaga-
tion algorithm [7] (Section 5.1),� adapt a sequential dead-code elimination algorithm to
work on explicitly parallel programs (Section 5.2), and� introducelock independent code motion, a new optimiza-
tion technique for explicitly parallel programs which at-
tempts to reduce the size of mutual exclusion sections in
the program (Section 5.3).

2. Our approach

In an explicitly parallel program with interleaving mem-
ory semantics, the use of a shared variablev can be reached
by any definition ofv in another concurrent thread. How-
ever, mutual exclusion may prevent some variable defini-
tions from being visible in other threads. For example, con-
sider the code fragment in Figure 1. If we ignore the mutual
exclusion regions created by the locks we will conclude that
the definition for variablea in threadT0 can reach both uses
of a in threadT1. However, the synchronization used in the
program serializes the references toa so that the assignment
toa in T0 cannot reach the second use ofa in T1. Therefore,
the call to functiong() in T1 will always be executed witha = 3.

Understanding mutual exclusion has important implica-
tions from an optimization point of view because it allows
the compiler to reduce the number of data dependencies that
need to be considered. It also allows the compiler to conser-
vatively validate the synchronization structures expressed
inside the code. This paper focuses on the former; future
work will also investigate correctness and user interface is-
sues.

To determine the effects of mutual exclusion on the data-
flow of the program the compiler must recognize which sec-
tions of the program execute under the protection of a lock.
We base our analysis on the concept ofmutex structuresfirst

1Pronouncedsesame.

cobegin =� Begin concurrent execution�=
T 0: begin =� Launch thread T0�=
Lock(L);
a = a + b;
Unlock(L);

end

T 1: begin =� Launch thread T1�=
f(a);
Lock(L);
a = 3; =� This kills the assignment toa in T0 �=
b = b + g(a); =� Variable a is always 3 �=
Unlock(L);

end
coend

Figure 1. Mutual exclusion can reduce data depen-
dencies across threads in a parallel program.

introduced by Masticola and Ryder in their work on non-
concurrency analysis [10]. Basically, a mutex structure is
associated with each lock variable used in the program and
it contains the sets of flow graph nodes that are guaranteed
to execute under the protection of the associated lock vari-
able. Once mutual exclusion information is gathered into
mutex structures, we modify the Concurrent SSA (CSSA)
form proposed by Leeet al.[7] to account for it.

Explicitly parallel programs start as a single thread of
computation. New threads are logically created when ex-
ecution reaches a parallel section. Although the creation,
placement and scheduling of threads is not significant for
our research, the compiler must be able to recognize paral-
lel sections in the code. We assume that threads run in a
shared address space with interleaving semantics (i.e., up-
dates to shared memory made by one thread are immedi-
ately visible to other threads). There are a variety of mech-
anisms for expressing parallel activity. Some examples in-
clude cobegin/coend constructs, explicitfork state-
ments, parallel loops, etc. In this paper parallel sectionsare
specified usingcobegin/coend constructs (Figure 1).

Mutual exclusion is used to serialize references to shared
variables in the program. We will assume, without loss
of generality, that programmers use standardLock and
Unlock instructions to serialize access to shared variables.

3. Mutual exclusion analysis

3.1. Parallel Flow Graphs

We introduce the Parallel Flow Graph (PFG), an exten-
sion to the Concurrent Control Flow Graph (CCFG) [7] that
also represents mutual exclusion synchronization. In ad-
dition to the directed synchronization edges in the origi-
nal CCFG, we incorporate undirected mutex synchroniza-
tion edges which represent mutual exclusion constraints
and do not enforce a specific execution order. EachLock
andUnlock operation is represented by a separate node
in the PFG. Mutex synchronization edges joinLock and

a = 0;
b = 0;
cobegin

T 0: begin
Lock(L);
a = 5;
b = a + 3;
if (b > 4) f

a = a + b;g
x = a;
Unlock(L);

end

T 1: begin
Lock(L);
a = b + 6;
y = a;
Unlock(L);

end
coend
print(x);
print(y);

Control flow edge
Conflict edge
Mutex edge

Legend

Figure 2. A program and its PFG.

Unlock nodes that operate on the same variable in concur-
rent threads.
Definition 1 A Parallel Flow Graph (PFG)is a directed
graphG = hN; E; EntryG; ExitGi such that:
1. N is the set of parallel basic blocks in the program.
2. EntryG andExitG are the unique entry and exit points

of the program.
3. Lock andUnlock operations are represented by their

own nodes.
4. E = EctSEsySEcf is the set of edges in the graph

such thatEct is the set of control flow edges. These edges
have the same meaning as in a sequential control flow graph
(CFG).Esy = EmutexSEdsync is the set of synchroniza-
tion edges. Two different kinds of synchronization are rec-
ognized:Emutex andEdsync. Emutex is the set of mutex
synchronization edges representing mutual exclusion con-
straints. Mutex synchronization edges are undirected edges
between relatedLock andUnlock operations.Edsync is
the set of directed synchronization edges representing or-
dering constraints. These edges join relatedSet andWait
statements in different threads. Finally,Ecf is the set of
conflict edges. Conflict edges are directed edges that join
any two parallel basic blocks that conflict. Two letter labels
on the edge represent the memory operations done at each
end of the edge: def (D) or use (U). 2

An example of a PFG is shown in Figure 2. Memory
access conflicts are represented by dashed edges between
the conflicting nodes in each thread (most conflict edges
have been removed to improve readability). Mutual ex-
clusion synchronization is represented by dotted edges be-

tweenLock andUnlock nodes in concurrent threads.
Definition 2 A path fromx to y is acontrol pathif it only
contains edges inEct. 2

In subsequent sections we will use the standard concepts
of dominance and post-dominance [1] applied exclusively
to control paths.

3.2. Mutex structures

The concepts and algorithms described in this section are
based on the non-concurrency analysis techniques devel-
oped by Masticola and Ryder [10]. Our work differs from
theirs in the following aspects:
1. Our analysis targets locks instead of binary semaphores.
2. The analysis is intended to gather data flow information
for the purposes of program optimization instead of dead-
lock detection.
3. Even though the notation is similar, there are differences
in the definitions and the algorithms used. In particular,
we use a simpler notion of mutex body that is not based
on the concept ofstrict interval defined by Masticola [9].
Strict intervals require other structural conditions thatare
not needed in our case. For instance, strict intervals do not
include ambiguous or illegal mutex bodies. If at the end of
the mutex analysis there is at least one unmatchedLock op-
eration for a lock variableL, the whole set of mutex bodies
for L will be discarded. In our case, we allow mutex struc-
tures with ill-formed mutex bodies. Our data-flow analysis
will still be conservative because illegal mutex bodies in a
mutex structure will not be considered when reducing data
dependencies.
Definition 3 Given a PFGG, a synchronization vari-
able L and two nodesn; x 2 G, the setBL(n; x) =SDOM�1(n)TPDOM�1(x) is amutex bodyfor L if the
following conditions are met:
1. n = Lock(L) andx = Unlock(L),
2. n DOM x andx PDOM n, and
3. 8a 2 BL(n; x) such thata 6= n ^ a 6= x) a is not a
Lock(L) or anUnlock(L) node. 2

A mutex body defines a single-entry, single-exit region
of the graph delimited by nodesn andx. The mutex body
includes all the nodes strictly dominated byn and post-
dominated byx (i.e., noden is not included inBL(n; x)).
Definition 4 A mutex structurefor a synchronization ob-
jectL, denotedML, is the set of all mutex bodiesBL(n; x)
in the program. 2
3.3. Identifying mutex structures in the code

Algorithm A.1 returns the set of all the mutex structures
in an explicitly parallel program. The algorithm starts by
pairing upLock andUnlock nodes that comply with con-
ditions 1 and 2 of Definition 3. The final phase of the algo-
rithm (lines 19–26) examines all the mutex bodies found to

eliminate those mutex bodies that do not comply with con-
dition 3 of Definition 3. That is, it removes any body found
by the previous step that containsLock or Unlock nodes
for the same variable (other than the entry and exit nodes
for the body).

4. CSSA with Mutual Exclusion support

The main goal of mutual exclusion analysis is to reduce
the number of incoming conflict edges to nodes in the PFG
that use shared variables. In the CSSA framework concur-
rent modifications to the same memory location by different
threads are modeled using� terms which are placed in the
parallel join nodesof the graph. A parallel join node is one
that contains a conflicting use for a shared variablev. Each� term hasn + 1 arguments; one for the unique incoming
control flow edge andn for then incoming conflict edges.
The goal of the extensions described in this section is to
remove superfluous arguments from� terms inside mutex
bodies.

Theorems 1 and 2 give sufficient conditions to reduce the
number of reachable definitions for uses inside mutex bod-
ies. Both theorems rely on the concepts of upward-exposed
uses [15] and reaching definitions [1].
Theorem 1 Let ML be a mutex structure for lock variableL. Let DBv be a definition for a shared variablev inside a
mutex bodyBL(n; x) 2 ML. If DBv does not reach nodex thenDBv cannot reach uses ofv in any other mutex bodyB0L(n0; x0) 2ML. 2
PROOF Let UB0v be a use ofv in B0L(n0; x0). Let d be the
node containingDBv . Let u be the node containingUB0v .
Sinced andu are inside mutex bodies in the same mutex
structure they cannot execute concurrently. Therefore, the
definition ind cannot reach the use inu via the conflict edge
that joinsd andu. SinceBL(n; x) andB0L(n0; x0) cannot
execute concurrently, for every execution of the program
that includes both mutex bodies there can only be two pos-
sible partial orderings between them:
1. BL(n; x) executes to completion beforeB0L(n0; x0).

Even though noded executes before nodeu, the definitionDBv cannot reachUB0v because it is always killed by some
other definition before it reaches the exit node ofBL(n; x).
2. B0L(n0; x0) executes to completion beforeBL(n; x).

Nodeu executes before noded, thereforeDBv cannot reachUB0v . �
Theorem 2 Let ML be a mutex structure for lock variableL. Let UBv be a use for a shared variablev inside a mutex
bodyBL(n; x) 2 ML. If UBv is not upward-exposed fromBL(n; x) thenUBv cannot be reached by definitions from
any other mutex bodyB0L(n0; x0) 2ML. 2
PROOF Let DB0v be a definition for variablev in mutex
bodyB0L(n0; x0). Let d be the node inB0L(n0; x0) that con-
tains the definitionDB0v . Let u be the node in mutex body

BL(n; x) that contains the useUBv . Sinced andu are in-
side mutex bodies in the same mutex structure, they cannot
execute concurrently. Therefore, the definition ind cannot
reach the use inu via the conflict edge that joinsd andu.
We need to consider two possibilities:
1. DB0v does not reach nodex0. In this case it is clear thatDB0v cannot reachUBv (Theorem 1).
2. DB0v reaches nodex0. Now we need to consider

the partial execution ordering betweenBL(n; x) andB0L(n0; x0):
(a) BL(n; x) executes to completion beforeB0L(n0; x0).

Nodeu executes before noded, thereforeDB0v cannot
reachUBv .

(b) B0L(n0; x0) executes beforeBL(n; x). SinceUBv is not
upward-exposed fromBL(n; x), any definitions ofv
made beforeBL(n; x) starts executing are guaranteed
to be killed by some other definition insideBL(n; x).
Therefore,DB0v cannot reachUBv . �

We now introduce the CSSAME form, an extension to
the CSSA form to handle mutual exclusion synchronization.
Algorithm A.2 transforms an explicitly parallel programP
to CSSAME form. The algorithmstarts by building the PFG
for P . Once the PFG has been built, the algorithm creates
the mutex structures for the mutual exclusion synchroniza-
tion used in the program. The next step builds the CSSA
form using the algorithms proposed in [7]. The only differ-
ence in our approach is that the underlying sequential SSA
form is computed using factored use-def (FUD) chains [15]
with appropriate modifications to avoid placing superfluous� terms atcoend nodes. The computation of partial order-
ings and the placement of� functions use the same algo-
rithms described in [7]. Notice that since analyzing mutual
exclusion synchronization does not require execution order-
ing information, we do not impose restrictions on the input
program.

Once the CSSA form has been computed,� terms are
modified using Algorithm A.3. This algorithm examines
every mutex body of the program trying to remove argu-
ments from each� term using theorems 1 and 2. A� term
will be removed from the graph if and only if at the end of
the algorithm it contains only one argument. If the� term
only contains one argument, it must be the argument for the
incoming control edge to the node because this is the only
argument that is never removed by Algorithm A.3.

5. Optimizing explicitly parallel programs

5.1. Constant propagation

Leeet al. [7] adapted the sequential Sparse Conditional
Constant propagation (SCC) algorithm [14] to work with
explicitly parallel programs. We will use the program in
Figure 2 to show how our extensions to the original CSSA

a0 = 0;
b0 = 0;
cobegin

T 0: begin
Lock(L0);
a1 = 5;
ta1 =�(a1, a4);
b1 = ta1 + 3;
if (b1 > 4) f

ta11 =�(a1, a4);
a2 = ta11 + b1;g

a3 =�(a1, a2);
ta12 =�(a3, a4);
x0 = ta12;
Unlock(L0);

end

T 1: begin
Lock(L0);
tb0 =�(b0, b1);
a4 = tb0 + 6;
ta4 =�(a4, a1, a2);
y0 = ta4;
Unlock(L0);

end
coend
a5 =�(a3, a4);
print(x0);
print(y0);

a0 = 0;
b0 = 0;
cobegin

T 0: begin
Lock(L0);
a1 = 5;
b1 = a1 + 3;
if (b1 > 4) f

a2 = a1 + b1;g
a3 =�(a1, a2);
x0 = a3;
Unlock(L0);

end

T 1: begin
Lock(L0);
tb0 =�(b0, b1);
a4 = tb0 + 6;
y0 = a4;
Unlock(L0);

end
coend
a5 =�(a3, a4);
print(x0);
print(y0);

a. CSSA form b. CSSAME form

Figure 3. CSSA forms for the program in Figure 2.

framework can be used to improve the constant propaga-
tion algorithm when mutual exclusion is taken into account.
There are two different CSSA forms for the program in Fig-
ure 2. The one in Figure 3a is the original CSSA form
without mutual exclusion extensions. Figure 3b shows the
CSSAME form built using the algorithms in Section 4 (no-
tice the reduction of� terms in Figure 3b).

Figure 4a shows the result of applying the constant prop-
agation algorithm to the program using CSSA. Notice that
the constant propagation is conservatively correct but since
the original CSSA framework does not recognize the mu-
tual exclusion semantics of the program, no constants can
be propagated. On the other hand, translating the program
to CSSAME form allows the compiler to remove all the�
terms for variablea in threadT0. The key to this is the
assignment to variablea in threadT0 right after the lock
operation. Since all the statements in threadT0 execute in-
divisibly as one atomic operation, uses of variablea after
the first assignment cannot possibly be affected by defini-
tions ofa made by threadT1. This allows the compiler to
propagate constants inside threadT0 as if it were a sequen-
tial program (Figure 4b).

5.2. Parallel Dead Code Elimination

Dead code refers to program statements that have no ef-
fect on any program output [2]. Although it is not common
for the programmer to introduce dead code intentionally,
dead code may be generated by optimizing transformations

a0 = 0;
b0 = 0;
cobegin

T 0: begin
Lock(L0);
a1 = 5;
ta1 =�(a1, a4);
b1 = ta1 + 3;
if (b1 > 4) f

ta11 =�(a1, a4);
a2 = ta11 + b1;g

a3 =�(a1, a2);
ta12 =�(a3, a4);
x0 = ta12;
Unlock(L0);

end

T 1: begin
Lock(L0);
tb0 =�(b0, b1);
a4 = tb0 + 6;
ta4 =�(a4, a1, a2);
y0 = ta4;
Unlock(L0);

end
coend
a5 =�(a3, a4);
print(x0);
print(y0);

a0 = 0;
b0 = 0;
cobegin

T 0:
begin
Lock(L0);
a1 = 5;
b1 = 8;
a2 = 13;
a3 = 13;
x0 = 13;
Unlock(L0);

end

T 1:
begin
Lock(L0);
tb0 =�(b0, b1);
a4 = tb0 + 6;
y0 = a4;
Unlock(L0);

end
coend
a5 =�(a3, a4);
print(x0);
print(y0);

a. Using CSSA b. Using CSSAME

Figure 4. Constant propagation for Figure 2.

[1]. We introduce the Parallel Dead Code Elimination algo-
rithm (PDCE), an extension of the dead code elimination al-
gorithm proposed by Cytronet al.[2] to work on explicitly
parallel programs. The algorithm starts by marking dead
all the statements of the program except those that are as-
sumed to affect the program output such as I/O statements
or assignments to variables outside the current scope. This
initial set of live statements is used to seed the work list
maintained by the algorithm. The list is updated with every
new statement that is marked live. When the list empties, all
the statements still marked dead are removed from the pro-
gram. A statement will be marked live if it satisfies one of
the following conditions [2]: (1) The statement is assumed
to affect the program output. Examples include I/O state-
ments, assignment to global variables, calls to procedures
that may have side effects, etc. (2) The statement contains
a definition that reaches uses in statements already marked
live. (3) The statement is a conditional branch and there
are live statements that are control dependent on this condi-
tional branch.

The sequential algorithm needs two important modifica-
tions to work on explicitly parallel programs:
1. Condition 2 of Cytronet al.' s algorithm calls for the com-
putation of reaching definition information for each live
statement of the program. The rationale is that if statements is live then any other statement that defines variables used
by s must also be marked live. We compute reaching defini-
tion information using both� and� terms when following
use-def chains in the program. Algorithm A.4 computes the

b0 = 0;
cobegin

T 0: begin
Lock(L0);
b1 = 8;
x0 = 13;
Unlock(L0);

end

T 1: begin
Lock(L0);
tb0 =�(b0, b1);
a4 = tb0 + 6;
y0 = a4;
Unlock(L0);

end
coend
print(x0);
print(y0);

b0 = 0;
cobegin

T 0: begin
Lock(L0);
b1 = 8;
Unlock(L0);
x0 = 13;

end

T 1: begin
Lock(L0);
tb0 =�(b0, b1);
a4 = tb0 + 6;
Unlock(L0);
y0 = a4;

end
coend
print(x0);
print(y0);

a. After PDCE b. After LICM

Figure 5. PDCE and LICM for Figure 4b.

set of reaching definitions for every use of a variable in an
explicitly parallel program. The algorithm is a modified ver-
sion of an algorithm for finding reaching definitions in a se-
quential SSA framework [15]. The main modification done
to the original algorithm is the additional test for� terms
when traversing use-def chains in the PFG. We have also
extended the algorithm to compute def-use links (needed
by the constant propagation algorithm).
2. A cobegin statement will be marked live if there is at
least one statement in one of its children threads marked
live. If at the end of the algorithm there is only one thread
with live statements in it, thecobegin/coend construct
will be replaced by the sequential code corresponding to
the live thread.

These modifications to the sequential DCE algorithm are
necessary to account for the concurrent activity in the pro-
gram. Since reaching definition information will be com-
puted using both� and� terms, if a useu is live in one
thread, any definition made by other concurrent threads that
reachu will also be marked live. Furthermore, the reduc-
tion of dependencies made possible by CSSAME directly
benefits the elimination of dead code in the program.

To show the effects of dead code elimination consider
the program in Figure 2 after constant propagation has been
performed (Figure 4b). As can be seen in the example pro-
gram, all the assignments to variablea in T0 are dead be-
cause they do not affect the output of the program (i.e., they
do not reach any other use ofa in the program). On the
other hand, the assignment tob in T0 cannot be considered
dead because it is used byT1. Note that a sequential dead
code elimination algorithm would have erroneously marked
the assignment tob dead because it lacks the appropriate
reaching definition information. Figure 5a shows the result
of a dead code pass on the code in Figure 4b.

5.3. Lock independent code motion

Because of the restrictions imposed by mutual synchro-
nization operations, it is often desirable to minimize the
time spent inside mutex bodies in the program. To achieve
this goal we can optimize the code inside mutex bodies
as much as possible. Alternatively, we can minimize the
amount of code executed inside a mutex body by moving
code that does not need to be locked outside the mutex body.
In this section we introducelock independent code motion
(LICM), a new technique that performs safe code motion on
mutex bodies.

To determine what code can be safely moved outside a
mutex body we must find those interior statements that are
not affected by the presence of the lock. We call theselock
independentstatements. Although it is unlikely for the pro-
grammer to write lock independent statements inside a mu-
tex body, other compiler optimizations might produce lock
independent code (e.g., the statementx0 = 13 in Figure 5a
is lock independent due to constant propagation and PDCE).
This is similar to the concept of loop-invariant code for stan-
dard loop optimization techniques [1]. However, the condi-
tions that make a statement lock independent are different
than those that make it loop invariant. Loop invariant com-
putations are basically statements with all their operands
constant or with reaching definitions outside the loop. Lock
independent code computes the same result whether it is in-
side a mutex body or not. For instance, a statement that
references variables private to the thread will compute the
same value whether it is executed inside a mutex body or
not. This is also true if the statement references variables
not used by any other concurrent thread in the program.
Definition 5 A statement inside a mutex body islock inde-
pendentif the variables that it defines and/or uses cannot be
modified concurrently. 2

Although lock independence is a necessary condition
to do code motion, it is not sufficient because the motion
should also preserve all the control and data dependencies
for the statement. For instance, if the statement is inside a
loop it cannot be moved out unless the whole loop is lock
independent.

To perform code motion we need to modify the flow
graph to add two special nodes that will act as landing pads
for statements moved out of each mutex bodyBL(n; x). We
call these two nodes thepre-mutexand post-mutexnode.
Thepre-mutexnode is placed as an immediate strict domi-
nator ofn, while thepost-mutexnode is placed as an imme-
diate strict post-dominator ofx.
Theorem 3 Let s be a lock independent statement inside
a mutex bodyBL(n; x). Let a be the node containings:
1. If a dominates all the nodes inB ands does not have

any reaching definitions withina thens can be moved to the

pre-mutex node ofB.
2. If x immediately post-dominatesa ands does not have

any reached uses withina thens can be moved to the post-
mutex node ofB. 2
PROOF 1. If a dominates all the nodes inB then its im-
mediate dominator must be noden. If s does not have
any reaching definitions withina then s can be moved
to a node dominatinga without affecting its internal data
dependencies. Furthermore, definitions reachings cannot
reach through conflict edges becauses is lock independent.
Neither can they reach from noden because there are no
definitions in that node. Therefore, movings to the pre-
mutex node will not alter any data dependencies in the pro-
gram. Notice that when movings to the pre-mutex node, it
should be placed as the last statement of the node. This
will preserve any data dependencies from statements al-
ready present in the node.
2. If x immediately post-dominatesa then a is the last

node to be executed before leaving the mutex body. If defi-
nitions made bys do not reach any use withina then movings to the post-mutex node will not alter any data dependen-
cies insidea. Furthermore, definitions make bys cannot
reach other threads through conflict edges becauses is lock
independent. Therefore, movings to the post-mutex node
will not alter any data dependencies in the program. Notice
that when movings to the post-mutex node, it should be
placed as the first statement of the node. This will preserve
any data dependencies to statements already present in the
node. �

These conditions guarantee that the statement being
moved will not break any data dependencies with other
nodes in the body and will not introduce any conflict edges
with any concurrent node. Applying Theorem 3 to the pro-
gram in Figure 5a allows the compiler to move some state-
ments out of the mutex bodies to obtain the equivalent pro-
gram in Figure 5b. Notice that both assignments to vari-
ablesx andy can be safely moved out of each mutex body
because there are no conflicting definitions in their sibling
threads. Algorithm A.5 implements the concepts described
previously. After code motion is complete, any empty mu-
tex bodies will be removed from the program.

6. Implementation

The algorithms discussed in previous sections have been
implemented in a prototype compiler for the C language
using the SUIF compiler system [4]. To avoid modifying
SUIF's front-end we added support forcobegin/coend
anddoall parallel structures via language macros. These
macros re-define control structures of the language so that
the compiler can recognize them as parallel at the interme-
diate language level.

Once the program has been parsed by the SUIF front-

end, the compiler creates the corresponding PFG and its
CSSAME form. The PFG implementation is an extension
of the sequential Control Flow Graph library provided by
Machine SUIF [5]. The PFG can be displayed using a vari-
ety of graph visualization systems. The flow graphs in this
paper were generated with the VCG tool (Visualization of
Compiler Graphs) [12]. The CSSA form for the program
can also be displayed as an option. Mutual exclusion analy-
sis can also issue warning messages like unmatchedLock
andUnlock operations or improperly nested locks. A lim-
ited form of data race detection capability is also built-in
for inconsistent use of locks to protect shared variables. For
instance, if modifications to a variable are not always pro-
tected by the same lock, the compiler will warn the user
about a potential data race.

A simple extension to algorithm A.1 allows the compiler
to perform some semantic checking on the synchronization
structure of the program. At the end of the algorithm, every
Lock orUnlock node inplocki S punlocki that is not part of
a mutex body can be reported as a warning to the user. The
compiler will recognize several potentiallyunsafe situations
and report a warning.

7. Future work

We have found that the CSSAME form facilitates the
translation of scalar optimizations to the parallel case, es-
pecially if the sequential strategy is SSA based. We are
presently investigating the representation of parallel loops
in the CSSA framework. Different semantics for parallel
loops (i.e.,doaccross, doall, etc.) will have differ-
ent data-flow properties. Another extension the CSSAME
framework involves other commonly used synchronization
primitives such as barriers and semaphores.

With the lock independent code motion strategy we have
entered the field of new optimization techniques that are
specifically targeted at explicitly parallel programs. We are
presently designing new optimization techniques that take
advantage of the parallel and synchronization structure of
these programs.

A. Algorithms

A.1. Identification of mutex structures

Input: A PFG G and a setL = fL1;L2; : : : ; Lmg containing all the
lock variables used in the program.
Output: A set of mutex structuresM = SiMi whereMi is the set of
mutex bodies for lock variableLi.
1: /* Find nodes inG that lock and unlock eachLi */
2: foreach lock variableLi do
3: plocki fn 2 N : n = Lock(Li)g
4: punlocki fx 2 N : x = Unlock(Li)g
5: end for

6: /* Build the dominator and post-dominator trees forG */
7: call buildDomTree(G)

8: call buildPDomTree(G)

9: /* Find candidate mutex bodies */
10: foreach lock variableLi do
11: foreachn 2 plocki do
12: foreachx 2 punlocki do
13: if n 2 DOM(x) andx 2 PDOM(n) then
14: add(n; x) to the set of candidatesMi
15: end if
16: end for
17: end for
18: end for

19: /* Remove illegal mutex bodies from eachMi */
20: foreach(n;x) 2Mi do
21: foreachm 2 plocki S punlocki do
22: if m 6= n and m 6= x and n 2 DOM(m) and x 2PDOM(m) then
23: remove(n; x) fromMi
24: end if
25: end for
26: end for

27: M SiMi
28: return M
A.2. CSSAME algorithm

Input: An explicitly parallel programP
Output: The programP in CSSAME form
1: Build the PFG forP using an extended version of the CFG algorithm

in [5]
2: Identify mutex structures using Algorithm A.1.
3: Compute the CSSA form for the graph using the algorithms in[7].
4: Rewrite� terms using Algorithm A.3.

A.3. Rewrite � terms

Input: A PFGG in CSSA form
Output: The graphG in CSSA form with� terms modified to account for
mutual exclusion synchronization
1: /* Traverse mutex bodies looking for� terms to rewrite */
2: foreach lock variableLi do
3: foreachmutex bodyb 2MutexStruct(Li) do
4: call rewrite(b)
5: end for
6: end for

7: /* Examine all the� terms inb */
8: procedure rewrite(b)
9: foreachnoden 2 b do

10: foreach� termp 2 n do
11: v is the variable referenced byp
12: /* If an argument complies with theorems 1 or 2, */
13: /* then we may safely remove the argument from the� term */
14: foreachp argumentd coming from a conflict edgedo
15: if d comes from another mutex bodyb0 2 MutexStruct(b)

then
16: if (the use ofv is not upward exposed fromb) or (d does not

reach the exit node ofb0) then
17: Removed from p
18: end if
19: end if
20: end for

21: /* If � termp has no conflict arguments then remove it */
22: if p has only one argumentthen
23: chain(u) first argument ofp
24: Removep fromn
25: end if

26: end for
27: end for

A.4. Parallel reaching definitions

Input: A PFGG in CSSAME form
Output: The set of reaching definitions for each variable used in the pro-
gram and the set of reached uses for each variable defined in the program
1: foreachvariable definitiond in the programdo
2: marked(d) ?
3: uses(d) ;
4: end for
5: foreachvariable useu in the programdo
6: defs(u) ;
7: call followChain(chain(u), u)
8: end for

9: procedure followChain(d; u)
10: if marked(d) = u then
11: return
12: end if
13: marked (d) u
14: if d is a definition foru then
15: Addd to defs(u)
16: Addu to uses(d)
17: end if
18: if (d is a� term) or (d is a� term)then
19: foreach term argumentj do
20: call followChain(j, u)
21: end for
22: end if

A.5. Lock independent code motion

Input: A PFGG in CSSAME form
Output: The graph with lock independent code moved to the correspond-
ing pre-mutex and post-mutex nodes
1: foreach lock variableLi do
2: foreachmutex bodyBLi(n; x) 2MutexStruct(Li) do
3: insert pre-mutex node immediately dominatingn
4: insert post-mutex node immediately post-dominatingx
5: end for
6: end for

7: foreach lock variableLi do
8: foreachmutex bodyBLi(n; x) 2MutexStruct(Li) do
9: PRE the pre-mutex node ofB

10: POST the post-mutex node ofB
11: done FALSE
12: while not donedo
13: a node immediately dominated byn
14: foreachstatements 2 a do
15: if s is lock independentthen
16: if De�ners(s) does not contain a statement froma then
17: moves to the end of nodePRE
18: end if
19: end if
20: end for
21: if a = ; then
22: removea from the graph
23: else
24: done TRUE
25: end if
26: end while

27: done FALSE
28: while not donedo

29: b node immediately post-dominated byx
30: foreachstatements 2 b do
31: if s is lock independentthen
32: if Users(s) does not contain a statement fromb then
33: moves to the beginning of nodePOST
34: end if
35: end if
36: end for
37: if b = ; then
38: removeb from the graph
39: else
40: done TRUE
41: end if
42: end while

43: if DOM�1(n)TPDOM�1(x) = ; then
44: removen andx from the graph
45: end if
46: end for
47: end for

References

[1] A. V. Aho, R. Sethi, and J. Ullman.Compilers: Principles,
Techniques, and Tools. Reading, Mass.: Addison-Wesley,
Reading, MA, second edition, 1986.

[2] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck.
Efficiently computing static single assignment form and the
control dependence graph.TOPLAS, 13(4):451–490, Oct.
1991.

[3] D. Grunwald and H. Srinivasan. Data flow equations
for explicitly parallel programs. ACM SIGPLAN Notices,
28(7):159–168, July 1993.

[4] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S. Liao,
E. Bugnion, and M. Lam. Maximizing multiprocessor perfor-
mance with the SUIF compiler.IEEE Computer, 29(12):84–
89, Dec. 1996.

[5] G. Holloway and C. Young. The flow analysis and transfor-
mation libraries of Machine SUIF. InProc. 2nd SUIF Com-
piler Workshop, Stanford University, Aug. 1997.

[6] J. Knoop, B. Steffen, and J. Vollmer. Parallelism for free: Ef-
ficient and optimal bitvector analyses for parallel programs.
TOPLAS, 18(3):268–299, May 1996.

[7] J. Lee, S. Midkiff, and D. A. Padua. Concurrent static sin-
gle assignment form and constant propagation for explicitly
parallel programs. InProc 10th Workshop on Languages and
Compilers for Parallel Computing, Aug. 1997.

[8] D. Loveman. High Performance Fortran.IEEE Parallel and
Distributed Technology, 1(1):25–43, 1993.

[9] S. Masticola. Static Detection of Deadlocks in Polynomial
Time. PhD thesis, Department of Computer Science, Rutgers
University, 1993.

[10] S. Masticola and B. Ryder. Non-concurrency analysis. In
Proc 4th ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, San Diego, CA, May 1993.

[11] S. P. Midkiff and D. A. Padua. Issues in the optimizationof
parallel programs. InInt' l Conference on Parallel Process-
ing, volume II, pages 105–113, Aug. 1990.

[12] G. Sander. Graph layout through the VCG tool. In R. Tamas-
sia and I. G. Tollis, editors,Proc. Graph Drawing, DIMACS

International Workshop GD'94, Lecture Notes in Computer
Science 894, pages 194–205. Berlin: Springer Verlag, 1995.

[13] D. Shasha and M. Snir. Efficient and correct execution of
parallel programs that share memory.TOPLAS, 10(2):282–
312, Apr. 1988.

[14] M. Wegman and K. Zadeck. Constant propagation with con-
ditional branches.TOPLAS, 13(2):181–210, Apr. 1991.

[15] M. J. Wolfe.High Performance Compilers for Parallel Com-
puting. Reading, Mass.: Addison-Wesley, 1996.

