
This is a preprint of a copyrighted article that will appear in TOOLS USA '96, July 1996, Santa Barbara, USA.

An Object-Oriented Run-time System for Parallel Applications

Steve MacDonald, Duane Szafron and Jonathan Schaeffer
Department of Computing Science,

University of Alberta,
Edmonton, Alberta,
CANADA T6G 2H1

{stevem, duane, jonathan}@cs.ualberta.ca

ABSTRACT

This paper describes three basic
specializations of design patterns that can be
used in implementing the run-time systems of
parallel applications. These specializations were
discovered while re-designing and re-
implementing the run-time system for the
Enterprise parallel programming system.
Enterprise allows programmers to create,
compile, execute, and debug programs that
execute over a network of workstations. The
run-time system is responsible for the execution
of user programs. It was recently re-designed
using objects to rectify problems with the
previous version and to provide an extensible
base for further research. This papers details the
key object-oriented components of the new
system. Although these components were
developed in the context of the Enterprise
system, they are generally applicable to object-
oriented run-time systems for general parallel
applications.

1. Introduction
This paper describes the new object-oriented

run-time system for the Enterprise parallel
programming environment [SSLI 93]. This run-
time system is responsible for the correct
execution of Enterprise applications over a
network of workstations within the bounds of the
programming model presented by the system
[Mac 95].

There were two primary objectives of this
work: to remove limitations and deficiencies in
the previous implementation, and to create an
extensible system that can be used as a basis for
further research. Although the first goal could
have been solved without using an object-
oriented design, several deficiencies were solved
specifically by using object-oriented techniques.
However, the second goal was the main
motivation for using objects and is the main
focus of this paper.

The previous version of the Enterprise run-
time system was written in C, with a Smalltalk
user-interface. Since Enterprise is an
exploratory research project, there were no clear
requirements for the system before it was built.
As the research progressed, the system degraded
into a large, complex program that could only be
maintained by the original developers, and then
only with considerable effort. Eventually the
system became so complex that it could not
effectively be used for further research. By
rewriting the code using an object-oriented
design and language, we hoped to remove these
problems and create a system that is flexible and
extendible to meet future needs and
requirements.

This paper discusses the design of the new
Enterprise run-time system, concentrating on key
object-oriented components. The principle
contributions and lessons learned were how
object-oriented techniques can be applied to:
1. create a flexible system by supporting the

programming models of Enterprise in an
abstract way,

2. abstract the processing of messages by
modeling the responsibilities of different
types of processes,

3. create a system where the responsibilities of a
process can be dynamic, changing as the
application executes, and

4. encapsulate the communications sub-system
so that its implementation may be changed
without any effects on other parts of the
system. This increases portability and allows
multiple implementations to be supported.

2. Enterprise
Parallel programming is usually perceived as

a difficult task. The programmer is forced to
deal with complexities that do not arise during
sequential programming, such as non-
determinism, communication, and task
coordination. In addition, parallel programs use
a different set of algorithms which typically do
not correspond to the best sequential algorithms,
requiring the programmer to use different
approaches to solve a problem. Correctness

2

debugging becomes a much harder task, largely
because of non-determinism. A program may
fail only on certain execution paths, which may
not occur every time the program runs. Adding
additional code or attaching a debugger to the
program can alter its execution, preventing the
error from occurring. After the correctness of
the program is verified, the programmer has to
do performance debugging, tuning the
application to achieve maximum performance.
This last activity is hampered by a lack of tools
and methodologies to aid and evaluate the
process. In addition, performance debugging
can introduce logic errors into the application,
which makes correctness and performance
debugging a cyclic process.

The Enterprise system provides the user with
an environment to write, compile, execute, and
debug parallel programs. The main feature of
Enterprise is its ability to simplify parallel
programming by removing some of these
additional complexities. Communication and
task coordination are the responsibilities of the
run-time system, based on user annotations that
specify the parallelism in the application.
Correctness debugging in Enterprise is
accomplished through a program replay
mechanism, which re-executes a program based
on events collected at run-time, isolating the
effects of non-determinism in a program during
the debugging phase. Performance debugging is
simplified by the separation of the user
annotations and the application code, which
allows the parallel structure of the application to
change with few changes to the application code.
All of these features are provided within a simple
programming model that lets the user write their
application in sequential C. This programming
model allows the programmer to use a familiar,
existing programming language and also allows
legacy code to be easily incorporated into a
parallel application.

2.1 Programming in Enterprise
There are two components to the Enterprise

development model: the programming model to
specify the semantics of the application code and
the meta-programming model to specify the
parallelization techniques the user wishes to use.

The programming model in Enterprise is
based on the futures model of parallel
computing [Hal 85]. Futures are tagged
variables that represent the results of parallel
function calls, either through return values or
side effect. When a process invokes a parallel
call, the arguments are marshaled into a message
and sent to the remote process responsible for

executing that call. Unlike RPCs (remote
procedure calls), the caller continues executing
without waiting for a response until a future is
accessed. At this time, if the results of the
parallel call are not available, the caller blocks
and waits for them. The futures model is
demonstrated in the following program
fragment:

result = parallel_f(a, b);
/* Other C code executing */
/* concurrently with parallel_f */
. . .
/* Block if result not available */
x = result;

The main benefit of the futures model is that
the user can write normal C code rather than
having to learn a new programming language.
This feature also allows existing code to be used
with little modification. The foremost exception
is that global variables are not supported in
Enterprise since each process executes in its own
address space. Also, to make effective use of
futures, the user should delay accesses to the
results of parallel function calls until they are
needed. This step is only necessary to increase
concurrency; the program will execute without
this step, just not as efficiently. There are also
some small differences in the semantics of the
language, such as the requirement that the user
specify the number of elements for any data
passed via a pointer. The user also specifies how
the data is passed (to the called process only, to
the calling process on return only, or both ways).
These changes are used to reduce expensive
copying and transmission operations and have
been made as unobtrusive as possible.

The Enterprise meta-programming model
provides the user with an abstraction for the
parallel aspects of a program. The abstraction is
an analogy between the structure of a program
and a business enterprise. The parallel
components of a program are referred to as
assets since a business is organized by charts
representing the assets of the business (like
individuals, departments etc.).

Assets are really just commonly occurring
parallel design patterns and the fundamental
components of these patterns [GHJV 93]. Assets
are divided into two types: singular assets and
composite assets. A singular asset is akin to one
process in the application, or a single person in a
business enterprise. It is responsible for
executing the sequential user function that has
the same name as the asset. Composite assets are
structured collections of other assets (both
singular and composite) that specify the different

3

parallelization techniques available to the user,
the equivalent of an organized group of people
in an enterprise. Just as there are multiple ways
to group people together, there are multiple
composite assets to represent different
organizational strategies. These assets are
combined to form an asset graph that specifies
the parallel aspects of the program. Descriptions
of the different asset types follow.

An Enterprise program starts with an instance
of an enterprise asset, which represents the entire
program or organization. This asset contains
only one component, which represents the
parallelization technique used for the program at
its highest level. Initially, the enterprise asset
contains a single individual asset.

An individual asset is analogous to a single
person in an organization. It is associated with a
user function, which must have the same name as
the asset itself. When invoked, this code is run to
completion. Subsequent calls to the same asset
must wait for the previous ones to finish.
Individual assets can also be coerced into other
asset types, which replaces the individual with a
new asset of a different type. This operation
allows a user to create an arbitrary graph by
refining the parallelization technique used on an
individual.

A line asset is a composite asset that is
analogous to an assembly line (a pipeline). It
contains a receptionist asset followed by a fixed
number of heterogeneous assets (either singular
or composite) in a specified order. The
receptionist is a special kind of individual asset
that is the entry point of a composite asset. The
receptionist has code attached to it and shares its
name with the composite asset that contains it.
Each asset in the line accepts work from the
previous asset, refines the data, and passes it to
the next asset. Concurrency is obtained since a
subsequent call to the line only waits for the
receptionist to finish executing the previous call,
not the rest of the assets in the line.

A department asset is a composite asset that
is analogous to a department in an organization.
It contains a receptionist asset and a fixed
number of heterogeneous assets (either singular
or composite). The receptionist accepts all
incoming calls and forwards them to the
appropriate component asset. Each call to the
department must wait only for the receptionist to
become available, not for the entire department
to finish with the previous call.

A division asset is a parallel recursive
structure. It consists of a number of identical
assets and a specified depth. Recursive calls are
made in parallel until the depth is reached, when

further recursive calls are made sequentially.
Nodes that perform recursive calls sequentially
are called the leaves of a division. All non-
recursive calls are always made in parallel.

A service asset is a resource in an
organization that is not consumed and has no
ordering restrictions for its use. A clock is a
good example of a service.

 Enterprise provides the ability to replicate
certain asset types, creating multiple processes to
execute the asset. Replication is specified as a
minimum and maximum pair, with Enterprise
dynamically creating and destroying processes at
run-time as system resources change.
Individuals, departments, lines, and divisions can
be replicated. The new run-time system supports
the dynamic addition of processes to a running
application. However, the criteria for invoking
this feature is the subject of current research.

Here is the code for an example program.
This program is a parallel equivalent of the
simple "hello world" C program and is intended
for illustrative purposes only.

#define SIZE 10
CubeSquare(argc, argv)
int argc;
char * argv;
{
 int i, sq, cu, a[SIZE], b[SIZE];
 for(i = 0; i < SIZE; i++)
 {
 a[i] = Square(i);
 b[i] = Cube(i);
 }
 sq = cu =0;
 for(i = 0; i < SIZE; i++)
 {
 sq += a[i];
 printf("%d^2 = %d\n",i,a[i]);
 cu += b[i];
 printf("%d^3 = %d\n",i,b[i]);
 }
 printf("squares %d\n",sq);
 printf("cubes %d\n",cu);
}

int Square(i)
int i;
{
 SLEEP_RANDOM_TIME;
 /* Appropriately defined macro */
 return(i * i);
}

4

int Cube(i)
int i;
{
 SLEEP_RANDOM_TIME;
 /* Appropriately defined macro */
 return(i * i * i);
}

 The meta-program for this program is
shown in Figure 1. It consists of a single
enterprise asset which appears as the double line
border. The enterprise asset contains a single
department asset which appears as the single line
border. This department asset contains a
receptionist called CubeSquare and two
individual assets called Square and Cube. There
are two replicas of each of these individual assets.
The first call to Square is handled by the first
replica and the second call is handled by the
second replica. If a third call is made to Square
before either of the first two is finished, the call is
put in a request queue. The caller (CubeSquare)
does not block after any of the calls to Square or
Cube. In fact, it does not block unless it accesses
a future in the second loop (a[i] or b[i]) that has
not yet been returned from a call to Square or
Cube.

Figure 1: A meta-program for CubeSquare.

2.2 The Enterprise Environment
Enterprise is a complete parallel

programming environment. The system consists
of three parts: the graphical user interface, the
precompiler, and the run-time system.

The user interface provides a set of
programming facil i t ies in a uniform
environment. The programmer can create,
compile, execute, and debug programs. The
interface is not important to the remainder of this

paper. Interested readers are directed to [IMMN
95] [Lob 93] [LSS 93]. The user interface was
originally written in Smalltalk-80, and has
subsequently been ported to VisualWorks2.0.
For the purposes of this paper, the main feature
provided by the interface is the ability to create
an asset graph that represents the parallel aspects
of an application.

The precompiler transforms the user
application into a parallel program. It uses the
asset graph to recognize parallel function calls
and futures. For each parallel function call, it
generates stubs code that marshals and
unmarshals the arguments and it creates a
function pointer for the user's function. It then
inserts calls to the stubs code and the run-time
system which imports the array of function
pointers created by the precompiler.

Finally, the run-time system is responsible
for the execution details of a user application.
The remainder of this paper concentrates on this
component.

3 The Enterprise Object-Oriented Run-
time System

The run-time system is responsible for the
correct execution of an Enterprise program.
These responsibilities include:

• implementing the library calls inserted by the
precompiler,

• launching the application in a distributed
fashion, with each Enterprise process using the
asset graph to launch the processes it may call,

• processing messages, including all the
necessary synchronization and run-time
consistency checks,

• managing futures,

• gathering run-time information for support
tools such as the animation and controlled
replay components, and

• shutting down the program.
The challenge in this work was to efficiently

implement all the above functionality within the
context of the programming model. In addition,
this work was intended as a framework for future
research in the Enterprise project, so the resulting
system had to be flexible and extensible. This
last goal was the main reason for the decision to
use object-oriented technology for both the
design and implementation of the run-time
system. The decision to use C++ was motivated
by efficiency and portability constraints.

This section discusses the aspects of the new
design that benefited from the application of

5

object-oriented technology. Although the
overall system used these techniques, several
parts of the design fit within an object-oriented
framework better than others. These parts are:
the asset graph, the dispatcher and behaviour
classes, and the communications manager. A
more detailed description of each of these
components makes up the rest of this section.

3.1 Asset Graph
The asset class hierarchy is shown in Figure

2. A black square in the upper left corner
indicates an abstract superclass. The asset classes
rely heavily on inheritance, particularly multiple
inheritance for this implementation. The
concrete classes directly correspond to the
different assets in the meta-programming model.
These classes refine the behaviour of any
operation that can be applied to instances of an
asset, providing specific implementations to
match the specified parallel structure. The
abstract classes are:

• Asset: This class holds information common to
all assets, such as the name.

• Codable Asset: This class represents all assets
that have user code attached to them.

• Replicable Asset: This class represents all assets
that may be replicated.

• Composite Asset: This class represents all assets
that are composed of other assets, either
singular or composite. It contains an asset for
the receptionist and an array of component
assets.

• CompositeReplicable: This abstract class was
used to factor operations from its subclasses
that used instance information in both the
Replicable and Composite Asset classes.

The abstract classes provide common
characteristics of the subclasses. Multiple
inheritance allows each concrete class to inherit
its characteristics cleanly, taking only those
attributes that are necessary. It also allows the
different characteristics to be separated and dealt
with individually, rather than factoring them into
other, possibly inappropriate, classes. The
previous run-time system represented the asset
graph using a superset of all possible asset
characteristics and a set of flags to indicate the
valid values. The procedures to manipulate the
assets were large case statements that switch based
on the asset type.

Asset

Codable
Asset

Replicable
Asset

Composite
Asset

Service
Asset

Receptionist
Asset

Individual
Asset

Division
Asset

Enterprise
Asset

Line
Asset

Department
Asset

Composite
Replicable

Figure 2: The asset class hierarchy.

6

This new class hierarchy is also an
improvement over that used in the
implementation of the user interface, which used
single inheritance. Since the interface was
written in Smalltalk and the run-time system in
C++, each has its own implementation of the asset
graph hierarchy. These two implementations are
related only in that they attempt to implement a
set of classes for the meta-programming model.
Single inheritance forced the hierarchy to be
factored in such a way that some operations had
to be invalidated in subclasses, which violates the
idea that a subclass should respond to all the
messages of its superclasses. An example of this
problem was replication, which was factored into
the base class Asset. A Smalltalk message to
replicate those assets that should not be
replicated resulted in a run-time exception.
Fortunately, context-sensitive menus precluded
the sending of such messages, but it is still a
design flaw. This problem was identified during
the work on the user interface and reported
previously in this conference [LSS 93]. Its
resolution in this project helps verify the thesis
that multiple inheritance is necessary for large,
real-world systems.

At run-t ime, the assets form a
communication graph based on the call graph of
the program. For example, Figure 3 shows the
asset graph for the CubeSquare program from
Figure 1. Note that there are hidden nodes in the
asset graph that do not appear in the meta-
program. In this case the hidden nodes are
managers for each replicated asset.

Cube
Square

Cube
Manager

Square
Manager

Square Square Cube Cube

Figure 3: The asset graph for CubeSquare.

The internal representation of the graph is
created by instantiating the enterprise asset,
which contains the entire user program.
Instantiating the enterprise asset creates the rest
of the graph by reading it from the graph file,
the textual representation of the asset graph
generated by the user interface. The assets in the
program are stored in the receptionist and
component arrays inherited from the Composite

Asset class. Composite assets store their
components in an identical way.

One of the benefits of the overall design of
the new run-time system is that the asset classes
are orthogonal to the remaining constructs of the
Enterprise run-time system. As long as all
required public operations are still supported, the
asset classes can change freely. Required
operations include the launch method and
methods that derive the relationships between the
different assets in the graph for run-time checks.
This independence also allows the asset classes to
be placed in a separate library so they can be
used by other components of Enterprise. For
example, the precompiler can use the library to
verify that the user's application code matches
the asset graph. The meta-programming model
itself can now be easily modified. Additional
asset types and characteristics can be added,
allowing the model to grow and develop as new
ideas and requirements emerge. In the previous
version of Enterprise, each component that
required access to the graph also implemented a
set of procedures to manipulate it, requiring that
each component be updated when the meta-
programming model changed. Since these
procedures were tailored for each component,
creating a single graph library was impractical.

Here is an example of the asset graph
flexibility in action. The meta-programming
model for the division asset was changed just as
the re-design of the run-time system was
completed. Previously, a division was a
composite asset consisting of a receptionist and
either another nested division or a representative
asset. The depth of the division was increased
through nesting, and the width was increased by
replicating the components. The meta-model
was changed so that a division is represented as a
replicated individual with an additional depth
field. While this represented a major conceptual
change in the division asset, the effects on the
implementation were constrained to the
DivisionWorkerBehavior class. This new
representation is expected to have many potential
benefits, including better utilization of the
processes and the ability to specify other
composite assets as divisions, removing the
limitation that a division consists of a singular
asset.

The design of the asset graph uses the
Composite design pattern [GHJV 93], which
combines singular and composite assets. This
particular implementation goes slightly beyond a
straight-forward implementation to provide
additional semantics for the different composite
containers. The correct use of the design pattern

7

is shown by noting that it can be used to
construct any user graph, which is created using
coercion (see Section 2.1) to nest arbitrary assets
into the graph.

3.2 Dispatcher Classes
The dispatcher class hierarchy is shown in

Figure 4. Again, the black square in the upper
left corner indicates an abstract superclass.

Dispatcher

Asset
Dispatcher

Root
Dispatcher

Figure 4: The dispatcher class hierarchy.

The dispatcher classes are responsible for
receiving messages and delivering them to an
instance of the behaviour class for processing.
The behaviour classes are further described in
the next section. For now, it is enough to know
that a behaviour is responsible for the actual
processing of messages. The difference between
the two concrete classes is the need for buffering.
Instances of AssetDispatcher put messages that
cannot be processed immediately into a buffer.
For example, if an individual asset is processing a
message and it receives a second message before
the first is done, the AssetDispatcher instance
puts the second message into a buffer. The
RootDispatcher class doesn't need to buffer
messages since it only looks for a message when
it can process one.

The main reason for the dispatcher is that it
provides the opportunity for the system to be
more dynamic. Since messages are processed by
an instance of behaviour, the response of a
process to a message can be changed by using a
behaviour from a different class. Since it is
impossible for an object to change its class from
one behavior class to another, we provide a
dispatcher that can change the behavior it uses.
That is, between messages, the current behaviour
of a dispatcher can be deleted and a new one
created, giving the process a new role as the
application executes. This change is almost
transparent; the only change is in the processing
of subsequent messages. One of the most
important applications of this concept is that an
individual asset can be promoted to the manager
of a replicated set of individuals if the message
queue becomes too large. The same mechanism
can also be used to demote a replica manager

back to an individual if the message queue
shrinks. At the meta-programming level, this is
equivalent to automatic asset replication and de-
replication and it obviates the need for the user
to specify that an asset should be replicated.

A second application of this concept is for a
process to change the asset it is responsible for
executing. This change is possible because all
user code in an Enterprise application is
compiled into one executable. That is, each
process contains the code for all assets. A
replication pool process can be created which
maintains a queue of idle processes. When a
replica manager discovers that its input queue is
too large, it can request a process from the
replication pool and map a new asset replica onto
this process. When the input queue shrinks, it
can release this process back to the replication
pool. Note that the same process may be
mapped to different assets at different times as
the application executes. This replication pool
could also be allowed to grow if new system
resources become available, leaving the pool
manager to monitor system activity instead of the
replica managers.

3.3 Behaviour Classes
The behaviour class hierarchy is shown in

Figure 5. The behaviour classes present all of
the possible functions for a process in an
Enterprise application. The behaviour classes are
used to model the responsibilities of a process
based on its function within the Enterprise
application. This function may not be the same
as its asset, since Enterprise inserts additional
processes into an application that are hidden
from the user. The most common example of
this is a manager of replicated assets.

The current implementation of Enterprise
uses the following behaviours:

• SeqRootBehaviour: This behaviour executes an
Enterprise program sequentially. That is, all
asset calls become procedure calls. The first
asset is called sequentially.

• ParRootBehaviour: This behaviour is the root
of an Enterprise program that is being
executed in parallel. It sends the command
line arguments to the first asset in the program
and awaits the reply. It is also responsible for
processing logging messages, which contain
the run-time information used by the
animation and reply components.

• ManagerBehaviour: This behaviour represents
an external manager process, which is
responsible for managing the workers of a
replicated asset. However, it is also possible for

8

a replica manager and the asset that calls it to
be put into a single process. In this case, the
behaviour for that common process is a
SingleAssetBehavior instead of a
ManagerBehaviour. To prevent the code that
actually manages the replicas from being
repeated in these two places, the common code
is put in a Process class and an instance of
Process class is placed in each asset.

• SingleAssetBehaviour: This behavior represents
an unreplicated asset.

• WorkerBehaviour: This behaviour represents a
worker in a replicated asset. The difference
b e t w e e n t h i s b e h a v i o u r a n d
SingleAssetBehaviour is the need for reply
messages. This behaviour must always
generate a reply message to indicate the
availability of the process to its manager, where
the other only needs to reply when there is data
to be returned.

• DivisionWorker: This behaviour represents a
worker in a division, which must do additional
work to properly determine if the process is a
leaf of the asset.

The exact function of a process is
determined during the launching phase, based on
information derived from the graph that
determines what processes are required for an
application.

This model is a simplified version of what
occurs in the run-time environment of an object-
oriented language when a message is sent to an
instance of a class, except that the object name
space has been removed. Here, a dispatcher
always receives messages from the network and
always sends messages to a particular instance of
a behaviour class. The actual processing of the
message is done through a simple and abstract
interface at the DispatcherBehaviour class, which
is broken down into other method calls in the
implementation. This breakdown in based on
the different message types in Enterprise (such as
request versus system management messages).
These other methods are refined in the subclasses
until the desired behaviour is achieved.

The behaviour classes are another orthogonal
component of the run-time system, so changes
can be made to it without affecting the remainder
of the system. This trait creates a system that can
be easily modified to include new behaviours as
new asset types are created. In addition these
new behaviors can be subclasses of existing
behaviours for faster development. This feature
has been useful during the work in parallel
recursive structures in Enterprise, where a new
DivisionManager behaviour was created to
handle additional bookkeeping required for a
more efficient implementation of the division
asset.

Dispatcher
Behaviour

SeqRoot
Behaviour

ParRoot
Behaviour

Manager
Behaviour

SingleProcess
Behaviour

SingleAsset
Behaviour

Worker
Behaviour

Division
Worker

Figure 5: The behavior class hierarchy.

9

Using dispatcher/behaviour combinations is
useful for any program where the behaviour of
an object can be broken down into specific cases.
In addition, abstract classes can provide a set of
characteristics or factored operations that are
inherited by the concrete classes. This technique
is currently being used to implement template-
based parallel I/O, where the template determines
the behaviour of a file at a given process [Par
95]. In fact, the dispatcher/behaviour
combination is an implementation of the
Strategy design pattern [GHJV 93].

3.4 Communications Manager
The CommunicationManager class has a

small well-defined interface that provides a
minimal set of primitives. By providing only a
few primitives, it is possible to provide several
different implementations without affecting the
remainder of the system. Since the interface is
the same for each implementation, the only
change that is necessary when switching between
two different communication systems is to link
different libraries into the executable. Enterprise
currently has two different communications
managers: one written using the PVM message
passing system [Sun 90] and another using the
Treadmarks distributed shared memory system
[ACDK 96]. It should be noted that the
Treadmarks system was only used to provide
another implementation of the communication
primitives; we did not re-write the run-time
system to use shared memory.

Another possible design of the
communications manager would be to create an
abstract class with subclasses for each
implementation and instantiate the correct
concrete class at run-time. This idea was rejected
for two reasons. First, this solution requires that
the libraries to support each implementation be
linked into the application, creating large
executables. Second, only one communications
system can be active at a given time. This
limitation is programmed into the Enterprise
system. It would be possible to remove this
limitation, but it is unlikely that this restriction
will prove to be a problem. If multiple
communications systems are to be multiplexed,
there will be extra work in deciding which system
should be used, which is best encapsulated inside
the communications manager. Also, our
exper ience seems to indicate that
communications software uses a combination of
signals and timers that makes it difficult to have
more than one system active at a time.

The motivation for this class was the result of
a dependence on the Network Multi-Processor

library (NMP), a locally developed system [MBS
91]. NMP became an integral part of the
original implementation, to the point where its
limitations persisted even when PVM replaced it
as the communications system. The main
limitation in NMP is its static process structure,
which spawns and connects all processes at
application startup. The encapsulation in the
current implementation will make it impossible
for such a dependence to occur again, since all
types and data required for an implementation
can be made opaque.

The only other part of the program that may
need to change with different implementations of
the communication manager is the main
program. It may need to perform some startup
procedures that are specif ic to the
communications system. An example of this
situation is the Treadmarks library, which uses
the fork/join model for creating processes. Thus,
the main program is split into sections executed
by the master process and sections executed by
the spawned children. However, this problem is
eliminated by providing multiple main programs
and linking in the proper one at compile-time.
Other startup operations, such as registration in
PVM and region creation in Treadmarks, can be
done in the constructor for the communications
manager class.

The communications manager is an example
of an Adapter design pattern, which provides
another interface to a library or class. This
pattern prevents the choice of the underlying
communications system from becoming
integrated into the run-time system. By
providing a simple interface, we increase the
range of potential implementations for this class.

4 Related Work
Since this work is an implementation of a

new run-time system created specifically for
Enterprise, there is little previous work that is
directly related. However, there are other
projects that attempt to deal with the different
problems of a general run-time system for
parallel systems using object-oriented
techniques.

The first system is the Nexus run-time system,
which was built as a compiler target rather than a
user-level library [FKT 95]. This system is used
in the implementation of the Compositional C++
and FORTRAN M programming languages.
Nexus permits the use of mult iple
communications protocols, providing a single
interface but several different protocol modules.
The choice of protocol is made at run-time based
on a list of communication protocols supported

10

by the receiver, which is received as part of
initiating a remote request. This kind of work
can be supported in Enterprise using the
communications manager, so long as there are
no conflicts between the different protocols or
their implementations. In fact, this idea will be
explored further as distributed shared memory is
added to the Enterprise system [Nov 95]. In
doing so, we wish to use real shared memory
between tightly-coupled processors and
distributed shared memory (provided by a
library like Treadmarks) for loosely-coupled
processors.

The Concert run-time system tries to improve
the efficiency of concurrent object-oriented
programming languages by differentiating
between the costs of various operations in the
system [KC 95]. To reduce the overall cost of an
operation, an optimal implementation for
different cases (i.e. local versus remote) is
provided and used at run-time. To prevent
constant checks to determine the proper
implementation, Concert uses speculat ive
compilation techniques to inl ine operation
invocation to the cheapest version available,
based on compiler-generated assertions. If an
assertion becomes false, the run-time system is
responsible for replacing the inlined operation
with a more general, possibly more expensive,
version of the operation. In Enterprise, the use
of the dispatcher and behaviour pair mirrors this
kind of speculative inlining. Each process is
initially assigned a function and corresponding
behaviour that is cached in the dispatcher, rather
than evaluating this information for each request
message. If this behaviour becomes incorrect, it
can be changed at run-time to a more
appropriate one. Enterprise could also apply the
same technique with some of the operations it
provides by extending the behaviour classes
further, allowing the new subclasses to override
methods with cheaper versions where possible.

Finally, we consider the Mentat run-time
system [GWS 93]. Like Enterprise, Mentat uses
the futures model of computation and uses
compiler technology to insert calls to the run-
time code into the user application. The
implementation of the system uses a layered
approach to isolate system-dependent code,
increasing portability. The new Enterprise run-
time system takes the same approach with its
communications manager, encapsulating it inside
a class to remove potential dependencies and to
allow multiple implementations. In addition,
Mentat has done more work on scheduling,
attempting to find efficient ways to find good
process-to-processor mappings. Such work is
necessary in Mentat since additional processes

are created as a Mentat application executes.
Enterprise does little in the way of scheduling;
processes are placed on processors in a round-
robin fashion (subject to any user-specified
constraints) at application startup. When
dynamic process addition is implemented, a
more robust scheduling scheme will be useful.

5. Conclusions
This paper presented the object-oriented

components of the new Enterprise run-time
system. This new system was written to correct
some limitations and deficiencies in the old
implementation and to provide a flexible and
extensible basis for further development and
research. The latter reason was the motivation
for the use of an object-oriented design and
implementation. The new system was written in
C++ to meet efficiency constraints that were not
addressed in this paper. The four components
described in this paper are the asset graph classes,
the dispatcher classes, the behaviour classes, and
the communications manager.

The asset graph, a specialization of the
Composite design pattern, relies on inheritance to
separate the characteristics of an asset from the
concrete classes that represent the different meta-
programming model assets. This separation
allows the meta-programming model to change
by creating new characteristics and asset types.

The dispatcher and behaviour classes allows
for process-dependent behaviour using a
specialization of the Strategy design pattern. By
decoupling the reception of a message from its
processing, the new system can modify its
behaviour during execution. The behaviour
classes also allow new process functions to be
created and easily incorporated into Enterprise.

Finally, the new system uses encapsulation to
hide the implementation of the communications
protocol in Enterprise by using the Adapter
design pattern. This feature prevents an
implementation from becoming integrated into
the system and, because of the simple interface,
gives us flexibility on the actual implementation
of this class.

All of the above was designed and
implemented using object-oriented techniques to
provide a flexible, extensible base for further
research. From the results, it is clear that we have
met our four goals. The system consists of about
14,000 lines of C++ code and has been
supporting an active group of about 10
researchers for eight months.

11

Acknowledgments
This research was supported in part by

research grants from the Natural Sciences and
Engineering Research Council of Canada and a
grant from IBM Canada. We would also like to
thank other members of the Enterprise team: Ian
Parsons, Diego Novillo, Nicholas Kazouris and
David Woloschuk for helpful feedback after
using the system.

References
[ACDK 96] C. Amza, A. Cox, S. Dwarkadas, P.

Keleher, H. Lu, R. Rajamony, W.
Yu and W. Zwaenepoel ,
“TreadMarks: Shared Memory
Computing on Networks of
Workstations.” IEEE Computer,
Vol. 29, no. 2: 18-28, 1996.

[FKT 95] I. Foster, C. Kesselman, and S.
Tuecke, “Nexus: Runtime Support
for Task-Parallel Programming
Languages.” Technical Report
ANL/MSC-TM-205, Argonne
National Laboratory, February
1995.

[GHJV 93] E. Gamma, R. Helm, R. E. Johnson,
and J. Vlissides, “Design Patterns:
Abstraction and Reuse of Object-
Oriented Design.” In Proceedings
of the 7th European Conference on
Object-Oriented Programming
(ECOOP'93), pgs 406-431, 1993.

[GWS 93] A. S. Grimshaw, J. B. Weissman,
and W. T. Strayer, “Portable Run-
Time Support for Dynamic Object-
Oriented Processing.” Technical
Report CS-93-40, University of
Virginia, July 1993.

[Hal 85] R. Halstead, “MultiLisp: A
Language for Concurrent
Symbolic Computation.” A C M
Transactions on Programming
Languages and Systems , Vol. 7,
no. 4: 501-538, 1985.

[IMMN 95] P. Iglinski, S. MacDonald, C.
Morrow, D. Novillo, I. Parsons, J.
Schaeffer, D. Szafron, and D.
Woloschuk, “Enterprise User's
Manual, Version 2.4.” Technical
Report TR 95-02, University of
Alberta, January 1995.

[KC93] V. Karamcheti and A. Chien,
“Concert - Efficient Runtime
Support for Concurrent Object-
Oriented Programming Languages

on Stock Hardware.” In
Proceedings of Supercomputing
'93, pgs 598-607, 1993.

[Lob 93] G. Lobe, “The Enterprise User
Interface and Program Animation
Component.” Master's thesis,
University of Alberta, 1993.

[LSS 93] G. Lobe, D. Szafron, and J.
Schaeffer, “The Object-Oriented
Components of the Enterprise
P a r a l l e l P r o g r a m m i n g
Environment.” In Proceedings of
Technology of Object-Oriented
Languages and Sys tems
Conference (TOOLS) II, pgs 215-
229, August 1993.

[Mac 95] S. MacDonald, “An Object-
Oriented Run-time System for
Parallel Programming.” Master's
thesis, University of Alberta, 1995.

[MBS 91] T. A. Marsland, T. Breitkreutz, and
S. Sutphen, “A Network Multi-
Processor for Experiments in
Parallelism,” C o n c u r r e n c y :
Practice and Experience, Vol. 3,
no. 1: 203-219, 1991.

[Nov 95] D. Novillo, “Transparent Shared
Memory in Mult iprocessor
Environments.” Ph.D. Candidacy
document, September, 1995.

[Par 95] I. Parsons, “Parallel I/O Templates
for Enterprise.” In Proceedings of
the 1995 CAS Conference, CD-
ROM Edition, 1995.

[SSLI 93] J. Schaeffer, D. Szafron, G. Lobe,
and I. Parsons, “The Enterprise
Model for Developing Distributed
Applications,” IEEE Parallel and
Distributed Technology, Vol. 1, no.
3: 85-96, 1993.

[Sun 90] V. Sunderam, “PVM: A
Framework for Parallel Distributed
Computing,” C o n c u r r e n c y :
Practice and Experience, Vol. 2,
no. 4: 315-339, 1990.

