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1 IntrodutionMany appliations heuristially searh a state spae to solve a problem. These appliationsrange from logi programming to pattern reognition, and from theorem proving to hessplaying. Ahieving high performane, both in terms of solution quality and exeution speed,is of great importane for many searh algorithms, suh as real-time searh and any-timealgorithms.Often, searh algorithms reursively deompose a state into suessor states. If thesuessor states are independent of eah other, they an be searhed in parallel. A typialsenario is to alloate a portion of the searh spae to eah proessor in a parallel omputer.A proessor is assigned a set of states to searh, performs the searhes, and reports bak theresults. During the searhes, eah proessor maintains a list of work yet to be ompleted(the work queue). When a proessor ompletes all its assigned work, it an be pro-ative andattempt to aquire additional work from busy proessors, rather than sit idle. This approahis alled work stealing.In its basi form, work stealing is a lean and simple approah. Often, however, appliation-spei� heuristis and searh enhanements introdue interdependenies between states,making eÆient parallelization a muh more hallenging task. One of the most impor-tant searh enhanements is the transposition table, a large ahe in whih newly expandedstates are stored [36℄. The table has many bene�ts, inluding preventing the expansion ofpreviously enountered states, move ordering, and tightening the searh bounds. The trans-position table is partiularly useful when a state an have multiple predeessors (i.e., whenthe searh spae is a graph rather than a tree). The basi tree-based reursive node expan-sion strategy would expand states with multiple predeessors multiple times. A transpositiontable an result in time savings of more than a fator 10, depending on the appliation [27℄.Unfortunately, transposition tables are diÆult to implement eÆiently in parallel searh2



programs that run on distributed-memory mahines. Usually, the transposition table ispartitioned among the loal memories of the proessors (for example, the distributed hessprograms Zugzwang [13℄ and ?Sorates [17℄ partition the table). Before a proessor expandsa node, it �rst does a remote lookup: it sends a message to the proessor that manages theentry and then waits for the reply. This an result in sending many thousands of messagesper seond, introduing a large ommuniation overhead. Moreover, eah proessor wastesmuh time waiting for the results of remote lookups. The ommuniation overhead an beredued (e.g., by sending fewer messages), but this usually inreases the size of the searhtree that needs to be explored. Extensive experimentation may be required to �nd the\right" amount of ommuniation to maximize performane.In this paper, we disuss a di�erent approah for implementing distributed transpo-sition tables, alled Transposition-Table-Driven Work Sheduling (or Transposition-DrivenSheduling, TDS, for short). The idea is to integrate the parallel searh algorithm and thetransposition table mehanism: drive the work sheduling by the transposition-table aesses.The state to be expanded is migrated to the proessor that may ontain the orrespondingtransposition-table entry. This proessor performs the loal table lookup to see whether thestate has already been searhed. If this is not the ase, or if the state has not been searheddeeply enough, the state is stored in the transposition table and in the loal work queue forexpansion later. The reeiver thus is responsible for further expansion (searh) of the state.TDS eagerly pushes work where traditional shemes lazily steal work. Although thisapproah may seem ounterintuitive due to the frequent migration of work, it has importantadvantages:1. All ommuniation is asynhronous (nonbloking). A proessor expands a state andpushes its hildren to their home proessors, where they are entered into the transpo-sition table and in the work queue. After sending the messages the proessor ontinueswith the next piee of work. Proessors never have to wait for the results of remote3



lookups.2. The asynhronous nature of TDS allows ombining multiple piees of work into a single,large network message. This optimization redues the ommuniation overhead, sineless time is spent in the protool stak of the network software.3. The network lateny is hidden by overlapping ommuniation and omputation. Thislateny hiding is e�etive as long as there is enough bandwidth in the network toope with all the asynhronous messages. With modern high-speed networks suhbandwidth usually is amply available.4. Assuming the table is large enough to ahe all visited states, TDS guarantees thatno redundant searh e�ort is performed. If a state has multiple parents, the state issearhed only one.The idea of transposition-driven sheduling an apply to a variety of searh algorithms.In this paper we desribe the algorithm and present performane results for single-agent1searh (IDA* [20℄). We have implemented TDS on a large-sale luster omputer onsistingof Pentium Pro PCs onneted by a Myrinet network. The performane of this algorithm isompared with the traditional work stealing sheme. Performane measurements on 128 pro-essors for several appliations show that TDS is 1.6 to 12.9 times faster than work-stealing-based approahes, and thus outperforms work stealing by a large margin. Moreover, TDSsales muh better to large numbers of proessors. On 128 proessors, TDS is 122 to 138times faster than on a single proessor, while the work stealing algorithm obtains speedupsof only 10 to 79. TDS an exploit the inreasing transposition table size to derease thesearh e�ort and therefore sometimes even ahieves superlinear speedups, espeially for hardsearh problems that require large run times.1Unfortunately, the term \agent" has multiple meanings. In this artile, \agent" refers to the type oftree being searhed, not to the proessor searhing the tree.4



In traditional parallel searh algorithms, the algorithm revolved around the work queues,with other enhanements, suh as the transposition table, added in as an afterthought. WithTDS, the transposition table is at the heart of the algorithm, reognizing that the searhspae really is a graph, not a tree. The result is a simple parallel searh algorithm thatahieves high performane.The main ontribution of this paper is to show how e�etive the new approah is forsingle-agent searh. We disuss in detail how TDS an be implemented eÆiently and weexplain why it works so well ompared to work stealing. The rest of this paper is organized asfollows. First, we give some bakground information on (parallel) IDA* and disuss relatedwork. Then, we desribe the transposition-driven sheduling approah and disuss severalof its implementation issues. Next, we evaluate the performane of the new approah, andompare TDS to traditional work-stealing based implementations of IDA*. We analyze thesensitivity to bandwidth, lateny, and overhead of the network. Finally, we summarize theontributions of this work.2 Bakground and related workAlthough the idea of TDS is not limited to the IDA* searh algorithm, we use IDA* for ourexperiments. Below, we will desribe the IDA* searh algorithm and the transposition table,and how they are traditionally implemented to run on a distributed system. People familiarwith these onepts an skip the remainder of this setion.2.1 Sequential IDA*Iterative Deepening A* (IDA*) [20℄ is used for searhing single-agent state-spaes like thoseof the 15-puzzle (sliding-tile puzzle), route planners, optimizing shedulers, and Rubik'sube. The objetive is to �nd the shortest solution path from a given problem position to5
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bound = 26Figure 1: One IDA* iteration.a target position (or one out of a number of target positions). IDA* is a memory-eÆientvariant of A* [26℄. IDA* searhes a searh tree, where the nodes in the tree represent states(in pratie, the terms state, node, and position are used interhangeably). Verties representpossible state transitions; for example, in games, the hildren of a node are those positionsthat an be reahed by a legal move, aording to the rules of the game.IDA* repeatedly desends the searh tree, starting from the root position. Eah iteration,the tree is searhed to an inreased depth, until a solution is found.An example of an IDA* iteration is shown in Figure 1. The tree is traversed depth �rst,left to right. Eah node is searhed with a searh bound that ontrols the maximum searhdepth. The searh bound is dereased by 1; the ost to go from one state to another. Someappliations (like the traveling-salesman problem) use a non-unity ost funtion. A nodean be evaluated using an evaluation funtion. In the �gure, the numbers inside the irlesrepresent evaluation values. The evaluation funtion examines the position and returns alower bound on the number of moves required to reah a target state. If the evaluation valueof a node exeeds its searh bound, it is not possible to reah the target state within themaximum number of moves left, and the subtree below the node is pruned. Otherwise, thenode is expanded and its hildren are (reursively) searhed.In the example, the root is initially searhed with a searh bound of 28. Sine its eval-uation value does not exeed its searh bound, the root is expanded and its �rst hild is6



FUNCTION IDA(Root) : INTEGER
NewBound := Evaluate(Root);

REPEAT
OldBound := NewBound;
NewBound := Search(Root, NewBound);

UNTIL OldBound = NewBound;

RETURN NewBound;
END

FUNCTION Search(Node, Bound) : INTEGER
MinDist := Evaluate(Node);

IF MinDist <= Bound AND NOT IsTarget(Node) THEN
MinDist := INFINITY;
Child := FirstChild(Node);

REPEAT
MinDist := MIN(MinDist, Search(Child, Bound � 1) + 1);
Child := NextSibling(Child);

UNTIL Child = NULL OR MinDist = Bound;
END

RETURN MinDist;
END Figure 2: The sequential IDA* searh algorithm.searhed with bound 27. Here the evaluation value (29) exeeds the searh bound, and thenode is pruned. The searh is ontinued at the next hild. Sine the evaluation value of thisnode does not exeed the searh bound, its hildren are searhed too.IDA* returns a searh result for eah node that is visited in the tree. The searh resultdenotes the new minimum solution length, and is returned to the parent of the node. Thesearh result of a pruned node equals its evaluation value. The searh result of an expandednode is obtained by taking the minimum of its hildren's searh results and adding 1 (a-ounting for the move from the parent to the hild). The �gure shows the searh resultsfor the expanded nodes. The searh result of the root equals 30, stating that the minimalsolution length is 30. The algorithm will start a new iteration with searh bound 30; thistree will be deeper as the one shown in the �gure. New iterations are started as long as theroot's searh result exeeds its searh bound; this indiates that no solution was found sofar. The pseudo ode for the IDA* algorithm is shown in Figure 2.The evaluation funtion plays an important role during the searh. To guarantee that7



IDA* will �nd a shortest solution, the evaluation funtion must not overestimate the distaneto the target. Suh an evaluation funtion is said to be admissible. A well-known exampleof an admissible evaluation funtion is the Manhattan distane for the sliding-tile puzzle,whih sums the distanes between eah tile's urrent position and the tile's target position.To prune as muh work as possible, the evaluation funtion should estimate the minimumsolution length as aurately as possible, but must not overestimate the solution length ifminimal solutions are desired.2.2 Parallel IDA*To derease the searh time, one an searh an IDA*-tree in parallel. Numerous parallelversions of IDA* have appeared in the literature. Most algorithms use task distributionshemes that partition the searh tree over the available proessors [29℄. Task distributionan be simpli�ed by expanding the tree in a breadth-�rst fashion until the number of stateson the searh frontier mathes the number of proessors [23℄. This an ause load balaningproblems (the searh e�ort required for a state varies widely), implying that enhanements,suh as work stealing, are neessary for high performane. A di�erent approah is ParallelWindow Searh (PWS) [28℄, where eah proessor is given a di�erent IDA* searh bound forits searh. All proessors searh the same tree, albeit to di�erent depths. Some proessorsmay searh the tree with a searh bound that is too high. Sine sequential IDA* stops searh-ing after using the right searh bound, PWS results in muh wasted work. AsynhronousIDA* (AIDA*) [31℄ uses a ombination of a data partitioning sheme and work stealing, andallows proessors to searh to di�erent depths onurrently.All these shemes essentially onsidered only the basi IDA* algorithm, without impor-tant searh algorithm enhanements that signi�antly redue the searh tree size (suh astransposition tables).IDA* uses less memory than A*. This omes at the expense of repeatedly expanding8



some states: a state an be expanded again in a subsequent iteration. The simple formulationof IDA* does not inlude the detetion of dupliate states (transpositions), suh as a yle,or transposing into a state reahed by a di�erent sequene of state transitions. Treatingthe searh spae as a tree, while in fat it is a graph, leads to dupliated searh of thesubtree below a transposition. The transposition table is a onvenient mehanism for usingmemory to solve these searh ineÆienies, both in single-agent [30℄ and two-agent [36℄ searhalgorithms. There are other methods, suh as �nite state mahines [38℄, but they tend to benot as generally appliable or as powerful as transposition tables.2.3 The transposition tableA transposition table is a large (possibly set-assoiative) ahe that stores intermediatesearh results. Eah time a state is to be searhed, the table is heked to see whether ithas been searhed before. If the state is in the table, the table entry ontains a value thatdenotes a lower bound on the number of moves required to reah the target state. If thelower bound is greater than the searh bound of the node, the state and the subtree belowit an be pruned. If the state is not in the table, or if the lower bound in the table is notsuÆient to prune the state, then the searh engine examines the suessors of the statereursively, storing the searh results into the transposition table.Indexing the transposition table is usually done by hashing the state to a large number(usually 64 bits or more) alled the signature [39℄. The information in the table depends onthe searh algorithm. For the IDA* algorithm, the table entry ontains a lower bound onthe solution length. In addition, eah entry may ontain information used by table entryreplaement algorithms, suh as the e�ort (number of nodes searhed) to ompute the entry.
9



2.4 Distributed transposition tablesIn parallel searh programs the transposition table is typially shared among all proesses,beause a position analyzed by one proess may later be re-searhed by another proess.Implementing shared transposition tables eÆiently on a distributed-memory system is ahallenging problem, beause the table is aessed frequently. Several approahes are pos-sible. With partitioned transposition tables, eah proessor ontains part of the table. Thesignature is used to determine the proessor that manages the table entry orrespondingto a given state. To read or update a table entry, a message must be sent to that proes-sor. Hene, most table aesses will involve ommuniation. Lookup operations are usuallyimplemented using synhronous ommuniation, where requesters wait for results. Updateoperations an be sent asynhronously. An advantage of partitioned tables is that the sizeof the table inreases with the number of proessors (more memory beomes available). Thedisadvantage is that lookup operations are expensive: the delay is at least twie the networklateny (for the request and the reply messages). In theory, remote lookups ould be doneasynhronously, where the node expansion goes ahead speulatively before the outome ofthe lookup is known. However, this approah is ompliated to implement eÆiently andsu�ers from thread-swithing and speulation overhead.Another approah is to repliate the transposition table entries in the loal memory ofeah mahine. This has the advantage that all lookups are loal, and updates are asyn-hronous. The disadvantage is that updates must now be broadast to all mahines. Eventhough broadast messages are asynhronous and multiple messages an be ombined intoa single physial message, the overhead of proessing the broadast messages is high andinreases with the number of proessors. Moreover, repliated tables have fewer entries thanpartitioned tables, as eah entry is stored on eah proessor. These fats limit the salabilityof algorithms using this tehnique, and repliated tables are seldomly used in pratie.A third approah is to let eah proessor maintain only a loal transposition table, in-10



dependent from the other proessors [24℄. This would eliminate ommuniation overhead,but results in a large searh overhead (di�erent proessors would searh the same node).For many appliations, loal tables are the least eÆient sheme. Also possible are hybridombinations of the above. For example, eah proessor ould have a loal table, but repli-ate the \important" parts of the table by periodially broadasting this information to allproessors [8℄.The ommuniation overhead for the partitioned and the repliated distribution shemesis high, sine eah proessor aesses the table tens or hundreds of thousands of times perseond. Several enhanements exist to these basi shemes. One tehnique for dereasing theommuniation overhead is to not aess the distributed transposition table when searhingnear the leaves of the tree [35℄. The potential gains of �nding a table entry near the root ofthe tree are larger beause a pruned subtree rooted high in the tree an save more searhe�ort than a small subtree rooted low in the tree. Another approah is to optimize theommuniation software for the transposition table operations. An example is given in [3,32℄, whih desribes software for Myrinet network interfae ards that is ustomized fortransposition tables. One an also prefeth remote table entries, and make the remotelookup asynhronous [32℄. This helps for many appliations, but the savings are modest.Like prefething, onurrently performing an asynhronous remote lookup and speulativelygenerating the node helps hiding the lookup lateny [14℄.2.5 ShedulingThe table distribution shemes desribed above are intuitive ways to implement a distributedtransposition table. However, we believe that the traditional way to implement distributedsearh, using work stealing, disallows an eÆient implementation of a distributed transposi-tion table. Without a transposition table, work stealing is eÆient, sine work stealing itselfinvolves little ommuniation overhead. But if one �rst parallelizes the searh algorithm and11



subsequently adds a distributed transposition table as an afterthought, it is hard to get atable entry to the plae where it is needed: at the proessor that proesses the orrespondingstate.By integrating transposition table aess with work sheduling, TDS makes all ommu-niation asynhronous, allowing ommuniation and omputation to overlap. Muh otherresearh has been done on overlapping ommuniation and omputation [11℄. The idea ofself-sheduling work dates bak to researh on data ow and has been studied by severalother researhers (see [10℄ for a disussion). In the �eld of problem solving, there are someases in whih this idea has been applied suessfully. In software veri�ation, the parallelversion of the Murphi protool veri�er uses its hash funtion to shedule the work [37℄. Ingame playing, a parallel generator of end-game databases (based on retrograde analysis) usesthe G�odel numbers of states to shedule work [2℄. In single-agent searh, a parallel versionof A*, PRA*, partitions its OPEN and CLOSED lists based on the state [12℄. The paralleltheorem prover Peers-md [7℄ assigns lauses to proessors based on ommon anestors. Inthis, Peers-md di�ers from the others, sine it uses surrounding states to shedule the work,rather than a state itself.Interestingly, the last four papers present the data-ow-like parallelization as following ina natural way from the problem at hand, and, although the authors report good speedups,they do not ompare their approahes to more traditional parallelizations. The paper onPRA*, for example, does disuss di�erenes with IDA* parallelizations, but fouses on a om-parison of the number of state expansions, without addressing the bene�t of asynhronousommuniation for run times.2 (A fator may be that PRA* was designed for the CM-2, aSIMD mahine whose arhiteture makes a diret omparison with reent work on parallelsearh diÆult.)2Evett et al. ompare PRA* against versions of IDA* that lak a transposition table. Compared to IDA*versions with a transposition table, PRA*'s node ounts would have been less favorable.12
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Figure 3: Transposition-Driven Sheduling for IDA*. Blak numbers are referred to in thetext.Despite the good performane of data-ow-like parallelization, so far no in-depth per-formane study between work stealing and data-ow-like approahes suh as TDS has beenperformed for distributed searh algorithms.3 The basi algorithmTDS is a distributed sheduling algorithm, and, like work stealing, is built on top of asearh algorithm. The sheduling algorithm desribes where and when states are expanded.Work stealing naturally lusters subtrees on individual proessors, but TDS satters thetree over all proessors. At �rst sight, this seems illogial, sine TDS ommuniates muhmore than work stealing does; the basi work-stealing algorithm (without transpositiontable) hardly ommuniates at all. However, distributed transposition tables are hard toimplement eÆiently when ombined with work-stealing based sheduling algorithms. TDSavoids the problem by integrating the sheduling and the transposition table, lowering bothommuniation and searh overheads.Figure 3 illustrates how TDS for IDA* works; the numbers in this paragraph orrespondto the blak numbers in the �gure. Eah proessor stores part of the transposition table (1),13



PROCEDURE MainLoop()
WHILE NOT Finished DO

State := GetLocalJob();
IF State <> NULL THEN

Children := ExpandState(State);
FOR EACH Child IN Children DO

IF Evaluate(Child) <= Child.SearchBound THEN
Dest = HomeProcessor(Signature(Child));
SendState(Child, Dest);

END
END

ELSE
Finished := CheckGlobalTermination();

END
END

END

PROCEDURE ReceiveState(State)
Entry := TransLookup(State);
IF NOT Entry.Hit OR Entry.SearchBound < State.SearchBound THEN

TransStore(State);
PutLocalJob(State);

END
END Figure 4: Simpli�ed TDS algorithm.and has a loal work queue (2). The loal work queue ontains states that need to beexpanded (searhed). As long as there are states in the work queue, the proessor takes ajob, and expands it to its suessor states (3). After expansion, the parent state is destroyed.Eah hild is evaluated, using an admissible evaluation funtion. States that are too farfrom a target (i.e., the evaluation funtion returns a minimum distane that is greater thanthe state's searh bound) are pruned (4). Eah of the remaining states is hashed to atransposition table entry, and pushed to the proessor that owns the entry (5). Upon arrival,the state is looked up in the transposition table. If the state is not there (6), the entry iswritten both into the transposition table and into the loal job queue (7). If the state isalready in the table (8), the state is a transposition, and there is no need to searh it again.Eah state is assigned a home proessor, whih manages the transposition table entry forthis state. The home proessor is omputed from the state's signature. Some of the signaturebits indiate the proessor number of the state's home, while some of the remaining bits areused as an index into the transposition table at that proessor.Figure 4 shows the pseudo ode for the Transposition-Driven Sheduling algorithm, whih14



is exeuted by every proessor. The funtion MainLoop repeatedly tries to retrieve a statefrom its loal work queue. If the queue is not empty, it expands the state on the head of thequeue by generating the hildren. Then it heks for eah hild whether the lower bound onthe solution length (obtained by Evaluate) exeeds the IDA* searh bound, in whih ase itauses a uto�. If not, the hild is sent to its home proessor. When the loal work queueis empty, the algorithm heks whether all other proessors have �nished their work and nowork messages are in transit. If there is still work somewhere, it waits for new work to arrive.The funtion ReeiveState is invoked for eah state that is reeived by a proessor. Thefuntion �rst does a transposition table lookup to see whether the state has been searhedbefore. If not, or if the state has been searhed to an inadequate depth (e.g., by a previousiteration of IDA*), the state is stored into the transposition table and put into the loalwork queue; otherwise the state is disarded beause it has transposed into a state that hasalready been searhed adequately.The values stored in the transposition table are used di�erently for work stealing andTDS. With work stealing, a table entry stores a searh result (a lower bound on the minimaldistane to the target), derived by searhing the subtree below it. Finding a transpositiontable entry with a suitably high table value indiates that the state has been previouslysearhed adequately. With TDS, an entry ontains a searh bound. It indiates that the sub-tree below the state has either been previously searhed adequately (as above), or is urrentlybeing searhed with the given bound, or is pending in the job queue. Note that this pointrepresents a major improvement over previous distributed transposition table mehanismsin that it prevents two proessors from ever working on the same subtree onurrently.
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4 Implementation issuesWe now disuss some implementation issues of this basi algorithm. Sine no results arepropagated to the parent, the TDS algorithm needs a separate mehanism to detet globaltermination. TDS synhronizes after eah IDA* iteration, and starts a new iteration if theurrent iteration did not solve the problem. One of the many distributed termination de-tetion algorithms an be used. We use the time ount algorithm desribed in [25℄, whihounts the size of the loal work queues and the number of piees of work in transit. Theoverhead for termination detetion is negligible, beause new iterations are started infre-quently, and beause the termination detetion algorithm is ative only when a work queuebeomes empty.Another issue onerns the searh order. Sheduling presribes not only on whih pro-essor a state is expanded, but also in whih order. It is desirable to do the parallel searhin a depth-�rst way as muh as possible, beause breadth-�rst searh will quikly exhaustthe memory for intermediate states. Depth-�rst behavior ould be ahieved using priorityqueues, by giving work on the left-hand side of the searh tree a higher priority than that onthe right-hand side of the tree. However, manipulating priority queues is expensive. Instead,we implement eah loal work queue as a stak, at the possible expense of a larger workingset. When searhing sequentially, a stak orresponds to pure depth-�rst searh.An interesting trade-o� onerns when and where to invoke the evaluation funtion. Oneoption is to do the evaluation on the proessor that reates a piee of work, and to migratethe work to its home proessor only if the evaluation did not ause a uto� as in Figure 4.Another option is to migrate the work immediately to its home proessor, look it up in thetransposition table, and then all the evaluation funtion only if the lookup did not ause auto�. The �rst approah (evaluation at the soure proessor) will migrate less work but willalways invoke the evaluation funtion, even if the state has been searhed before (on the home16



proessor). However, no transposition table aesses are done for nodes that ause a uto�after evaluation. The overhead of evaluating extra states is partly ompensated by havingfewer table aesses. Another e�et of the latter approah (evaluation at the destinationproessor) is that the extra amount of table writes �lls the table more quikly, inreasingthe hane of table onits and leading to inreased searh e�ort. Whih approah is moreeÆient depends on the relative osts for migrating and evaluating states, aessing thetransposition table, and on the rate at whih the transposition table is �lled.An important optimization performed by our implementation is message ombining. Toderease the overhead per migrated state, several states that have the same soure andthe same destination proessors are ombined into one physial message. Eah proessormaintains a message bu�er for every other proessor. A message bu�er is transmitted whenit is full, or when the sending proessor has no work to do; this typially happens during thestart and the end of eah iteration, when there is little work.Many appliations inrement the root's searh bound of a new IDA* iteration by a valuegreater than one. Admissible evaluation funtions (for example, the one used for the 15-puzzle) may return a value that underestimates the distane to the target, but always returnthe right parity (i.e., if the evaluation funtion returns an even value, the real distane iseven, otherwise the real distane is odd). As a result of this, the searh bound an beinreased by two after eah iteration that did not lead to a solution. The work-stealingIDA* algorithm, whih updates the parent's searh results, will disover this automatially.For TDS, we determine the root's searh bound of a new IDA* iteration as follows. Duringan iteration we ompute for eah node that is pruned the di�erene between its evaluationvalue and its searh bound. Eah proessor maintains the loal minimum of the di�erenesseen so far. If an iteration does not lead to a solution, the next iteration will be started witha searh bound that is inreased by the global minimum of the di�erenes. Determiningthe global minimum hardly requires extra ommuniation, sine the loal minima an be17



olleted during global termination detetion. In this way, TDS is, just like work-stealing,able to disover the searh bound of the next iteration.Sine TDS does not bakpropagate searh results, it requires some e�ort to onstruta solution path after the searh has sueeded. There are several feasible ways to retrievea solution path, neither of whih require extra information in the transposition table tobe stored. One option is to tag eah state with the moves leading from the root to thestate. Although eah move an usually be represented in a few bits, it onsiderably enlargesthe size of a state in deep, shallow searh trees, and inreases the ommuniation overheadaordingly. Another option, whih is the default in our implementation, is to maintain onlythe �rst few moves, and to re-searh the subtree starting from the end of the partial solutionpath (with a leared transposition table), until the omplete solution path is retrieved. Are-searh requires onsiderably less time than the original searh, sine the searh tree ismuh smaller and the searh bound of the subtree's root is known exatly; therefore no timeis wasted in unsuessful IDA* iterations.Yet another option is to onstrut the solution path from the target to the root, usinginformation that is found in the transposition table. Initially, only the target is on the partialsolution path. Then, repeatedly, all possible parents of the head of the partial solution pathare reated and looked up in the transposition table (possibly on another mahine). If thesearh bound (i.e., the distane to the target) of the head equals n, then there is at least oneparent with a searh bound n + 1. From the list of possible parents, we add the one withsearh bound n+1 to the partial solution path (if there are multiple suh parents, the headis a transposition and any parent will do) and repeat the proess until the entire solutionpath is reated. More e�ort is needed when transposition table information from the possibleparents is lost, and no parent with searh bound n + 1 an be found. If there is only onepossible parent missing from the table, it must be the real parent; otherwise, we proeedwith a bakward searh, until one of the anestors is found in the transposition table. Suh18



a bakward searh is best implemented with breadth-�rst searh, beause depth-�rst tendsto lose its way searhing for an anestor on the solution path.In our experiene, the latter method is the most eÆient method when the transpositiontable is suÆiently large; when the table is so small that most of the parents are alreadyevited from the table, one of the other solutions is preferred.5 DisussionTransposition-Driven Sheduling has six advantages:1. All transposition table aesses are loal.2. All ommuniation is asynhronous; proessors do not wait for messages (exept fortermination detetion, of whih the overhead is negligible). As a result, the algorithmsales well to large numbers of proessors. The total bandwidth requirements inreaseapproximately linearly with the number of proessors.3. No dupliate searhes are performed. With work stealing, multiple proessors mayonurrently searh a transposition beause the transposition-table update ours afterthe subtree below it was searhed. With TDS this annot our; all attempts to searha given subtree must go through the same home proessor. Sine TDS has a reord of allompleted and in-progress work in the transposition table, it will not allow redundante�ort.4. TDS uses the memory of multiple proessors in an eÆient way. The extra memoryis used to ahe more states during long searhes, whih dereases the likelihood thatentries are evited from the table.5. TDS produes more stable exeution times for trees with many transpositions than thework-stealing algorithm, beause TDS does not randomly alloate work to proessors.19



6. No separate load-balaning sheme is needed. Previous algorithms require work steal-ing or some other mehanism to balane the work load. Load balaning in TDS isdone impliitly, using the hash funtion. Most hash funtions, inluding the one weuse [39℄, are uniformly distributed, ausing the load to be distributed evenly over themahines. This works well as long as all proessors are of the same speed. If this is notthe ase, the staks of the slow proessors will grow and may exhaust memory. A owontrol sheme an be added to keep proessors from sending states too frequently. Inour experiments, we have not found the need to implement suh a mehanism.An important property in our TDS implementation of IDA* is that a hild state doesnot report its searh result to its parent. As soon as a state has forked o� new work forits hildren, work on the state itself has ompleted. Traditional implementations of IDA*determine a parent's searh result as the minimum of the hildren's searh results plus one.Without propagating the result bak to the parent, additional searh e�ort may be required,espeially in trees where the evaluation value of a parent often di�ers muh from those ofits hildren. Many appliations build searh trees in whih this senario rarely ours. Forexample, in the sliding-tile puzzle the evaluation value of a parent state is seldomly3 o�more than 1 from the minimum of the hildren's evaluation values. However, there areappliations in whih the senario ours frequently. For example, in Sokoban (a puzzlewhere a man must push barrels over a grid oor to target positions) a deadlok situationarises if a barrel is pushed into a orner [18℄. When all hildren of a state are deadloks, thestate itself is a deadlok. To reognize suh deadloks in subsequent searh iterations it ismuh better to inlude bakpropagation of searh results in TDS. Other searh algorithmsthat bakpropagate searh results, suh as Alpha-Beta searh [19℄, also need this mehanism.However, for the appliations we use, bakpropagation is not neessary.3With an evaluation funtion that only implements the Manhattan distane, the evaluation value isnever o� more than 1. Additional heuristis, suh as the linear-onit heuristi, sometimes ause greaterdi�erenes. 20



6 Performane measurementsWe ompare the performane of TDS with that of work stealing, enhaned with partitioned,repliated, or non-shared transposition tables. Our test suite onsists of three games: the 15-puzzle, the double-blank puzzle, and Rubik's ube. The double-blank puzzle is a modi�ationof the 15-puzzle, where we removed the tile labeled `15'. By having two blanks, we reatea game with many transpositions, beause two onseutive moves involving both blanksan usually be interhanged. All three games were implemented in Multigame [32, 33℄, ahigh-performane environment for distributed game-tree searh.The 15-puzzle uses a state-of-the-art evaluation funtion. It inludes the Manhattan dis-tane, linear onit heuristi [16℄, last move heuristi [22℄, and orner onit heuristi [22℄.The double-blank puzzle uses the same evaluation funtion, adapted for two blanks. TheRubik's ube evaluation is done using pattern databases [21℄, one eah for orners and edges.Both the repliated and partitioned variants of the 15-puzzle redue the amount oftransposition-table ommuniation by avoiding remote aesses near the leaves. Repliatedperforms an update for a node when it searhed at least 64 nodes in the subtree below it. Forpartitioned suh an approah to redue lookups is not possible, beause the lookup oursbefore the subtree below it has been searhed, and at the time of the lookup the size of thesubtree is not known. We therefore use the following heuristi: a lookup for a node is done ifthe lookup for the parent or the lookup for the grandparent was suessful. If neither lookupwas suessful, the node probably has not been visited by a previous iteration of IDA*, andit is likely that the node is somewhere near the leaves. Using this heuristi inreases thenumber of visited nodes by 23%, but redues the ommuniation osts by 76%.The test positions used for the 15-puzzle are nine of the hardest positions known [15℄.4To avoid long sequential searhes, we stopped searhing after the searh iteration with a 76-4Most parallel 15-puzzle programs are benhmarked on the 100 test problems in [20℄. Unfortunately,using a sophistiated lower bound means that many of these test problems are solved sequentially in a fewseonds. Hene, a more hallenging test suite is needed.21
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Figure 5: Average appliation speedups.move searh bound. By stopping searhing before a solution is found, we irumvent anotherproblem: the last iteration (in whih a solution is found) needs an unpreditable amount ofsearh time, sine a solution an appear anywhere in the tree. All previous iterations buildthe same trees, whih require the same searh e�ort. By not searhing the last iteration,we obtain reproduible exeution times. For the double-blank puzzle, we used the samepositions with the '15'-tile removed, limited to a 66-move searh bound. Rubik's ube wastested using �ve random problems. Sine a random problem requires weeks of CPU time tosolve, we limited the searh bound to 17 moves.We studied the performane of eah of the algorithms on a luster of 128 Pentium Prosrunning at 200 MHz. Eah mahine has 128 Megabytes of RAM. All mahines run the22



RedHat 6.2 Linux operating system. The mahines are onneted through Myrinet [6℄, a1.2 Gigabit/seond swithing network. For the 15-puzzle and the double-blank puzzle, weuse 223 transposition table entries (64 MB) per mahine. The transposition table is organizedas a four-way assoiative ahe and always stores a new result, eviting the least valuableentry in the ahe line when the ahe line is full. Sine the 15-puzzle has relatively fewtranspositions, we inlude numbers for a variant that uses no transposition table at all. ForRubik's ube we use 221 entries, to leave room in the memory for pattern databases.The algorithms against whih we ompare TDS have been heavily optimized. EahMyrinet network interfae board ontains a programmable network proessor. Partitionedruns ustomized software on the network proessor to speed up remote transposition tableaesses [3, 32℄. Moreover, partitioned prefethes remote aesses whenever possible [32℄.Repliated relies on the high broadast bandwidth provided by the Panda ommuniationlibrary [4℄ and the LFC Myrinet ontrol program [5℄, but does not run ustomized networksoftware. TDS runs diretly on top of LFC (without speialized �rmware) sine it does notneed Panda's ow ontrol and message fragmentation apabilities.Figure 5 shows speedups with respet to TDS searhing on a single proessor, the fastestvariant for sequential searhes for all appliations. On 128 proessors, TDS is 1.6 to 12.9times faster than the work-stealing based variants. TDS sales almost linearly. For the 15-puzzle, we even obtain superlinear speedups. The overhead for ommuniation is more thanompensated by the derease of node expansions when more proessors are added, beausethe transposition table ahes more states when more memory is added. The double-blankpuzzle and Rubik's ube do not ahieve superlinear speedups, beause the problems in theirtest sets did not searh enough states to �ll the entire table on 128 proessors. The speedupfor TDS inreases for larger problem sizes. The hardest 15-puzzle problem even yielded aspeedup of 154.We were not able to perform measurements for the repliated variants of the 15-puzzle and23



the double-blank puzzle on 128 proessors, beause LFC annot handle the ommuniationload when all mahines broadast data too frequently.Figure 6 shows a performane breakdown for the appliations. We measured how muhCPU time is spent in several program parts. We distinguish the following program parts:� Node evaluation denotes the amount of time spent in the evaluation funtion. ForRubik's ube, this time inludes the time for doing (loal) pattern database lookups.� Node expansion spei�es how muh time is needed to generate new states.� Transposition table ommuniation is the time needed for doing remote transpositiontable lookups and updates, and inludes both the time to issue requests and to handleinoming messages. For TDS, the blak areas represent the time to ommuniate thework to other proessors, rather than the time to ommuniate remote transposition-table entries.� Misellaneous is the time spent in the remaining program parts. These inlude thesearh engine, position repetition detetion (in the work-stealing variants), node allo-ation and dealloation, and loal job queue overhead.We aumulate the time that all proessors spend in a partiular program part andaverage these times for several test positions (by taking the geometri mean). The heightof eah bar reets how muh time the proessors spend in a partiular program part; thetotal height reets the (average) total amount of CPU time needed to solve a problem. They-axes of the graphs are normalized to the average single-proessor TDS run time, whih isthe fastest single-proessor variant for all appliations. Thus, if the total height of the barequals 2 and if 128 proessors are used, the appliation requires twie as muh (aumulated)CPU time as on a single proessor; onsequently the speedup is 64.The TDS graphs show that the algorithm sales nearly perfetly. The graphs also showthat as more proessors are added, the time spent in the di�erent program parts vary. The24
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number of node expansions dereases, sine the inrease in transposition table size reduesthe number of transposition table onits. Sine less work is generated, other programparts bene�t as well.The gray shaded areas (whih represent the time spent in remaining program parts) forTDS are smaller than for the other variants. Due to its simpliity, the searh engine ofTDS is onsiderably faster than the other searh engines. TDS does not require a separatemehanism to detet forward and bakward moves or other yles in the direted searhgraph. TDS detets repetition of positions through the transposition table, beause TDSupdates the transposition table before a state is searhed.Figure 6 also illustrates that TDS performs well on large-sale systems. The inrease intransposition table size and the resulting derease in searh e�ort largely ompensate theinrease in ommuniation overhead. Load imbalane turned out to be negligible; the busiestproessor does typially less than 1% more work than the least busy proessor.TDS uses only a small fration of the available Myrinet bandwidth, whih is about70 MByte/s per link between user proesses, and about 33 MByte/s under high ontention,when 64 proessors send messages to random destinations as fast as they an. The 15-puzzlerequires 2.3 MByte/s, the double-blank puzzle 1.9 MByte/s, and Rubik's ube 0.39 MByte/s.Eah job is enoded in 32{68 bytes. For the 15-puzzle and the double-blank puzzle, weombine up to 31 piees of work into one message, and for Rubik's ube, we ombine up to14 piees of work. The ommuniation overhead for distributed termination detetion (TDSsynhronizes after eah iteration) is well below 0.1% of the total ommuniation overhead.The loal work queue (implemented as a stak) remains small: even for the largest 15-puzzleproblem (searhing 2.5 billion positions on 128 proessors in 2 minutes) the stak does notexeed 1 MB in size.Partitioned su�ers from high lookup latenies. Even with the ustomized network �rm-ware, a remote lookup takes 12{35 �s, inluding the overhead for prefething. The double-26
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Figure 7: Evaluation on sending vs. reeiving mahine, on 64 proessors.blank puzzle spends 79% of the time ommuniating table entries, at a rate of 27,500 remotetable aesses per seond per proessor.Like TDS, partitioned bene�ts from the inrease in table size when more proessors areadded. Yet the performane graph for the double-blank puzzle, whih has many transposi-tions, shows that the appliation searhes 96% more nodes on 128 proessors than on a singleproessor. We explain this as follows. Partitioned (as well as repliated and non-shared)updates the transposition table after the searh of a state ompletes. A transposition is notreognized as suh before the update is performed, thus partitioned may searh a transposi-tion multiple times by multiple proessors to the same depth onurrently. This phenomenondoes not our with TDS, where the table update is done before the state is searhed.Repliated passes most of its time handling inoming broadast messages when manyproessors are used. On 128 proessors, LFC ollapses under the high ommuniation loadof the 15-puzzle and the double-blank puzzle. The other measurements on many proessorsshow a signi�ant ommuniation overhead. The double-blank puzzle on 64 proessors per-forms 14,500 transposition table stores per proessor per seond. These stores are bu�ered(64 entries per bu�er, 12 bytes per entry) and broadast to all proessors. This meansthat eah proessor reeives 14,500 messages per seond, spending 50% of the total timeommuniating transposition table entries. 27



Setion 4 argued that the evaluation funtion an be invoked on either the sending orthe reeiving proessor. We studied the e�ets on exeution times for the three di�erentexeution orders:1. Evaluate a node on the sending proessor (potentially pruning the node), send thenode to its destination, lookup the node in the transposition table (utting of the nodeif it is a transposition), store the node in the table, and push the node onto the workqueue. This exeution order is alled early.2. Send the node, look it up, evaluate it, store it, and push it (alled mid).3. Send the node, look it up, store it, evaluate it, and push it (alled late).The latter method stores a node in the transposition table, even if it is pruned, wheremethod mid potentially evaluates a node multiple times if the node auses a uto�. Figure 7shows the e�ets on exeution times for the three appliations on 64 proessors. Eah bar isomposed the same way as in Figure 6. Early learly evaluates more nodes than the others,but spends less time aessing the transposition table and ommuniating. Late spendsmore time aessing the transposition table, sine it stores information about all nodes inthe table. In the ase of Rubik's ube, this is even ounter-produtive, sine the many storesof uto� nodes thrash the table, inreasing the total amount of work done. In onlusion,all three appliations perform best when the evaluation funtion is invoked on the sendingproessor.The speedups of TDS on 64 proessors for the 15-puzzle are higher than those reportedby others (e.g., [9℄ reports 58.90-fold speedups). Moreover, previous work has only looked atparallelizing the basi IDA* algorithm, usually using the 15-puzzle with Manhattan distaneas the test domain. The state-of-the-art has progressed signi�antly. For the 15-puzzle, thelinear onits heuristi [16℄ redues tree size by roughly a fator of 10; transposition tablesredue tree size by an additional fator of 2.6; and the last move and orner onit heuris-28



tis [22℄ redue the tree size even more. These redutions result in a less well balaned searhtree, inreasing the diÆulty of ahieving good parallel performane. Still, our performaneis at least as good as the results in [9℄. This is a strong result, given that the searh treesare tens of times smaller.7 Lateny, bandwidth, and overhead analysisTo predit the performane of TDS on other types of parallel systems, we analyzed thebehavior of the 15-puzzle (the most ommuniation-intensive among the appliations) undervarying lateny, bandwidth, and overhead onstraints, using a model that resembles theLogGP model [1℄. The model haraterizes the ommuniation behavior of an appliationusing di�erent parameters. The message lateny is the delay between the sending and thearrival of a message. The overhead is the sum of the send overhead needed to hand o�a message to the ommuniation substrate and the reeive overhead needed to deliver amessage to the appliation. The bandwidth is the number of bytes that the appliation ansend and reeive eah seond.We performed the lateny, bandwidth, and overhead analysis as follows. The latenyand bandwidth are varied by delayed delivery to the appliation. Eah inoming messageis tagged with a delivery time and bu�ered until the appliation may onsume it. Duringthat time, the proessor may reeive new messages and may expand new states. The sendand reeive overheads are inreased by having the proessor spin in a tight loop until it anproeed. During that time, the proessor neither reeives new messages nor expands newstates.To better handle large latenies and low bandwidths we made a few modi�ations tothe ode of our basi TDS implementation. The original global termination detetion al-gorithm [25℄ orders the proessors in a ring and sends messages along the ring. The time29
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(b) Sensitivity to overhead.Figure 8: Bandwidth, lateny, and overhead sensitivity for the 15-puzzle on 64 proessors.needed for (suessful) global termination detetion is the number of proessors times themessage lateny. During the �rst iterations of the searh, when there is little work, theglobal termination detetion dominates the searh times when the lateny is high. To toler-ate higher latenies, we hanged the global termination detetion algorithm by not sendingthe messages in a ring, but by having one proessor broadast a termination detetion re-quest message. Eah proessor then replies with a uniast message. Sine broadast anduniast messages are unordered, it is neessary to inlude a timestamp in eah message. Thebroadast version requires twie the lateny for global termination detetion, independentof the number of proessors.Another problem ours when the bandwidth beomes lower than what the appliationrequires. In this situation the rate at whih new jobs are reeived is too low to keep aproessor busy. When a proessor immediately ushes all outgoing message bu�ers withnew states when it beomes idle, the bu�ers are almost empty; most of the time a messageontains a single job only. Sending many small messages not only inreases the total overhead30



(whih is not that bad beause the proessors are underloaded anyway), but also inreases theamount of bytes sent sine more message headers are sent. A simple and e�etive solution isto wait a short period to give the next message a hane to arrive before the message bu�ersare ushed.During the low bandwidth and high lateny experiment, one of the 15-puzzle test posi-tions bu�ered so many messages that ow ontrol beame neessary. We use a redit-basedsheme and stop a sender when its destination has bu�ered 250 undelivered messages fromthe same soure. This limits the bu�er size to at most 16 MB per proessor. In pratie,less than 1% of the sends stall.Figure 8(a) shows the e�ets of inreased message latenies and dereased network band-width for the 15-puzzle on 64 proessors. We used the same test set as in Setion 6. Allaxes are in log-sale. The exeution times are normalized; the norm is the average exeutiontime with maximum LFC bandwidth (over 32 MByte/s under ontention) and minimumLFC lateny and overhead (together about 10 �s). The graph shows two interesting results.First, TDS is tolerant to high latenies: latenies of up to 10 ms are hardly notieable andeven latenies of 100 ms still give reasonable speedups. This is an expeted result, sine eahIDA* iteration is inherently asynhronous. Seond, TDS is intolerant to low bandwidths.The exeution time inreases inversely proportional with the bandwidth when the bandwidthdrops below the required bandwidth (for the 15-puzzle, this is 2.3 MByte/s per link).Figure 8(b) shows the sensitivity to the send and reeive overhead for the 15-puzzle on64 proessors. We already learned that the appliation spends a relatively small amount oftime ommuniating, despite the high bandwidth requirements. This is due to the low over-head of LFC: we measured a send overhead of 7.35 �s and a reeive overhead of 1.90 �s (LFCahieves suh a low reeive overhead beause the network proessor on the Myrinet interfaedoes most of the work to reeive a message). The �gure shows the appliation behavior forinreasing overheads. For this experiment we use equal send and reeive overheads; the sum31



is shown on the X-axis of the �gure. The �gure shows that the appliation is moderatelysensitive to overhead: inreasing the overhead results in a signi�ant performane loss, butthe performane does not drop as fast as in the bandwidth experiment.In summary, TDS an tolerate latenies up to 10{100 ms, bandwidths down to a fewMByte/s, and overheads up to 100 �s. 100 Mbit/s Ethernet, used via a kernel-level soketinterfae (either TCP or UDP), operates within these limits, provided that the network isswithed and the swith an handle the aggregate bandwidth demands. We expet that theappliations will run a few tens of perents slower than over Myrinet using LFC, beausethe overhead of the soket interfae will be higher. The lateny and bandwidth provided by100 Mbit/s Ethernet will be suÆient and will not inuene the run times at all.8 ConlusionsEÆient parallelization of searh algorithms that use transposition tables is a hallengingtask, due to ommuniation overhead and dupliate searh of subtrees. We have desribed anew approah, alled Transposition-Driven Sheduling (TDS), whih integrates work shedul-ing with the transposition table. TDS pushes work eagerly to the proessor that ahes inter-mediate searh results. It makes all ommuniation asynhronous, overlaps ommuniationwith omputation, and redues searh overhead. TDS is appliable to any searh algorithmthat searhes graphs, suh as game-tree searh algorithms, retrograde analysis, onstraintsatisfation algorithms, optimization algorithms, and data-ow algorithms.We implemented parallel IDA* using TDS, and performed a detailed omparison of TDSto the onventional work stealing approah on a large-sale parallel system. TDS performssigni�antly better, espeially for large numbers of proessors. On 128 proessors, TDSahieves a speedup between 122 and 138, where traditional work-stealing algorithms ahievespeedups between 10 and 79. TDS sales well to large numbers of proessors, beause it32



e�etively redues both searh overhead and ommuniation overhead. TDS' bene�ial useof memory an even lead to superlinear speedups, espeially for large searh problems. Wealso performed a lateny, bandwidth, and overhead analysis for the 15-puzzle, the mostommuniation-intensive appliation in the test set. TDS is tolerant to high latenies, some-what sensitive to high overhead, but performs poorly on low-bandwidth networks. However,modern networks like Myrinet amply provide the required bandwidth.TDS represents a shift in the way one views a searh algorithm. The traditional viewof single-agent searh is that IDA* is at the heart of the implementation, and performaneenhanements, suh as a transposition tables, are added afterwards. This approah makesit hard to ahieve good parallel performane when one wants to ompare to the best knownsequential algorithm. With TDS, the transposition table beomes the heart of the algorithm,and performane improves signi�antly.Referenes[1℄ A. Alexandrov, M.F. Ionesu, K.E. Shauser, and C. Sheiman. LogGP: InorporatingLong Messages into the LogP Model | One Step Closer Towards a Realisti Model forParallel Computation. In ACM Symposium on Parallel Algorithms and Arhitetures,pages 95{105, 1995.[2℄ H.E. Bal and L.V. Allis. Parallel Retrograde Analysis on a Distributed System. InSuperomputing '95, San Diego, CA, Deember 1995.[3℄ R.A.F. Bhoedjang, J.W. Romein, and H.E. Bal. Optimizing Distributed Data StruturesUsing Appliation-Spei� Network Interfae Software. In International Conferene onParallel Proessing, pages 485{492, Minneapolis, MN, August 1998.
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