
Algorithms for Language Reconstruction

by

Grzegorz Kondrak

A thesis submitted in conformity with the requirements

for the degree of Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

Copyright c 2002 by Grzegorz Kondrak

Abstract

Algorithms for Language Reconstruction

Grzegorz Kondrak

Doctor of Philosophy

Graduate Department of Computer Science

University of Toronto

2002

Genetically related languages originate from a common proto-language. In the

absence of historical records, proto-languages have to be reconstructed from surviving

cognates, that is words that existed in the proto-language and are still present in

some form in its descendants. The language reconstruction methods have so far been

largely based on informal and intuitive criteria. In this thesis, I present techniques and

algorithms for performing various stages of the reconstruction process automatically.

The thesis is divided into three main parts that correspond to the principal steps

of language reconstruction. The �rst part presents a new algorithm for the alignment

of cognates, which is suÆciently general to align any two phonetic strings that exhibit

some aÆnity. The second part introduces a method of identifying cognates directly

from the vocabularies of related languages on the basis of phonetic and semantic

similarity. The third part describes an approach to the determination of recurrent

sound correspondences in bilingual wordlists by inducing models similar to those

developed for statistical machine translation.

The proposed solutions are �rmly grounded in computer science and incorporate

recent advances in computational linguistics, articulatory phonetics, and bioinformat-

ics. The applications of the new techniques are not limited to diachronic phonology,

but extend to other areas of computational linguistics, such as machine translation.

ii

Dedication

To Piotr Kondrak, My Uncle,

Who Started Me on My Way

iii

Acknowledgements

� Graeme Hirst, my academic advisor, convinced me to get into the program and

took the risk of allowing me to choose an unconventional research topic. He

often knew better than me what was good for me.

� Members of my advisory committee, that is, Elan Dresher, Radford Neal, and

Suzanne Stevenson, were always there when I needed help.

� Kevin Knight provided valuable comments about the contents of the thesis.

� The faculty in the Department of Linguistics, especially Elizabeth Cowper, Elan

Dresher, Dianne Massam, and Keren Rice, made me feel like a member of their

department.

� Hank Rogers got me hooked on phonetics. The drawings of the vocal tract

included in this thesis are his.

� The members of the computational linguistics research group, including Melanie

Baljko, Alex Budanitsky, Phil Edmonds, Neil Graham, Diana Inkpen, Eric Joa-

nis, Daniel Marcu, and Gerald Penn, contributed to an exciting research envi-

ronment.

� I thank my oÆce-mates: Yiannis Papoutsakis for the existential discussions,

Stuart Andrews for the music, and Iluju Kiringa for the tips.

� Gemma, mi amor, mi vida, mi inspiraci�on. Sin ti jam�as habr��a terminado este

trabajo.

iv

Contents

1 Introduction 1

2 Background 5

2.1 Evaluating system e�ectiveness . 5

2.2 Speech sounds . 6

2.3 Language change . 8

3 Related work 12

3.1 Historical derivation . 12

3.2 Comparative reconstruction . 15

3.3 Comparative reconstruction from wordlists 18

4 Phonetic alignment 20

4.1 Sequence comparison . 22

4.1.1 The basic dynamic programming algorithm 24

4.2 Previous alignment algorithms . 27

4.3 Finding the optimal phonetic alignment 30

4.3.1 Greedy is not enough . 30

4.3.2 Tree search is too much . 31

4.4 Extensions to the basic dynamic programming algorithm 33

v

4.4.1 Retrieving a set of best alignments 33

4.4.2 String similarity . 34

4.4.3 Local and semiglobal alignment 35

4.4.4 AÆne gap functions . 37

4.4.5 Additional edit operations . 38

4.5 Comparing phonetic segments . 40

4.5.1 Feature-based metrics . 41

4.5.2 Multivalued features . 45

4.5.3 Similarity and distance . 48

4.6 The algorithm . 49

4.7 Implementation . 52

4.7.1 Data input . 57

4.8 Evaluation . 60

4.8.1 Qualitative evaluation . 61

4.8.2 Quantitative evaluation . 64

4.9 Conclusion . 65

5 Identi�cation of cognates 66

5.1 Phonetic similarity . 70

5.1.1 The orthographic approaches 70

5.1.2 The phonetic approaches . 72

5.2 Semantic similarity . 73

5.2.1 WordNet . 74

5.3 Implementation . 76

5.4 Evaluation . 81

5.4.1 The Algonquian data . 82

vi

5.4.2 Properties of the data . 84

5.4.3 Performance of COGIT . 86

5.5 Discussion . 92

5.5.1 The role of WordNet . 92

5.5.2 False positives . 93

5.6 Conclusion . 98

6 Determination of correspondences 99

6.1 Related work . 101

6.2 Statistical machine translation . 104

6.2.1 The word-to-word model of translational equivalence 105

6.2.2 Noncompositional compounds 108

6.3 Models of phoneme correspondence 110

6.4 Implementation . 112

6.5 Evaluation . 113

6.5.1 The data for experiments . 113

6.5.2 Determination of correspondences in cognate pairs 114

6.5.3 Determination of correspondences in word pairs 115

6.5.4 Identi�cation of cognates in word pairs 117

6.5.5 Determination of complex correspondences 122

6.6 Conclusion . 126

7 Wrap-up and outlook 128

7.1 Identi�cation of cognates . 128

7.2 Reconstruction . 132

7.3 Summary of results . 135

7.4 Conclusion . 137

vii

A The Swadesh 200-word list 139

B A historical derivation program 141

C The alignment code 144

D Covington's test set 150

E A list of English{Latin cognates 159

Bibliography 161

viii

List of Tables

2.1 Summary of English consonants. 7

2.2 The �rst verse of Caedmon's \Hymn" and its modern English translation. 9

2.3 A bilingual wordlist [Kessler, 2001]. 11

4.1 An example alignment of two cognates. 20

4.2 The metric axioms. 23

4.3 Computing the distance between two strings. 25

4.4 Retrieving the optimal alignment. 25

4.5 The array D after the computation of the distance between two strings. 26

4.6 An alignment retrieved from the array shown in Table 4.5. 26

4.7 Comparison of phonetic alignment/distance algorithms. 30

4.8 A correct and an incorrect alignment of a hypothetical cognate pair. . 31

4.9 The conditions for �nding near-optimal alignments. 34

4.10 An example of local alignment. 35

4.11 The basic algorithm for computing local similarities between two strings. 36

4.12 An example of semiglobal alignment. 36

4.13 An example of half-local alignment. 37

4.14 The modi�cation of the basic dynamic programming algorithm re-

quired to accommodate aÆne gap scores. 38

ix

4.15 An example of cognate alignment that requires the operation of com-

pression/expansion. 39

4.16 The modi�cation of the dynamic programming algorithm that incor-

porates the compression/expansion operation. 40

4.17 An elementary cost function. 41

4.18 Covington's [1996] \evaluation metric". 42

4.19 A partial distance matrix for Covington's distance function. 43

4.20 Feature vectors adopted from Hartman [1981]. 44

4.21 A partial distance matrix based on binary features. 44

4.22 The clause-by-clause comparison of Covington's distance function and

a feature-based distance function. 45

4.23 The algorithm for computing the alignment of two phonetic strings. . 51

4.24 Three equivalent alignments. 52

4.25 The procedure for retrieving alignments from the similarity matrix. . 53

4.26 Scoring functions. 54

4.27 Features used in ALINE and their salience settings. 55

4.28 Multivalued features and their values. 56

4.29 A partial similarity matrix based on multivalued features with diversi-

�ed salience values. 57

4.30 The default feature assignments for base letters. 59

4.31 Additional feature assignments for non-syllabic segments. 59

4.32 ALINE's input codes. 60

4.33 Examples of alignments of English and Latin cognates. 63

4.34 The correct alignment of tooth:dentis. 63

4.35 Evaluation of alignment algorithms on Covington's data set. 64

x

5.1 Examples of similar words in Spanish and English. 66

5.2 An excerpt from a Cree vocabulary list [Hewson, 1999]. 69

5.3 An excerpt from an Ojibwa vocabulary list [Hewson, 1999]. 69

5.4 The main lexical relations between nouns in WordNet. 75

5.5 Cognate identi�cation algorithm. 77

5.6 The stop-list of words that are removed from glosses. 78

5.7 Examples of automatically tagged glosses with keywords marked. . . 79

5.8 Semantic similarity levels. 81

5.9 Lists of semantically related words generated from WordNet. 82

5.10 An excerpt from the Algonquian dictionary. 83

5.11 The size of the vocabulary lists. 84

5.12 The number of shared cognates and the number of possible word pairs

for each language combination (nouns only). 85

5.13 Average phonetic similarity values computed by various methods for

randomly selected word pairs and for cognate pairs. 85

5.14 Average semantic similarity values for randomly selected word pairs

and for cognate pairs. 86

5.15 Average precision for various phonetic methods. 88

5.16 Average precision for ALINE combined with various semantic methods. 89

5.17 Average precision for LCSR combined with various semantic methods. 90

5.18 Examples of cognate pairs not included in Hewson's dictionary. 95

5.19 Examples of cognate pairs not included in Hewson's dictionary (cont.). 96

6.1 Examples of English{Latin cognates exhibiting correspondences. . . . 100

xi

6.2 English{Latin correspondences discovered by Method D in pure cog-

nate data. The correspondences marked with a y are predicted by

Grimm's Law. 115

6.3 Correspondences discovered by JAKARTA in pure cognate data. . . . 116

6.4 English{Latin correspondences discovered by CORDI in noisy synonym

data. 117

6.5 English{Latin correspondences discovered using the �2 statistic. . . . 117

6.6 An example ranking of cognate pairs. 118

6.7 Average cognate identi�cation precision on the development set for

various methods. 120

6.8 A sample screen from Guy's program COGNATE. 121

6.9 Average cognate identi�cation precision on the test set for various

methods. 123

6.10 Average cognate identi�cation precision normalized as �. 123

7.1 Average cognate identi�cation precision on the test set for various

similarity-based methods. 129

7.2 Average cognate identi�cation precision on the test set for various

methods. 130

7.3 The proportion of cognates among the pairs that have at least one gloss

in common. 132

7.4 A partial table of correspondences. 134

B.1 Tested proto-forms grouped by the accuracy of the output. 142

B.2 Examples of semantic shifts. 142

B.3 Examples of the generated words that have no existing counterparts. 143

xii

List of Figures

4.1 Places of articulation. 47

5.1 The structure of cognate identi�cation system. 77

5.2 Coverage of the similarity levels. 87

5.3 Precision-recall curves for various methods. 90

5.4 Interpolated 3-point average precision of Method W on test sets as a

function of the parameter �. 91

6.1 The similarity of word alignment in bitexts and phoneme alignment

between cognates. 101

6.2 The Fox{Menomini consonantal correspondences determined by a lin-

guist and by CORDI. 125

xiii

xiv

Chapter 1

Introduction

The goal of the computational linguist is to develop a computational the-

ory of language, using the notions of algorithms and data structures from

computer science.

James Allen, Natural Language Understanding

It is a common experience for second-language learners who struggle to memorize

alien roots to unexpectedly encounter one that resembles a word from their native

language. It is like seeing a familiar face in a crowd of strangers. At last, the form of

a word gives a clue about its meaning.

How can the similarity of words across languages be explained? Sometimes the

answer is easy. There can be no doubt that the English word sushi is a borrowing |

the name was transferred from Japanese together with the food it denotes. Romance

languages are full of cognates, such as Spanish vida and French vie, related words

that have evolved over centuries from common Latin roots. How about Russian

nos `nose'? Common sense tells us that it must be cognate with English nose |

such basic notions are rarely borrowed. Can such divergent languages as Russian and

English originate from a common source? We can look the word up in an etymological

1

Chapter 1. Introduction 2

dictionary, written by people who track word histories. But what if languages have

no written records, as is the case with most of the New World languages? Is there

a way to decide whether a pair of similar words are related? Can we guess what

the proto-form of nos and nose was? Is it possible to reconstruct an entire proto-

language?

Over the last two hundred years, historical linguists have developed methods for

providing answers to such questions. By applying the comparative method, they

have established beyond doubt that almost all European languages are related and

belong to a single family. They have reconstructed the hypothetical Proto-Indo-

European language and proved common origins of completely dissimilar words, such

as Russian sto and English hundred. They have also analyzed and classi�ed into

families numerous languages from other continents.

As interesting as it seems, why would a computer scientist want to deal with such

issues? What can she or he hope to contribute towards solving problems that had

been studied for decades even before the computer was invented?

The language reconstruction task yields a number of problems that are easy to

state but surprisingly hard to solve. Linguists have worked out solutions for many

riddles related to particular language families. The question that a computer scientist

wants answered is: \Is there an algorithm to do it?". In my opinion, the answer is no

| the collection of heuristics called the comparative method of language reconstruc-

tion is not nearly suÆciently formalized to be called an algorithm.

Language reconstruction is an extremely time-consuming process that has yet

to be accomplished for many language families. Greenberg [1993], in response to

Ringe [1992], who criticized him for not applying the comparative method to the

languages of the New World, estimates that the task would take longer than a lifetime.

A computer system able to perform a fully automatic reconstruction of an unrecorded

Chapter 1. Introduction 3

proto-language given wordlists representing two or more daughter languages would

certainly be of great assistance to historical linguists. A successful implementation

of just one or two steps of the comparative method on the computer could free the

experts to divert their e�orts to other, more challenging tasks.

The problems involved in language reconstruction may be classi�ed as driving

problems, a source of new methods and insights that are not restricted in application

to historical linguistics. Like the basic research conducted in disciplines such as math-

ematics, the scope of applications may not be initially apparent or even predictable.

Although the main focus of this thesis is diachronic phonology, I have striven to make

the assumptions of the proposed solutions as general as possible, so that they may

also be of use in other contexts.

Parallel bilingual corpora (bitexts) have been increasingly important in statisti-

cal natural language processing. Bitexts are collections of texts available in electronic

form that are translations of each other. Since they convey nearly identical informa-

tion by means of two di�erent languages, bitexts are a rich source of translational

equivalences between words and sentences. In order to exploit this encoded knowl-

edge, it is necessary to align �rst the sentences within the corpus, and then the words

within sentences. A number of researchers found that identifying words that are sim-

ilar in both form and meaning can greatly facilitate the task of bitext alignment. A

great majority of words in this class are cognates and borrowings. One of the goals

of my research on the identi�cation of cognates, which is discussed in this thesis, is

to contribute to the improvement of the techniques used for bitext alignment as well

as for the related task of inducing machine translation lexicons.

This thesis introduces new algorithms and methods for several stages of the lan-

guage reconstruction process. The proposed solutions are language independent. I

conducted evaluation experiments for the new methods, and did my best to objectively

Chapter 1. Introduction 4

compare them with the previous proposals. I believe that simply implementing on a

computer the traditional techniques that the linguists have been using for decades is

not the right way to proceed. The intuitive criteria and broad knowledge that humans

apply when dealing with such complex problems are often very diÆcult to encode in

a computer program. My algorithms are based on some of the most recent research

in computational linguistics, computer science, and bioinformatics. By attacking a

much-studied problem from a di�erent side, I hoped to obtain fresh insights and a

better understanding of its nature.

The thesis is divided into three main parts that correspond to the principal steps

of language reconstruction. Chapter 4 presents a new algorithm for the alignment

of phonetic strings that combines a number of techniques developed for molecular

biology with a scoring scheme for computing similarity on the basis of multivalued

phonetic features. Chapter 5 introduces a method for identifying cognates in the

vocabularies of related languages that employs the new alignment algorithm, as well

as a procedure for estimating semantic similarity of words. Chapter 6 describes an

approach to the determination of recurrent sound correspondences by inducing models

similar to those developed for statistical machine translation.

Chapter 2

Background

Research in computational linguistics draws from both computer science and linguis-

tics, and should be accessible to specialists from both disciplines. This chapter en-

deavours to clarify some of the concepts that recur throughout the thesis. Additional

terms will be de�ned as they appear in the successive chapters.

2.1 Evaluating system e�ectiveness

The notions of precision and recall were developed in the �eld of information retrieval.

Precision is the ratio of true positives to the sum of true positives and false positives,

and recall is the ratio of true positives to the sum of true positives and false negatives.

For example, an Internet search-engine query returns an ordered list of pointers, which

are judged to be either relevant or not. In that context, true positives are the retrieved

relevant documents, false positives are the retrieved non-relevant documents, and false

negatives are the non-retrieved relevant documents. Suppose that the answer to our

query about the names of Canadian provinces is \Alberta, Manitoba, Ontario, and

Minnesota." Then, the precision of the answer is 0:75 (three out of four), and its

5

Chapter 2. Background 6

recall is 0:3 (three out of ten).

In the context of cognate identi�cation, precision is the proportion of selected

pairs that are genuine cognates, and recall is the proportion of all cognates in the

data that the system was able to identify. In general, there is a trade-o� between

improving increasing precision and increasing recall. We can achieve a 100% recall

at the price of very low precision by assuming that all word pairs in the data are

cognate. Conversely, we may be able to reach 100% precision by correctly guessing a

single cognate pair.

In the situation where all word pairs are ranked according to their likelihood

of being cognate, it is possible to compute precision and recall at any point in the

ordered list. We may choose to compute precision at various levels of recall and

then compute the average, which is called uninterpolated average precision. The

interpolated average precision is similar, except for the assumption that precision

can only decrease or stay at the same level as the recall level increases. In order to

satisfy this constraint, if precision goes up while we are moving down the ordered

list, the precision values for all lower recall levels are adjusted upward to match the

current precision level.

2.2 Speech sounds

Phonetics is the study of speech sounds. The segmentation of continuous speech into a

string of phonetic segments is not always a straightforward task. Phonetic segments

are usually divided into two basic categories: consonants, which involve some type

of obstruction in the vocal tract, and vowels, which are made with a very open vocal

tract. Consonants are often classi�ed according to the place of articulation (velar,

dental, palatal, etc.), and according to the manner of articulation (stops, fricatives,

Chapter 2. Background 7

Stop Fricative A�ricate Nasal Liquid Glide

Bilabial p b m

Labio-dental f v

Dental T D

Alveolar t d s z n l

Palato-alveolar �s �z �c ��

Retroex r

Palatal y

Velar k g N

Labio-velar w

Table 2.1: Summary of English consonants.

nasals, etc.). Table 2.1 contains a summary of English consonants. Vowels have three

basic articulatory qualities: height, backness, and rounding. For example, the

vowel that occurs in the English word rat is identi�ed as low, front, and unrounded.

Glides are consonants that are phonetically similar to vowels. English has two glides:

/y/ as in yell, and /w/ as in well.

Phonology, another major area of linguistics, is concerned with the sound pat-

terns in language. The area is usually divided into synchronic and diachronic phonol-

ogy. The former deals with languages as they exist at one point in time, while the

latter is concerned with language development through time.

Phonemes are phonetic segments that are distinctive in a given language. By

contrasting with each other, phonemes serve to distinguish words. Phonetic segments

that are distinct phonemes in one language are not necessarily contrastive in another

language. The segments that are considered variants of a single phoneme are called

allophones. For example, /t/ and /th/, which di�er only in the degree of aspiration,

Chapter 2. Background 8

are distinct phonemes in Thai, but no more than allophones in English.

Features are units of speech, smaller than a segment, describing an aspect of

articulation. Features can be unary, binary, or multivalued, depending on the

number of possible values. Every speech sound can be characterized by specifying

a vector of feature values, but the characterization depends on the set of features

that has been selected. A well known system of binary features is the one devised by

Chomsky and Halle [1968]. A binary feature has exactly two possible values, a `plus'

value and a `minus' value. For example, a binary feature speci�cation for the bilabial

voiced stop /b/ includes [+voice], [{coronal], and [{continuant]. Feature vectors of a

number of sounds are given in Table 4.20 on page 44.

Morphology is the study of the internal structure of words. Lexemes are words

in the sense of an abstract vocabulary item, which can have various realizations, or

word-forms. For example, choking, choke, and choked are di�erent realizations of

the lexeme choke. A word stripped of any inectional aÆxes is called a stem. A

root is the irreducible core of a word, which is always present in the realizations of

the lexeme. The stem of the Latin in�nitive vol�are `to y' is obtained by discarding

the inectional ending -re, while its root is even more reduced: vol-.

2.3 Language change

All languages change through time. Table 2.2 gives an example of how much English

has evolved within the last fourteen hundred years. Words that make up languages un-

dergo sound changes (n�u! now) as well as semantic shifts (`guardian'! `ward').

Lexical replacement is a process in which lexemes drop out of usage altogether,

and are substituted by other, unrelated words (herigean ! praise). Morphological

endings change and disappear as well (-on in sculon).

Chapter 2. Background 9

Old English: N�u sculon herigean heofonr��ces weard

Modern English: Now we should praise heaven-kingdom's guardian

Table 2.2: The �rst verse of Caedmon's \Hymn" and its modern English translation.

When two groups of people that speak a common language lose contact with each

other, their respective languages begin to diverge, and eventually become mutually

unintelligible. In such cases, we may still be able to determine that the languages

are genetically related by examining cognates, that is words that have developed

from the same etymon, or proto-form. For example, French lait, Spanish leche, and

Italian latte constitute a cognate set, as they are all descendants, or reexes, of

Latin lacte. In general, the longer the time that has passed since the linguistic split,

the smaller the number of cognates that remain as a proof of a genetic relationship.

Because of gradual changes over long periods of time, cognates often acquire very

di�erent phonetic shapes. For example, English hundred, French cent, and Polish

sto are all descendants of Proto-Indo-European *kmtom (an asterisk denotes a recon-

structed form). The semantic change can be no less dramatic; for example, English

guest and Latin hostis `enemy' are cognates even though their meanings are diametri-

cally di�erent. On the other hand, not all similar sounding words that have the same

meaning are cognates. It can be a matter of chance resemblance, as in English day

and Latin die `day', or an instance of a borrowing, as in English sprint and Japanese

supurinto. Borrowings, or loan words, are lexical items that have been incorporated

(possibly in modi�ed form) into one language from another.

An important phenomenon that allows us to distinguish between cognates and

borrowings is the regularity of sound change. The regularity principle states that a

change in pronunciation applies to sounds in a given phonological context across all

Chapter 2. Background 10

words in the language. Regular sound changes tend to produce regular correspon-

dences of phonemes in corresponding cognates. /d/:/t/ is a regular correspondence

between English and German, as evidenced by cognate pairs such as day { tag, dry

{ trocken, and drink { trinken. Following Kessler [2001], I prefer to use the term re-

current sound correspondences, because in practice the matchings of phonemes

in cognate pairs are more tendencies than hard-and-fast rules.

The comparative method of language reconstruction is the technique used by

linguists to reconstruct proto-forms of the parent language by examining cognates in

its daughter languages. It consists of several stages. After deciding that languages

are related, words with similar meanings are placed side by side. Those pairs that

exhibit some phonological similarity are identi�ed as putative cognates. Next, the

cognates are aligned by pairing related phonetic segments, and analyzed in order to

�nd systematic correspondences. A proto-phoneme or a proto-allophone is posited

for each established correspondence. The proto-forms that gave rise to the identi�ed

cognate sets are then reconstructed. The resulting phonological system of the proto-

language is adjusted in order to conform to general linguistic principles. Naturally,

the results of the subsequent steps can be used to re�ne the judgements made in the

earlier ones.

The input data for establishing the relatedness of languages and reconstructing

their common ancestor is often given in the form of a bilingual wordlist, a list of

word pairs from two languages such that the corresponding words have the same,

well-de�ned meaning. One of the most widely used set of meanings is the Swadesh

200-word list [Swadesh, 1952]. The 200 basic meanings in the list, given in full in

Appendix A, are relatively resistant to lexical replacement and occur in most of

the world's languages. The Swadesh 200-word lists have been compiled for a large

number of languages. Table 2.3 contains an excerpt from the German{Albanian

Chapter 2. Background 11

German Albanian

1. `all' al@ éiT@

2. `and' unt e

3. `animal' t��r kaf�s@

4. `ashes' a�s@ hi

5. `at' an n@

6. `back' r�uk@n �spin@

7. `bad' �slext kec

8. `bark' rind@ �sk@lboz@

9. `because' vayl sepse

10. `belly' bawx bark

Table 2.3: A bilingual wordlist [Kessler, 2001].

wordlist. Although the two languages are related, the entire list contains few cognates

because after several thousand years of divergence, the lexical replacement process

has obliterated almost all traces of the common origins.

A vocabulary list, or simply vocabulary, is a list of lexemes from a single

language accompanied by glosses that explain their meaning. Glosses may be single

words or complex phrases. I take a vocabulary item to mean a lexeme together

with the corresponding gloss or glosses. A sample vocabulary list can be found on

page 69.

Chapter 3

Related work

Computational diachronic phonology is concerned with two main tasks: deriving

the modern forms from the old ones, and reconstructing the old forms from the

modern ones. This chapter reviews previous algorithmic approaches to historical

derivation and to comparative reconstruction. Other, closely related work is reviewed

in subsequent chapters.

3.1 Historical derivation

Sound changes are regular in the sense that they normally apply to sounds in a

given phonological context across all words in the language. Since the early seventies,

there have been several proposals of derivation programs that take advantage of this

regularity in order to simulate evolution of languages. While most of the programs

discussed in this section have only a modest algorithmic content, they constitute

starting points for more-computational approaches described in other sections.

The derivation programs can be used to verify the correctness of a particular set of

sound-change rules and their relative chronology. If there are discrepancies between

12

Chapter 3. Related work 13

the expected and the actual output, it may be possible to re�ne the set of rules in an

interactive way. They may also be of assistance in the construction of etymological

dictionaries, or serve as a demonstration of the historical development of a language

for educational purposes.

Eastlack [1977] provides a typical example of a derivation program. He imple-

mented what he calls a computer simulation of systematic sound change in Ibero-

Romance. The program contains about 90 rules that link �rst-century Latin with

twelfth-century Castilian Spanish. Each sound-change rule is written as a separate

module. The output consists of derivations that include not only the initial and �nal

forms but also all the intermediate ones, together with information identifying the

rules that triggered the changes. One apparent drawback is that syllable boundaries

must be marked directly in the input, although it is not diÆcult to detect them

automatically.

Burton-Hunter [1976] implemented the evolution of Latin word-forms into their

Old French counterparts through the intermediate stage of Vulgar Latin. She chose

Latin because it is a relatively well-documented proto-language, and French because

it had undergone the greatest changes compared to other Romance languages. The

long-term goal was to build a system consisting of a database of cognates for all

Indo-European languages and programs that would perform both derivations and

reconstructions.

Another researcher who used Latin as the proto-language was Hartman [1981],

who implemented a program simulating the evolution of Spanish. His main innovation

is representing phonemes as binary vectors in which every bit stands for a single binary

feature. This allows the implementation of sound changes in a way that closely mirrors

their phonological formulations. However, since there is no universally accepted set

of features, their selection must necessarily be arbitrary.

Chapter 3. Related work 14

An early paper by Smith [1969] provides an example of a derivation program

that deals with a much larger time distance. The goal was to derive modern Russian

from reconstructed Proto-Indo-European forms. These two languages are separated

by at least 5000 years of mostly undocumented changes, as compared to about 1500

years that have passed since Latin split into Romance vernaculars. Out of the total

of 650 Proto-Indo-European etyma that were examined, almost 90% have left no

reexes in Russian, and so could not be used to verify the correctness of the program.

Of the remaining 69 etyma, the generated form exactly matched the corresponding

Russian word in only 9 cases, which prompted Smith to rather gloomily conclude that

\historical linguistics may have grossly overestimated the exceptionless character of

sound change." The poor performance of the program, however, was most likely also

due to the incompleteness of the implemented set of sound changes. Appendix B

contains some results of my implementation for modeling the phonological evolution

of Polish that contradict Smith's conclusion.

Remmel [1980] reports a computer procedure for modeling the evolution of vowels

in Estonian. What is di�erent about his approach is that he uses acoustic formants for

the description of sound changes. Formants are concentrations of energy at speci�c

frequencies of a sound wave. For example, for the vowel that occurs in the English

word pet, the values of the �rst three formants are 700 Hz, 2100 Hz, and 3100 Hz,

respectively. Every phoneme represents thus a point in an n-dimensional space, where

n is the number of formants. A sound change can be represented as a vector or a curve

in the n-dimensional space, which makes it easy to express \non-discrete" changes

that take place over a period of time. Unfortunately, the paper provides few details

of how this approach may work in practice.

Raman et al. [1997] use derivation programs to develop distance measures be-

tween parent and daughter languages. The diachronic relationship between languages

Chapter 3. Related work 15

is modeled as a Probabilistic Finite State Automaton, which represents the phono-

logical complexity of the derivation process. The length of the minimal description of

the automaton is taken as a measure of the distance between the earlier and the later

form of a language. The authors apply the model to the modern Chinese dialects in

order to establish their relative distance from the common proto-language.

3.2 Comparative reconstruction

The programs discussed in this section attempt to derive the proto-forms from the

modern forms on the basis of regular sound correspondences provided by the user.

Hewson [1974] produced a dictionary of the Proto-Algonquian from wordlists

representing four contemporary Algonquian languages. He does not claim to have

reconstructed the proto-language { its sound system and all sound correspondences

had already been established by other historical linguists. Rather, his contribution

was to increase the number of reconstructed words from a few hundred to over four

thousand.

The reconstruction process can be outlined as follows. First, from each input

word of the daughter languages, every possible proto-form was generated using the

provided set of regular sound correspondences. The resulting list was sorted alpha-

betically in order to detect the words from di�erent languages that had identical

proto-projections. The potential cognates were subsequently analyzed by a linguist

whose job was to determine whether they are in fact reexes of the same proto-form

and to decide on its exact form.

Automatic processing of the linguistic data led to a tremendous reduction of time

necessary to devote to the task. Hewson claims that with the aid of computer,

the linguists were able to reconstruct about 250 items within a few hours. The �nal

Chapter 3. Related work 16

dictionary [Hewson, 1993] contains over 4000 reconstructed proto-forms incorporating

the evidence of over 12,000 modern forms.

Hewson [1989] points out that once there is a suÆciently large database of forms

and reconstructions, it is relatively easy to produce \spin-o�" applications. In the

case of the Proto-Algonquian dictionary, the applications that proved useful for re-

lated research included a concordance of consonant clusters and a dictionary of word-

formatives.

A similar project is reported by Johnson [1985]. The goal was also to produce

a comparative dictionary of the Yuman family of languages spoken in the Southwest

United States. A relatively modest programming e�ort resulted in a substantial time

saving over manual compilation of the dictionary. Standard tools such as awk and

sort were used in preference to specialized programs. The reconstruction of proto-

forms was performed by a simple substitution of phonemes according to the sound

correspondences provided by linguists. Naturally, such a procedure works only for

some sound changes. Nevertheless, Johnson reports that \the number of cases where

two related roots do not reconstruct to the same form is fairly low."

The Reconstruction Engine of Lowe and Mazaudon [1994] is an impressive set

of programs designed to aid the historical linguist in reconstruction work. By process-

ing complete lexicons of modern languages, they can establish cognate sets together

with reconstructions; at the same time, they can generate reexes from the provided

proto-forms. The user is allowed a high degree of exibility in choosing the transcrip-

tion system, the method of data organization, and the type of constituents used in

the analysis. The inclusion of such features shows that the Reconstruction Engine

was designed with a practical utility in mind. However, the authors acknowledge

that in order to be useful to other researchers in historical linguistics, their programs

would have to be integrated with a larger package containing an appropriate inter-

Chapter 3. Related work 17

face. Moreover, since it was developed and tested on a single family of languages

(Tamang), it remains to be seen if it can be applied to other language families with

equal success. At the time of writing, the Reconstruction Engine has yet to be made

publicly available.

The common characteristic of the three approaches discussed thus far is that they

attempt to meet the challenge of proceeding backwards in time by providing their

programs with previously determined regular sound correspondences. Unfortunately,

the determination of sound correspondences is one of the most challenging steps of

the reconstruction process. A linguist whose job is to retrace the development of

a language family may have only wordlists of modern forms at her disposal. In all

but a handful of cases, there are no records that demonstrate the form of the proto-

language. Most of the indigenous American languages, for instance, have no historical

records at all.

Another diÆculty is caused by the fact that a table of correspondences is not

powerful enough to capture a series of phonological changes. In contrast with the

historical derivation, proceeding in the opposite time direction is not, in general, a

deterministic process. If a later change obliterates the environment that conditioned

an earlier change, or if two independent phonemes merge into one, the reverse deriva-

tion of forms is all but impossible. The implicit assumption that all sound changes

operate independently, present in the methods employing tables of correspondences,

is untenable.

Chapter 3. Related work 18

3.3 Comparative reconstruction from wordlists

The problem of automatically reconstructing a proto-language from wordlists that

represent its descendants is extremely challenging. I have found only a few publi-

cations describing programs designed for this purpose, and none of them is close to

providing a functional solution.

Kay [1964] represents an interesting attempt to formalize a large part of the

comparative method in terms of propositional logic. The criterion that guides the

search for correspondences is the minimization of the number of proto-phonemes

necessary to account for the input data. The identi�ed correspondences determine

which word pairs in a bilingual list are cognate, and how they should be aligned.

The author stops short, however, of converting the list of correspondences into proto-

phonemes.

Kay develops his model with impressive rigor and generality. At one point in his

paper, the entire problem of language reconstruction seems to be reduced to �nding a

satisfying assignment to a single propositional formula. Unfortunately, his solution is

computationally impractical. According to my calculations, the number of elementary

propositions generated for a pair of words of length n and m is
Pn

k=1 k
�
n�1

k�1

��
m�1

k�1

�
,

which means that a formula corresponding to two lexemes made of sixteen segments

would contain over a billion terms, even before its conversion to disjunctive form. The

program that implemented the model could successfully handle only trivially small

data sets (the English-German wordlist given in the paper contains four pairs). The

ability of the model to handle noisy data is also doubtful.

Remmel [1979] claims to have implemented a complete system for performing all

stages of linguistic reconstruction. He even includes a sample set of seven wordlists

and a corresponding list of 30 reconstructed words. According to him, most of the

Chapter 3. Related work 19

generated forms are identical with the commonly accepted reconstructions (which are

not, however, included in the paper). There are virtually no details of the design; the

description of the whole system takes less than 300 words.

Oakes [2000] describes a set of programs that together perform several steps of the

comparative method, from the determination of regular correspondences in wordlists

to the actual reconstruction of the proto-forms. The paper contains experimental

results of running the programs on a set of wordlists representing four Indonesian

languages, and compares those to the reconstructions found in the linguistic literature.

I consider Oakes's implementation as important because his goal of performing fully

automatic reconstruction from unprocessed wordlists is very similar to what I hope to

achieve in the future. However, his approach is very di�erent from the one advocated

in this thesis. Rather than creating a program for reconstructing a speci�c proto-

language, my goal is to develop methods that are applicable to any language family.

The author has graciously provided me with the source code of his programs. I will

discuss various components of his system in the following chapters.

Chapter 4

Phonetic alignment

Identi�cation of the corresponding segments in phonetic strings is a necessary step

in many applications in both diachronic and synchronic phonology. Usually we are

interested in aligning strings that represent forms that are related in some way: a

pair of cognates, or the underlying and the surface forms of a word, or the intended

and the actual pronunciations of a word. Table 4.1 shows an example alignment of

two cognates, Spanish poner and Italian porre, which originate from Latin ponere `to

put'. Alignment of phonetic strings presupposes transcription of sounds into discrete

phonetic segments, and so di�ers from matching of utterances in speech recognition.

On the other hand, it has much in common with the alignment of proteins and DNA

sequences. Many methods developed for molecular biology can be adapted to perform

accurate phonetic alignment.

p o r - r e

p o n e r -

Table 4.1: An example alignment of two cognates.

20

Chapter 4. Phonetic alignment 21

Alignment algorithms usually contain two main components: a metric for mea-

suring distance between phonetic segments and a procedure for �nding the optimal

alignment. The former is often calculated on the basis of phonological features that

encode certain properties of phonetic segments. An obvious candidate for the latter is

a well-known dynamic programming algorithm for string alignment [Wagner and Fis-

cher, 1974], although other algorithms can be used as well. (Dynamic programming

is a technique of eÆciently solving problems by combining previously computed so-

lutions to smaller subproblems.) The task of �nding the optimal alignment is closely

linked to the task of calculating the distance between two strings. The basic dynamic

programming algorithm accomplishes both tasks. Depending on the application, ei-

ther of the results, or both, can be used.

Within the last few years, several di�erent approaches to phonetic alignment have

been reported. Covington [1996] used depth-�rst search and a special distance func-

tion to align words for historical comparison. Somers [1998] proposed a special al-

gorithm for aligning children's articulation data with the adult model. Gildea and

Jurafsky [1996] applied the dynamic programming algorithm to pre-align input and

output phonetic strings in order to improve the performance of their transducer in-

duction system. Kessler [1995] and Nerbonne and Heeringa [1997] adopted a similar

approach in order to estimate phonetic distance between dialects of Irish and Dutch,

respectively. All the algorithms are described in more detail in Section 4.2.

In this chapter, I present a new algorithm for the alignment of cognates. It com-

bines various techniques developed for sequence comparison with a scoring scheme

for computing phonetic similarity on the basis of multivalued features. The new

algorithm performs better, in terms of accuracy and eÆciency, than comparable algo-

rithms reported by Covington [1996], Somers [1999], and Oakes [2000]. The algorithm

is applicable not only to diachronic phonology but also to any other contexts in which

Chapter 4. Phonetic alignment 22

it is necessary to align phonetic strings, including the applications identi�ed in the

preceding paragraph.

4.1 Sequence comparison

Sequence comparison is a term used to describe a number of techniques and algo-

rithms for comparing two or more sequences of elements drawn from some alphabet.

The algorithms have been successfully applied to problems in such diverse �elds as

molecular biology, speech recognition and gas chromatography [Kruskal, 1983]. The

increased interest in the analysis and processing of DNA sequences resulted in the

rapid development of related algorithms. It is not surprising that the techniques de-

veloped for molecular biology are often applicable in diachronic phonology. In both

cases, sequences made of a limited set of units undergo evolutionary changes and

splits.

In order to avoid terminological confusion, I use the word string, as commonly

used in the computer science literature, rather than sequence, which is preferred

in the context of biological applications. Phonetic strings are either entire words,

or their parts, such as roots or stems. A substring is not the same thing as a

subsequence. The former must be composed of contiguous units, while the latter

need not.

Typically, one of two cases applies: a) one of the strings being analyzed is a

product of applying a certain number of elementary operations to the other string,

or b) both strings represent variants of some underlying string. The edit operations

are usually substitutions and insertions/deletions (indels). Less often the di�erences

are described in terms of compressions/expansions and transpositions.

In general, the number of possible alignments grows exponentially with the length

Chapter 4. Phonetic alignment 23

1. 8a; b : d(a; b) � 0 nonnegative property

2. 8a; b : d(a; b) = 0, a = b zero property

3. 8a; b : d(a; b) = d(b; a) symmetry

4. 8a; b; c : d(a; b) + d(b; c) � d(a; c) triangle inequality

Table 4.2: The metric axioms.

of strings. Usually, we are interested in �nding the alignment that minimizes a certain

numerical function called edit distance. For example, we can de�ne the distance as

the minimum number of substitutions and indels necessary to convert one string into

another (the so-called Levenshtein distance). A distance function that satis�es the

axioms in Table 4.2 is called a metric.

The distance function can be made more complex by conditioning the cost of

substitution and/or indels on the type of units involved. The distance between two

strings is then the minimum sum of the costs of all edit operations necessary to

convert one string into another.

Recently there has been a tendency in molecular biology to move away from

edit distance toward probabilistic models, such as Hidden Markov Models [Durbin et

al., 1998]. It is not clear at this point whether HMMs indeed outperform standard

alignment methods. While HMMs are not dealt with in this thesis, the comparison

of the two paradigms in the context of of phonetic alignment is a fascinating future

research topic.

Chapter 4. Phonetic alignment 24

4.1.1 The basic dynamic programming algorithm

The basic dynamic programming algorithm [Wagner and Fischer, 1974] accomplishes

two related tasks: �nding the optimal alignment of two strings, and calculating the

distance between them. Given two strings of length n and m, the algorithm requires

O(nm) time to calculate the minimal edit distance plus O(n+m) time to determine

the corresponding alignment. Since I refer to the algorithm many times throughout

this thesis, the time invested in studying the pseudocode given in Tables 4.3 and 4.4

will certainly pay o� later.

Table 4.3 presents the �rst part of the algorithm, which computes the minimum

distance between two strings. The distance is calculated recursively for successively

larger substrings. D[i; j] holds the minimal distance between the initial substrings of a

and b containing i and j elements, respectively. Æ(x; y) is the substitution cost between

elements x and y. Similarly, Æ(�; y) and Æ(x;�) denote the insertion and deletion

cost, respectively. Initially, the �rst row and the �rst column of D are �lled by the

multiples of the indel cost (lines 1.1{1.5). The main loop (lines 1.6{1.10) calculates

the value of D[i; j] by taking the minimum of three distances, which correspond to

three possible ways of extending a partial alignment: by adding a substitution (line

1.8), deletion (line 1.9), or insertion (line 1.10). At the end of the computation, the

value of D[n;m] is the actual distance between the complete strings (line 1.11).

Table 4.4 presents the second part of the algorithm. The optimal alignment is

retrieved from D by starting at D[n;m] (line 2.1) and tracing back through the

entries until the entry D[0; 0] is reached (line 2.2). The next entry of D after the

current one depends on the choice that was made in the �rst part of the algorithm:

conditions in line 2.3, 2.6, and 2.9 correspond to lines 1.9, 1.10, and 1.8, respectively.

In fact, the choices made in part 1 can be remembered in a separate n � m array,

Chapter 4. Phonetic alignment 25

1.1 D[0; 0] := 0
1.2 for i := 1 to n do
1.3 D[i; 0] := D[i� 1; 0] + Æ(ai;�)
1.4 for j := 1 to m do

1.5 D[0; j] := D[0; j � 1] + Æ(�; bj)
1.6 for i := 1 to n do
1.7 for j := 1 to m do

1.8 D[i; j] := min(D[i� 1; j � 1] + Æ(ai; bj);
1.9 D[i� 1; j] + Æ(ai;�);
1.10 D[i; j � 1] + Æ(�; bj))
1.11 print (D[n;m])

Table 4.3: Computing the distance between two strings.

2.1 i := n, j := m
2.2 while i 6= 0 or j 6= 0 do
2.3 if D[i; j] = D[i� 1; j] + Æ(ai;�) then
2.4 print ((ai;�))
2.5 i := i� 1
2.6 else if D[i; j] = D[i; j � 1] + Æ(�; bj) then
2.7 print ((�; bj))
2.8 j := j � 1
2.9 else

2.10 print ((ai; bj))
2.11 i := i� 1, j := j � 1

Table 4.4: Retrieving the optimal alignment.

Chapter 4. Phonetic alignment 26

D(i; j) c o u l e u r

0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

c 1 1 0 1 2 3 4 5 6

o 2 2 1 0 1 2 3 4 5

l 3 3 2 1 2 1 2 3 4

o 4 4 3 2 3 2 3 4 5

u 5 5 4 3 2 3 4 3 4

r 6 6 5 4 3 4 5 4 3

Table 4.5: The array D after the computation of the distance between two strings.

thus eliminating the need to redo the summations in lines 2.3 and 2.6.

Table 4.5 shows a completely �lled array D after computation of the alignment

between colour and couleur. The insertion/deletion cost is assumed to be 1. The

substitution cost is assumed to be 0 for identical segments, and 2 otherwise. The

values shown in boldface indicate the retrieved path that corresponds to the alignment

shown in Table 4.6.

c o u l - e u r

c o - l o - u r

Table 4.6: An alignment retrieved from the array shown in Table 4.5.

Chapter 4. Phonetic alignment 27

4.2 Previous alignment algorithms

In this section, I review several approaches to phonetic alignment that have been

reported within the last few years.

Covington [1996] developed an algorithm for the alignment of cognates on the

basis of phonetic similarity. In a follow-up paper [1998], he extended the algorithm

to align words from more than two languages. His algorithm consists of a specially

designed evaluation metric and a depth-�rst search procedure for �nding the minimal-

cost alignment. The evaluation metric is a function that speci�es the substitution

cost for every pair of segments, and a context-dependent indel cost (Table 4.18 on

page 42). The values of the metric range from 0 for two identical consonants to

100 for two segments with no discernible similarity. The total cost of a particular

alignment is calculated by summing the costs of all substitutions and indels. I discuss

Covington's approach in more detail in Section 4.5.

Somers [1998] proposed a special algorithm for aligning children's articulation

data with the adult model. He implemented three versions of the algorithm, which

use di�erent methods to compute the cost of substitution: the `CAT' version based

on binary articulatory features, the `FS/P' version based on perceptual features, and

the `Lad' version based on multivalued features. There is no explicit penalty for

indels. The algorithm, which depends heavily on the alignment of stressed vowels,

is described in [Somers, 1999]. The author observes that \alignment can become

somewhat arbitrary" in the cases where the compared strings are not very similar.

After running `CAT' on Covington's test data, he concludes that, in terms of accuracy,

it is as good as Covington's algorithm. I point out a weakness in Somers's approach

in Section 4.3.1.

Chapter 4. Phonetic alignment 28

Gildea and Jurafsky [1996] align phonetic strings in their transducer induction

system. The system induces phonological rules directly from a large corpus of corre-

sponding underlying and surface word-forms. The authors found that a pre-alignment

of the forms greatly improves the performance of the system. The pre-alignment is

performed using the dynamic programming algorithm and a metric that is based on

26 binary features. The cost of substitutions is a straightforward Hamming distance

between two feature vectors. The cost of indels is set at one quarter of the maximum

possible substitution cost. Because the surface forms are generated directly from the

underlying forms by the application of a few simple phonological rules, the alignment

algorithm need not be sophisticated.

Nerbonne and Heeringa [1996; 1997; 1999] investigate the problem of measur-

ing phonetic distance between dialects. The distance between two dialects is estimated

by taking the sum of Levenshtein distances between two sets of corresponding words.

They experimented with at least two di�erent feature systems, but they don't provide

the details of the systems. The cost of indels is set at half the average of all sub-

stitutions. The individual distances are calculated using the dynamic programming

algorithm. The computed distance is normalized by dividing its value by the length

of the longer word. Realizing that \not all features are equally important in classify-

ing the sounds", the authors tried weighting each feature by information gain, which

was computed as the average entropy reduction a feature represents when known.

However, they found that the weighting had an adverse e�ect on the quality of the

alignments. They also concluded that the Manhattan distance is preferable to both

Euclidean distance and Pearson correlation.

Kessler [1995] was also interested in grouping dialects. The dialects were repre-

sented by wordlists, each containing about 50 concepts. He tested several di�erent

approaches for computing distance between dialects. The most sophisticated method

Chapter 4. Phonetic alignment 29

employed twelve multivalued phonetic features. The numeric feature values were as-

signed arbitrarily, and all features were given the same weight. The distance between

phonetic segments was calculated as the di�erence averaged across all twelve features.

The cost of indels is not speci�ed in the paper. Kessler found that the feature-based

method performed worse than a simpler phoneme-based method, which employed a

binary identity function between phonemes. The dynamic programming algorithm

was used for computing the minimal distance between words in both methods.

Oakes's [2000] program JAKARTA contains a phonetically-based alignment al-

gorithm, whose ultimate purpose is the discovery of regular sound changes. The

array of edit operations, which are adapted from a historical linguistics textbook,

is impressive. It includes lenition, fortition, aphaeresis, apocope, syncope, cluster

reduction, excresescence, dissimilation, epenthesis, prothesis, fusion, vowel breaking,

assimilation, and dissimilation. The conditions that must be satis�ed to trigger the

operations are also implemented. The cost of all the above operations is uniformly

set at 1, while the cost of the standard substitution and insertion/deletion is set at

2. The phonetic characteristics of sound are stored by means of just three features:

place, manner, and voicing, of which the �rst two have more than two values. How-

ever, the similarity between phonetic segments is estimated by checking the identity

of the feature values only; there is no notion of the relative distance between various

places or manners of articulation. In addition, distinct phonetic segments can have

identical feature assignments. The distance function is therefore somewhat coarse.

Some properties of the approaches described in this section are juxtaposed in

Table 4.7. The label explicit identi�es the intended function of the algorithm, while

the label implicit marks the functionality that is present but not overtly used.

Chapter 4. Phonetic alignment 30

Algorithm Calculation Calculation Dynamic Phonological

of alignment of distance programming features

Covington [1996] explicit implicit no no

Somers [1998] explicit no no multivalued

Gildea & Jurafsky [1996] explicit implicit yes binary

Nerbonne & Heeringa [1997] implicit explicit yes binary

Kessler [1995] implicit explicit yes multivalued

Oakes [2000] explicit explicit yes multivalued

Table 4.7: Comparison of phonetic alignment/distance algorithms.

4.3 Finding the optimal phonetic alignment

The dynamic programming algorithm seems to be optimal for the task of aligning

phonetic strings. Nevertheless, both Somers and Covington opt for other search

strategies. In this section, I argue that this is unwarranted.

4.3.1 Greedy is not enough

Somers's algorithm is unusual because the selected alignment is not necessarily the

one that minimizes the sum of distances between individual segments. Instead, it

recursively selects the most similar segments, or \anchor points", in the strings being

compared. Such an approach has a serious aw. Suppose that the strings to be

aligned are tewos and divut (Table 4.8). Even though the corresponding segments

are slightly di�erent, the alignment is straightforward. However, a greedy algorithm

that looks for the best-matching segments �rst, will erroneously align the two t's.

Because of its recursive nature, the algorithm has no chance of recovering from such

an error. Regardless of the method of choosing the anchor points, an algorithm that

Chapter 4. Phonetic alignment 31

t e w o s - - - - t e w o s

d i v u t d i v u t - - - -

Table 4.8: A correct and an incorrect alignment of a hypothetical cognate pair.

never backtracks is not guaranteed to �nd the optimal alignment.

Somers [2000] points out that his alignment algorithm works very well on the chil-

dren's articulation data, where the stressed vowel is a reliable anchor point. This strat-

egy is rather risky in the context of diachronic phonology, where stress is too volatile

to depend on. Even closely related languages may have di�erent stress rules. For

example, stress regularly falls on the initial syllable in Czech and on the penultimate

syllable in Polish, while in Russian it can fall anywhere in the word. Somers [1999]

nevertheless attempts to apply his algorithm to the alignment of cognates. In Sec-

tion 4.8, I will examine the alignments reported in that paper.

4.3.2 Tree search is too much

The alignment problem is characterized by a small number of elements and a limited

number of interactions between them. Unsurprisingly, applying a depth-�rst search

to this problem results in the same operations being performed repeatedly in various

branches of the tree. Why does Covington prefer to use such a costly procedure even

though he is aware that a more eÆcient algorithm exists?

Covington, who uses a straightforward depth-�rst search to �nd the optimal align-

ment, provides the following arguments for eschewing the dynamic programming al-

gorithm.

First, the strings being aligned are relatively short, so the eÆciency of
dynamic programming on long strings is not needed. Second, dynamic
programming normally gives only one alignment for each pair of strings,

Chapter 4. Phonetic alignment 32

but comparative reconstruction may need the n best alternatives, or all
that meet some criterion. Third, the tree search algorithm lends itself to
modi�cation1 for special handling of metathesis or assimilation. [Coving-
ton, 1996]

I am not convinced by Covington's arguments. If the algorithm is to be of practical

use, it should be able to operate on large bilingual wordlists. Most words may be

quite short, but some words happen to be rather long. For example, the vocabularies

of Algonquian languages [Hewson, 1999] contain many words that are longer than 20

phonemes. In such cases, the number of possible alignments exceeds 320, according

to Covington. Even with search-tree pruning, such a combinatorial explosion of the

number of nodes is certain to cause a painful slow-down. Moreover, combining the

alignment algorithm with some sort of strategy for identifying cognates on the basis

of phonetic similarity is likely to require comparing thousands of words against one

another. Having a polynomially bound algorithm in the core of such a system is

crucial. In any case, since the dynamic programming algorithm involves neither

signi�cantly larger overhead nor greater programming e�ort, there is no reason to

avoid using it even for relatively small data sets.

The dynamic programming algorithm is not only considerably faster than tree

search but also suÆciently exible to accommodate the proposed modi�cations with-

out compromising its polynomial complexity. In Section 4.4, I demonstrate that it

is possible to retrieve from the distance matrix the set of k best alignments, or the

set of alignments that are within � of the optimal solution, and that the basic set

of editing operations (substitutions and indels) can be augmented to include both

transpositions of adjacent segments (metathesis) and compressions/expansions.

1Covington does not elaborate on the nature of the modi�cation.

Chapter 4. Phonetic alignment 33

4.4 Extensions to the basic dynamic programming

algorithm

In this section, I describe a number of extensions to the basic dynamic programming

algorithm, which have been proposed primarily to address issues in DNA alignment,

and I show their applicability to phonetic alignment. Appendix C contains the code

that incorporates most of the extensions into a phonetic alignment algorithm.

4.4.1 Retrieving a set of best alignments

The algorithm in Table 4.4 constructs a single best alignment on the basis of the

matrix D. At times, it may be desirable to �nd a number of alternative alignments

that are close to the optimum. The basic dynamic programming algorithm can be

adapted to such a task.

Myers [1995] describes a straightforward modi�cation of the basic dynamic pro-

gramming algorithm that produces all alignments that are within � of the optimal

distance. The idea is to recursively recover only those alignments that correspond to

distances below the threshold score of D[n;m] + �. Let T (i; j) be the distance accu-

mulated during the traversal from D[n;m] to D[i; j]. On reaching D[i; j], the three

conditions shown in Table 4.9 are checked, and a distinct alignment is constructed for

each satis�ed condition. This is in contrast with the algorithm in Table 4.4, which

maintains a unique alignment throughout the computation. Appendix C contains

actual C++ code that integrates this extension into the alignment algorithm.

In order to �nd the k-best alignments, the matrix D can be viewed as a graph with

nodes corresponding to the entries in the D matrix, the source at D[n;m], the sink at

D[0; 0], and the arc lengths set according to the Æ function. A number of polynomial-

Chapter 4. Phonetic alignment 34

3.3 D[n;m] + � � T (i; j) + D[i� 1; j] + Æ(ai;�)
3.6 D[n;m] + � � T (i; j) + D[i; j � 1] + Æ(�; bj)
3.9 D[n;m] + � � T (i; j) + D[i� 1; j � 1] + Æ(ai; bj)

Table 4.9: The conditions for �nding near-optimal alignments.

time algorithms for calculating the k-shortest paths from source to sink in order of

length are available from the operations research literature [Fox, 1973]. A recently

proposed algorithm [Eppstein, 1998] discovers the k-shortest paths connecting a pair

of nodes in a directed acyclic graph in time O(e+ k), where e is the number of edges

in the graph.

4.4.2 String similarity

An alternative way of evaluating the aÆnity of two strings is to measure their simi-

larity, rather than the distance between them. The similarity of two strings is de�ned

as the sum of the individual similarity scores between aligned segments. A similarity

scoring scheme normally assigns large positive scores to pairs of related segments;

large negative scores to pairs of dissimilar segments; and small negative scores to

indels. The optimal alignment is the one that maximizes the overall score.

The dynamic programming algorithm of Table 4.3 can be adapted to compute the

similarity by simply replacing the min in line 1.8 by max. Naturally, the function Æ

will denote the similarity score rather than the edit distance.

The similarity approach is clearly related to the distance approach. In fact, it

is often possible to transform one into the other. An important advantage of the

similarity approach is the possibility of performing local alignment of strings, which

is discussed in the following section.

Chapter 4. Phonetic alignment 35

4.4.3 Local and semiglobal alignment

Informally, the optimal local alignment [Smith and Waterman, 1981] of two strings is

the highest scoring alignment of their substrings. This notion is particularly useful

in applications where only certain regions of two strings exhibit high similarity. For

example, the correct alignment of Cree �apakos��s and Fox w�apikon�oha `mouse' (Ta-

ble 4.10) matches the roots of the words and leaves out the unrelated aÆxes. (Double

bars delimit the aligned substrings.) Such an aÆx-stripping behaviour is much more

diÆcult to achieve with global alignment.

k �a p a k o k s��s

w k �a p i k o k n�oha

Table 4.10: An example of local alignment.

It should be clear by now why the switch from distance to similarity is not just a

trivial change of terminology. If we tried to identify corresponding substrings by min-

imizing distance, we would almost always end up with empty or identical substrings.

This is because the distance between any substrings that are less than perfect matches

will be greater than zero. In contrast, a well-designed similarity scheme which rewards

good matches and penalizes poor matches will allow regions of similarity to achieve

meaningful lengths.

The basic dynamic programming algorithm can easily be modi�ed to perform

local alignment (Table 4.11). The interpretation of S[i; j] is changed to the maximal

similarity between suÆxes of the initial substrings of a and b containing i and j

elements, respectively. The �rst row and the �rst column of S are initialized with

zeroes. S[i; j] is set to the minimum of four rather than three values, the fourth being

zero. This has an e�ect that no entry of S is a negative number. A zero entry is

Chapter 4. Phonetic alignment 36

4.1 S[0; 0] := 0
4.2 for i := 1 to n do
4.3 S[i; 0] := 0
4.4 for j := 1 to m do

4.5 S[0; j] := 0
4.6 for i := 1 to n do
4.7 for j := 1 to m do

4.8 S[i; j] := max(S[i� 1; j � 1] + Æ(ai; bj);
4.9 S[i� 1; j] + Æ(ai;�);
4.10 S[i; j � 1] + Æ(�; bj);
4.11 0)

Table 4.11: The basic algorithm for computing local similarities between two strings.

interpreted as the alignment between the empty suÆxes of the initial substrings. The

optimal similarity is no longer found in S[n;m], but rather it is equal to the maximum

entry in S. The optimal alignment is retrieved by tracing back through the array,

starting at the maximum entry but stopping as soon as a zero entry is found.

Semiglobal alignment is intermediate between local and global alignment. The

idea is to assign a similarity score of zero to any indels at the beginning or the

end of the alignment. Unlike in local alignment, the unmatched substrings that do

not contribute to the total score cannot occur simultaneously in both strings. The

practical e�ect for cognate alignment is that a spurious aÆx can be separated from

only one of the words being compared, as in the alignment in Table 4.12. Note that

the unaligned segments do not a�ect the similarity score of the two strings, which

would be the case if global alignment was used instead.

k �a p a k o s �� s k

w k �a p i k o - - - k n�oha

Table 4.12: An example of semiglobal alignment.

Chapter 4. Phonetic alignment 37

k - �a p a k o k s��s

k w �a p i k o k n�oha

Table 4.13: An example of half-local alignment.

The modi�cations required to make the dynamic programming algorithm perform

semiglobal alignment are straightforward. As in the case of local alignment, the �rst

row and column of S have to be initialized with zeroes. However, the zero option

(line 11 in Table 4.11) is not added. The optimal similarity is the maximum entry in

the union of the last row and the last column of S. Starting from this entry, we can

retrieve the optimal alignment using the usual method, stopping when we reach one

of the zeroes in the �rst row or column.

Another possible combination of local and global alignment, which I decided to

call half-local alignment, is useful in aligning cognates. It is designed to reect the

greater relative stability of the initial segments of words in comparison with their

endings, as exempli�ed in Table 4.13.

One way to implement half-local alignment is to fully penalize the leading indels,

but make the trailing ones free. The opening phase of the alignment is performed as

in the global case, while its completion obeys the local rules. The particulars of this

approach can be gleaned from the code in Appendix C.

4.4.4 AÆne gap functions

A gap is a consecutive number of indels in one of the two aligned strings. In some

applications, the occurrence of a gap of length k is more probable than the occurrence

of k isolated indels. In order to take this fact into account, the penalty for a gap can

be calculated as a function of its length, rather than as a simple sum of individual

Chapter 4. Phonetic alignment 38

5.8 AG[i; j] = max(AG[i � 1; j]� s; S[i� 1; j]� (r + s))
5.9 BG[i; j] = max(BG[i; j � 1]� s; S[i; j � 1]� (r + s))
5.10 S[i; j] = max(S[i� 1; j � 1] + Æ(ai; bj); AG[i; j]; BG[i; j])

Table 4.14: The modi�cation of the basic dynamic programming algorithm required

to accommodate aÆne gap scores.

indels. One solution is to use an aÆne function of the form gap(x) = r + sx, where r

is the penalty for the introduction of a gap, and s is the penalty for each symbol in

the gap.

Gotoh [1982] describes a method for incorporating aÆne gap scores into the dy-

namic programming alignment algorithm. Two additional arrays (AG and BG) record

the best alignment that ends with a gap in the corresponding string. AG[i; j] is in-

terpreted as the minimal distance between the initial substrings of a and b when the

substring of a ends with a gap, Similarly, BG corresponds to the case when the sub-

string of b ends with a gap. The body of the main loop in the modi�ed algorithm is

shown in Table 4.14 (lines 5.8{5.10 replace lines 1.8{1.10 in Table 4.3).

Gotoh is not totally categorical about the initial settings of AG and BG. I found

that AG[0; j] and BG[i; 0] must be set to +1 for all values of i and j. In this way,

we can be sure that the distance between two unrelated strings of length 1 is in fact

equal to 2(r + s), as required.

4.4.5 Additional edit operations

The basic set of edit operations consists of substitutions and insertions/deletions.

Another useful operation is compression/expansion. In the compression/expansion

operation two contiguous units of one string correspond to a single unit of the other

string. The operations of compression and expansion are distinct in the context of

Chapter 4. Phonetic alignment 39

f a k t f a k t f a kt

- e �c - - e - �c - e �c

Table 4.15: An example of cognate alignment that requires the operation of compres-

sion/expansion.

transforming one string into another by a series of edit operations. However, in the

context of �nding an optimal alignment, they are really mirror images of each other,

in the same way as the operations of insertion and deletion. We could as well talk

about various types of correspondences: 0 : 1, 1 : 1, 1 : 2, etc.

In the context of the alignment of cognates, the compression/expansion operation

facilitates the expression of complex correspondences. For example, in the alignment

of stems of Latin factum and Spanish hecho, the a�ricate [�c] should be linked with

both [k] and [t] rather than with just one of them, because it originates from the

merger of the two consonants. Therefore, the rightmost alignment in Table 4.15 is

the most accurate. Note that emulating compression as a sequence of substitution and

deletion is unsatisfactory because it cannot be distinguished from an actual sequence

of substitution and deletion.

Oommen [1995] formally de�nes the string alignment algorithm that incorporates

the compression/expansion operation. The modi�cation is straightforward. The lines

4.8{4.11 of the algorithm given in Table 4.11 on page 36 should be substituted with

the code shown in Table 4.16. Two additional cases are simply added to the max

expression. Also, minor changes are required in the initialization of the �rst two

rows/columns of matrix S, and in the retrieval of the optimal alignment from matrix

S. Appendix C contains the details of the modi�cations.

The operation of transposition of adjacent segments can also be integrated into the

Chapter 4. Phonetic alignment 40

dynamic programming algorithms, much along the same lines as in the case of com-

pression/deletion. The details of the necessary modi�cations are given in [Lowrance

and Wagner, 1975] and [Oommen and Loke, 1997].

4.5 Comparing phonetic segments

The distance/similarity function is of crucial importance in the phonetic alignment.

The numerical value assigned by the function to a pair of segments is referred to as

the substitution cost (in the context of distance), or as the substitution score (in the

context of similarity). The function can be extended to cover other edit operations,

such as insertions/deletions and compressions/expansions. Table 4.17 shows the most

elementary distance function de�ned on a subset of phonetic segments. It assigns a

zero cost to identical segments and a unary cost to non-identical segments. Such a

function is simple to implement, but will perform poorly on phonetic alignment. This

section is concerned with the problem of designing a better function, which would

encode the knowledge about universal characteristics of sounds.

6.8 S[i; j] := max(S[i� 1; j � 1] + Æ(ai; bj);
6.9 S[i� 1; j] + Æ(ai;�);
6.10 S[i; j � 1] + Æ(�; bj);
6.11 S[i� 2; j � 1] + Æ(ai�1ai; bj);
6.12 S[i� 1; j � 2] + Æ(ai; bj�1bj);
6.13 0)

Table 4.16: The modi�cation of the dynamic programming algorithm that incorpo-

rates the compression/expansion operation.

Chapter 4. Phonetic alignment 41

a i y n p r s

a 0 1 1 1 1 1 1

i 1 0 1 1 1 1 1

y 1 1 0 1 1 1 1

n 1 1 1 0 1 1 1

p 1 1 1 1 0 1 1

r 1 1 1 1 1 0 1

s 1 1 1 1 1 1 0

Table 4.17: An elementary cost function.

4.5.1 Feature-based metrics

Covington [1996], for his cognate alignment algorithm, constructed a special distance

function (Table 4.18). It was developed by trial and error on a test set of 82 cognate

pairs from various related languages. The distance function is very simple; it uses

no phonological features and distinguishes only three types of segments: consonants,

vowels, and glides.

The rather cryptic explanation for assigning a lower penalty to \skips preceded

by another skip" refers to the fact that in diachronic phonology not only individual

segments but also entire morphemes and syllables are sometimes deleted in a single

event. It is worth noting that the indel penalties in Covington's scheme can be

expressed by an aÆne gap function (cf. section 4.4.4) with r = 10 and s = 40.

Contrary to its name, Covington's distance function is not a metric because it

does not satisfy all of the required axioms enumerated in Table 4.2 on page 23. The

zero property is not satis�ed because the function's value for two identical vowels is

2In this context, precede is used to mean immediately precede.

Chapter 4. Phonetic alignment 42

Penalty Conditions

0 Exact match of consonants or glides (w, y)

5 Exact match of vowels (reecting the fact that the aligner

should prefer to match consonants rather than vowels if

it must choose between the two)

10 Match of two vowels that di�er only in length, or i and y,

or u and w

30 Match of two dissimilar vowels

60 Match of two dissimilar consonants

100 Match of two segments with no discernible similarity

40 Skip preceded2 by another skip in the same word (reecting

the fact that aÆxes tend to be contiguous)

50 Skip not preceded by another skip in the same word

Table 4.18: Covington's [1996] \evaluation metric".

greater than zero. Also, the triangle inequality does not hold in all cases; for example:

p(a; i) = 30 and p(i; y) = 10, but p(a; y) = 100, where p(x1; x2) is the penalty for

aligning [x1] with [x2].

Table 4.19 illustrates the \low resolution" of Covington's distance function. Many

important characteristics of sounds, such as place or manner of articulation, are ig-

nored, which implies that [m] and [h] are assumed to be as similar as [t] and [th], and

both yacht and will are treated identically as a glide-vowel-consonant string. Cov-

ington [1998] acknowledges that his distance function is \just a stand-in for a more

sophisticated, perhaps feature-based, system".

Both Gildea and Jurafsky [1996] and Nerbonne and Heeringa [1997] base their

distance functions on binary features. Phonetic segments are represented by binary

vectors in which every entry stands for a single articulatory feature. Such a represen-

tation allows one to distinguish a large number of phonetic segments. The distance

Chapter 4. Phonetic alignment 43

a i y n p r s

a 5 30 100 100 100 100 100

i 30 5 10 100 100 100 100

y 100 10 0 60 60 60 60

n 100 100 60 0 60 60 60

p 100 100 60 60 0 60 60

r 100 100 60 60 60 0 60

s 100 100 60 60 60 60 0

Table 4.19: A partial distance matrix for Covington's distance function.

between two segments is de�ned as the Hamming distance between two feature vec-

tors, that is, the number of binary features by which the two sounds di�er. A distance

function de�ned in such a way satis�es all metric axioms.

It is interesting to compare the values of Covington's distance function with the

average Hamming distances produced by a feature-based metric. Since neither Gildea

and Jurafsky [1996] nor Nerbonne and Heeringa [1997] present their feature vectors in

suÆcient detail to perform the calculations, I adapted a fairly standard set of binary

features from Hartman [1981]. Twenty-�ve letters of the Latin alphabet (all but q)

were taken to represent a sample set of most frequent phonemes. The feature vectors

corresponding to the set are shown in Table 4.20. Table 4.21 contains a portion of

the corresponding distance matrix.

Table 4.22 shows Covington's \penalties" juxtaposed with the average feature

distances between pairs of segments computed for every clause in Covington's metric.

By de�nition, the Hamming distance between identical segments is zero. The distance

between the segments covered by clause #3 is also constant and equal to one (the

Chapter 4. Phonetic alignment 44

feature name a b c d e f g h i j k l m n o p r s t u v w x y z

[tense] + { { { + { { { + { { { { { + { { { { + { + { + {

[spread glottis] { { { { { { { + { { { { { { { { { { { { { { { { {

[voice] + + { + + { + { + + { + + + + { + { { + + + { + +

[back] + { { { { { + + { { + { { { + { { { { + { + + { {

[coronal] { { + + { { { { { + { + { + { { + + + { { { { { +

[continuant] + { { { + + { + + { { { { { + { + + { + + + + + +

[high] { { + { { { + { + + + { { { { { { { { + { + + + {

[strident] { { + { { + { { { + { { { { { { { + { { + { { { +

[round] { { { { { { { { { { { { { { + { { { { + { + { { {

[syllabic] + { { { + { { { + { { { { { + { { { { + { { { { {

[obstruent] { + + + { + + + { + + { { { { + { + + { + { + { +

[nasal] { { { { { { { { { { { { + + { { { { { { { { { { {

[consonantal] { + + + { + + + { + + + + + { + + + + { + { + { +

[low] + { { { { { { + { { { { { { { { { { { { { { { { {

[anterior] { + + + { + { { { + { + + + { + + + + { + { { { +

[distributed] + + + + + { + + + { + { + { + + { + + + { + + + +

[delayed release] { { + { { { { { { + { { { { { { { { { { { { { { {

Table 4.20: Feature vectors adopted from Hartman [1981].

a i y n p r s

a 0 3 4 10 9 8 10

i 3 0 1 9 8 7 9

y 4 1 0 8 7 6 8

n 10 9 8 0 5 2 6

p 9 8 7 5 0 5 3

r 8 7 6 2 5 0 4

s 10 9 8 6 3 4 0

Table 4.21: A partial distance matrix based on binary features.

Chapter 4. Phonetic alignment 45

Clause in Covington's Covington's Average Rescaled

distance function penalty Hamming average

distance distance

1 \identical consonants or glides" 0 0.0 0.0

2 \identical vowels" 5 0.0 0.0

3 \vowel length di�erence only" 10 1.0 12.4

4 \non-identical vowels" 30 2.2 27.3

5 \non-identical consonants" 60 4.81 58.1

6 \no similarity" 100 8.29 100.0

Table 4.22: The clause-by-clause comparison of Covington's distance function and a

feature-based distance function.

feature in question being [long] or [syllabic]). The remaining average feature distances

were calculated using the sample set of 25 phonemes. In order to facilitate comparison,

the rightmost column of Table 4.22 contains the average distances rescaled between

the minimum and the maximum value of Covington's metric.

The correlation between Covington's penalties and the average Hamming dis-

tances is very high (0:998), which demonstrates that feature-based phonology provides

a theoretical basis for Covington's manually constructed distance function.

4.5.2 Multivalued features

Although binary features are elegant and widely used, they might not be optimal for

phonetic alignment. Their primary motivation is to classify phonological oppositions

within a language rather than to reect universal characteristics of sounds. In a

strictly binary system, sounds that are similar often di�er in a disproportionately

large number of features. [y], which is the initial sound of the word you, and [�j],

which is the initial sound of the word Jew, have an astounding 9 contrasting feature

Chapter 4. Phonetic alignment 46

values; yet the sounds are close enough to be habitually confused by speakers whose

�rst language is Spanish.

It can be argued that allowing features to have several possible values results in a

more natural and phonetically adequate system. For example, there are many possible

places of articulation, which form a near-continuum, as illustrated in Figure 4.1.

Ladefoged [1995] devised a phonetically-based multivalued feature system. This

system was adapted by Connolly [1997] and implemented by Somers [1998]. It con-

tains about twenty features, some of which, such as Place, can take as many as ten

di�erent values, while others, such as Nasal, are basically binary oppositions. For

example, the feature Voice has �ve possible values: [glottal stop], [laryngealized],

[voice], [murmur], and [voiceless]. All feature values are assigned numerical values

between 0 and 1.

The main problem with both Somers's and Connolly's approaches is that they

do not di�erentiate the weights, or saliences, that express the relative importance of

individual features. For example, they assign the same salience to the feature [place] as

to the feature [aspiration], which results in a smaller distance between [p] and [k] than

between [p] and [ph]. In my opinion, in order to avoid such incongruous outcomes,

the salience values need to be carefully di�erentiated; speci�cally, the features [place]

and [manner] should be assigned signi�cantly higher saliences than other features.

Although there is no doubt that not all features are equally important in classifying

sounds, the question of how to how to assign salience weights to features in a principled

manner is still open. Nerbonne and Heeringa [1997] experimented with weighting each

feature by information gain but concluded that it actually had a detrimental e�ect on

the produced alignments. Kessler [1995] mentions the uniform weighting of features

as one of possible reasons for the poor performance of his feature-based similarity

measure. Covington [1996] vaguely proposes \using multivariate statistical techniques

Chapter 4. Phonetic alignment 47

Labio−dentalDentalBilabial

Palato−alveolar Alveolar Retroflex

Palatal Velar Uvular

Figure 4.1: Places of articulation.

Chapter 4. Phonetic alignment 48

and a set of known `good' alignments" for calculating the relative importance of

each feature. In my opinion, it seems reasonable to try and derive the saliences

automatically from a large corpus of aligned cognates (Durbin et al. [1998] describe

methods of generating substitution matrices from alignment data). Unfortunately,

it is not clear how to obtain a representative training set in the �rst place. Even if

we ignore the problem of the bias introduced by selecting cognates from particular

language pairs, the task of establishing the correct alignment of cognates is very

time consuming and often requires detailed knowledge of the history of the languages

involved.

4.5.3 Similarity and distance

Although all previously proposed alignment algorithms (Table 4.7) measure related-

ness between phones by means of a distance function, such an approach does not

seem to be the best for dealing with phonetic segments. The fact that Covington's

distance function is not a metric is not an accidental oversight; rather, it reects cer-

tain inherent characteristics of phones. Since vowels are in general more volatile than

consonants, the preference for matching identical consonants over identical vowels is

justi�ed. This insight cannot be expressed by a metric, which, by de�nition, assigns

a zero distance to all identical pairs of segments. Nor is it certain that the triangle

inequality should hold for phonetic segments. A phone that has two di�erent places

of articulation, such as labio-velar [w], can be close to two phones that are distant

from each other, such as labial [b] and velar [g].

In my algorithm, below, I employ the similarity-based approach to comparing seg-

ments (cf. section 4.4.2). The similarity score for two phonetic segments indicates how

similar they are. Under the similarity approach, the score obtained by two identical

Chapter 4. Phonetic alignment 49

segments does not have to be constant. Another important advantage of the similar-

ity approach is the possibility of performing local alignment of phonetic strings, which

is discussed in section 4.4.3. In local, as opposed to global, alignment, only similar

substrings are matched, rather than entire strings. This often has the bene�cial e�ect

of separating inectional and derivational aÆxes from the roots. Such aÆxes tend to

make �nding the proper alignment more diÆcult. It would be unreasonable to expect

aÆxes to be stripped before applying the algorithm to the data, because one of the

very reasons to use an automatic aligner is to avoid analyzing every word individually.

It would be ideal to have, as Kessler [1995] puts it, \data telling how likely it is

for one phone to turn into the other in the course of normal language change." Such

universal scoring schemes exist in molecular biology under the name of Dayho�'s ma-

trices for amino acids [Dayho� et al., 1983]. However, the wealth of data available for

DNA sequences is simply not attainable in diachronic phonology. Moreover, the num-

ber of possible sounds is greater than the number of amino acids. The International

Phonetic Alphabet, which is a standard for representing phonetic data, contains over

80 symbols, most of which can be modi�ed by various diacritics. Assembling a matrix

of such size by deriving each individual entry is not practicable. In the absence of a

universal scoring scheme for pairs of phonetic segments, the calculation of similarity

scores on the basis of multivalued features with salience coeÆcients seems to be the

best solution.

4.6 The algorithm

Many of the ideas discussed in previous sections have been incorporated into the new

algorithm for the alignment of phonetic strings. Similarity rather than distance is

used to determine a set of best local alignments that fall within � of the optimal

Chapter 4. Phonetic alignment 50

alignment. The set of operations contains insertions/deletions, substitutions, and

expansions/compressions. but not transpositions, which have been judged too spo-

radic to justify their inclusion in the algorithm. Multivalued features are employed

to calculate similarity of phonetic segments. AÆne gap functions seem to make lit-

tle di�erence in phonetic alignment when local comparison is used, so the algorithm

makes no distinction between clustered and isolated indels.

Table 4.23 contains the main components of the algorithm. First, the dynamic

programming approach is applied to compute the similarity matrix S using the �

scoring functions. For simplicity, S(i; j) is de�ned to return �1 if either i or j is

negative. Since local alignment is assumed, the �rst row and the �rst column of the

matrix S are initialized with zeros. The optimal score is the maximum entry in the

whole matrix. Every matrix entry that exceeds the threshold score T is the starting

point of one or more alignments.

The recursive procedure Retrieve is shown in Table 4.25. The alignment is

assembled by traversing the matrix until a zero entry is encountered. The parameters

i and j are the coordinates of the current matrix entry. The partial alignment is

stored on the stack Out, which is a last-in-�rst-out data structure. The parameter s

accumulates the alignment's score. Note that the alignments are printed out in the

order of decreasing indices. The order may be reversed by simply indexing the string

starting from the end rather than from the beginning.

If a best alignment contains a sequence of two or more consecutive indels alter-

nating between the two strings, some of the retrieved alignments may happen to be

equivalent. In such a case, a unique alignment can be obtained by �ltering out all

alignments in which an indel in the �rst string is immediately followed by an indel in

the second string. This constraint, which corresponds to the ordered-alternating-skips

rule of Covington [1998], would suppress both the second and the third alignment of

Chapter 4. Phonetic alignment 51

1 algorithm Alignment
2 input: phonetic strings x and y
3 output: alignment of x and y
4 de�ne S(i; j) = �1 when i < 0orj < 0
5
6 for i := 0 to jxj do
7 S(i; 0) := 0
8 for j := 0 to jyj do
9 S(0; j) := 0
10 for i := 1 to jxj do
11 for j := 1 to jyj do
12 S(i; j) := max(
13 S(i� 1; j) + �skip(xi),
14 S(i; j � 1) + �skip(yj),
15 S(i� 1; j � 1) + �sub(xi; yj),
16 S(i� 1; j � 2) + �exp(xi; yj�1yj),
17 S(i� 2; j � 1) + �exp(xi�1xi; yj),
18 0)
19
20 T := (1� �) �maxi;j S(i; j)
21
23 for i 1 to jxj do
24 for j 1 to jyj do
25 if S(i; j) � T then

26 Retrieve(i; j; 0)

Table 4.23: The algorithm for computing the alignment of two phonetic strings.

Chapter 4. Phonetic alignment 52

g �o - g - �o - g �o

- - �� - �� - �� - -

Table 4.24: Three equivalent alignments.

English go and Latin ire `go' shown in Table 4.24, but not the �rst one.

The scoring functions are de�ned in Table 4.26. Cskip, Csub, and Cexp are the

maximum scores for indels, substitutions, and expansions, respectively. Cvwl deter-

mines the relative weight of consonants and vowels. Phonetic segments are expressed

as vectors of feature values. The function di�(p; q; f) returns the di�erence between

segments p and q for a given feature f . Set RV contains features relevant for com-

paring two vowels: Syllabic, Nasal, Retroex, High, Back, Round, and Long. Set

RC contains features for comparing other segments: Syllabic, Manner, Voice, Nasal,

Retroex, Lateral, Aspirated, and Place. A special feature Double, which has the same

possible values as Place, indicates the second place of articulation. When dealing with

double-articulation consonantal segments, only the nearest places of articulation are

used. The numerical values of features and their saliences are discussed in the next

section.

4.7 Implementation

ALINE is a publicly available3 implementation of the algorithm for the alignment of

phonetic strings. The program is written in C++ and runs under Unix. It accepts a

list of word pairs from the standard input, and produces a list of alignments and their

similarity scores on the standard output. Although local comparison is the default,

3At http://www.cs.toronto.edu/�kondrak/.

Chapter 4. Phonetic alignment 53

1 procedure Retrieve(i; j; s)
2
3 if S(i; j) = 0 then
4 print(Out)
5 print(\alignment score is s")
6 else

7 if S(i� 1; j � 1) + �sub(xi; yj) + s � T then

8 push(Out, \align xi with yj")
9 Retrieve(i� 1; j � 1; s + �sub(xi; yj))
10 pop(Out)
11 if S(i; j � 1) + �skip(yj) + s � T then

12 push(Out, \align null with yj")
13 Retrieve(i; j � 1; s + �skip(yj))
14 pop(Out)
15 if S(i� 1; j � 2) + �exp(xi; yj�1yj) + s � T then

16 push(Out, \align xi with yj�1yj")
17 Retrieve(i� 1; j � 2; s + �exp(xi; yj�1yj))
18 pop(Out)
19 if S(i� 1; j) + �skip(xi) + s � T then

20 push(Out, \align xi with null")
21 Retrieve(i� 1; j; s + �skip(xi))
22 pop(Out)
23 if S(i� 2; j � 1) + �exp(yj; xi�1xi) + s � T then

24 push(Out, \align xixi�1 with yj")
25 Retrieve(i� 2; j � 1; s + �exp(yj; xi�1xi))
26 pop(Out)

Table 4.25: The procedure for retrieving alignments from the similarity matrix.

Chapter 4. Phonetic alignment 54

�skip(p) = Cskip

�sub(p; q) = Csub � Æ(p; q)� V (p)� V (q)

�exp(p; q1q2) = Cexp � Æ(p; q1)� Æ(p; q2)�

V (p)�max(V (q1); V (q2))

where

V (p) =

(
0 if p is a consonant
Cvwl otherwise

Æ(p; q) =
X
f2R

di�(p; q; f)� salience(f)

where

R =

(
RC if p or q is a consonant
RV otherwise

Table 4.26: Scoring functions.

the program can be re-compiled to perform global and semiglobal alignment.

The behavior of the program is controlled by command-line parameters: the value

of � for producing near-optimal alignments, and the four constants described in the

previous sections. The default values of the parameters are � = 0, Cskip = {10, Csub

= 35, Cexp = 45, and Cvwl = 10.

Table 4.27 enumerates the features that are currently used by ALINE and their

salience settings. Feature values are encoded as oating-point numbers in the range

[0:0; 1:0]. The numerical values of four principal features are listed in Table 4.28.

The remaining features have exactly two possible values, 0:0 and 1:0. A part of the

resulting similarity matrix is shown in Table 4.29.

The numerical values in Table 4.28 are taken from Ladefoged [1995], who estab-

lished them on the basis of experimental measurements of distances between vocal

Chapter 4. Phonetic alignment 55

Syllabic 5 Place 40

Voice 10 Nasal 10

Lateral 10 Aspirated 5

High 5 Back 5

Manner 50 Retroex 10

Long 1 Round 5

Table 4.27: Features used in ALINE and their salience settings.

organs during speech production. The fact that the scheme is based on articula-

tory phonetics does not necessarily imply that it is optimal for phonetic alignment.

Similar feature schemes of Connolly [1997] and Kessler [1995] also employ discrete

ordinal values scaled between 0 and 1. The former author incorporates and expands

on Ladefoged's proposal, while the latter simply selects the values arbitrarily.

The salience values in Table 4.27 and the default values of the command-line

parameters have been established by trial and error on a small set of alignments that

included the alignments of Covington [1996]. By no means should they be considered

as de�nitive, but rather as a starting point for future re�nements. It is worth noting

that practically all other alignment algorithms assign equal weight to all features,

which, although super�cially more elegant, does not address the problem of unequal

relevance of features.

Unlike the strictly binary feature systems, the feature system proposed here is

highly dynamic in the sense that the similarity matrix can be modi�ed by changing

feature saliences or numerical values within features. Such modi�cations are impor-

tant as it would be unrealistic to expect a single set of values to be optimal for

all types of languages. The exibility of the system makes it possible to adapt the

similarity matrix to the data by using machine-learning techniques.

Chapter 4. Phonetic alignment 56

Feature name Phonological term Numerical value

Place [bilabial] 1.0

[labiodental] 0.95

[dental] 0.9

[alveolar] 0.85

[retroex] 0.8

[palato-alveolar] 0.75

[palatal] 0.7

[velar] 0.6

[uvular] 0.5

[pharyngeal] 0.3

[glottal] 0.1

Manner [stop] 1.0

[a�ricate] 0.9

[fricative] 0.8

[approximant] 0.6

[high vowel] 0.4

[mid vowel] 0.2

[low vowel] 0.0

High [high] 1.0

[mid] 0.5

[low] 0.0

Back [front] 1.0

[central] 0.5

[back] 0.0

Table 4.28: Multivalued features and their values.

Chapter 4. Phonetic alignment 57

a i y n p r s

a 15 8 2 �50 �56 �28 �40

i 8 15 10 �26 �32 �4 �16

y 2 10 15 �21 �27 1 �11

n �50 �26 �21 35 9 �7 5

p �56 �32 �27 9 35 �13 19

r �28 �4 1 �7 �13 35 3

s �40 �16 �11 5 19 3 35

Table 4.29: A partial similarity matrix based on multivalued features with diversi�ed

salience values.

4.7.1 Data input

Representing phonetically transcribed words using only the ASCII characters is not

a trivial problem. The International Phonetic Alphabet, which is a standard for

representing phonetic data, contains over 80 symbols, most of which can be modi�ed

by various diacritics. Systems that assign a numerical value to every combination,

such as ISO 10646/Unicode, produce totally opaque data, which is diÆcult to enter

and maintain.

The usual solution is to devise an ad-hoc scheme in which a mixture of alphanu-

meric characters and punctuation marks are used to represent phonetic symbols.

For example, Eastlack [1977], in his simulation of systematic sound change in Ibero-

Romance, represents [O] by the numeral 9, and [ñ] by N followed by a comma. Such

schemes may be adequate to represent sounds from a particular language or language

family, but usually do not scale up very well when more diverse data needs to be

encoded. What is needed is a system powerful enough to express all IPA symbols,

Chapter 4. Phonetic alignment 58

yet transparent enough to allow visual veri�cation of the data.

In order to encode the phonetic data for ALINE, I designed a scheme in which

every phonetic symbol is represented by a single lowercase letter followed by zero or

more uppercase letters. The initial lowercase letter is the base letter most similar to

the sound represented by the phonetic symbol. Tables 4.30 and 4.31 show the default

feature assignments for the base letters. The remaining uppercase letters stand for

the features in which the represented sound di�ers from the sound de�ned by the

base letter. For example, the French front nasal vowel [�÷], which occurs in the word

un, is represented by `oFN', where F stands for front, and N stands for nasal. The

full set of codes is given in Table 4.32. The scheme has a number of advantages: it is

exible | new codes can be easily introduced; it can represent any sound that can

be expressed using phonetic features; and it leads to readable and concise encoding

of the data (the ratio of the number of characters used in the encoding to the number

of encoded phonetic symbols is usually below 1:2). The only drawback of the scheme

is its dependence on the particular feature system that is used in ALINE.

SAMPA (Speech Assessment Methods Phonetic Alphabet) has been proposed as

a standard for representing phonetic segments using ASCII characters. The system

is similar to the scheme used in ALINE, but, in my opinion, not nearly as practical.

First, it does not include all IPA symbols. Second, the use of non-alphabetic ASCII

characters makes it somewhat opaque. Finally, unlike my feature-based scheme, it

requires a large lookup table that covers all phonetic symbols. It would not be diÆcult,

however, to write a script for converting SAMPA-encoded data to the form required

by ALINE.

Chapter 4. Phonetic alignment 59

Place Manner Syl Vce Nas Ret Lat
a velar low vowel 1 1 0 0 0
b bilabial stop 0 1 0 0 0
c alveolar a�ricate 0 0 0 0 0
d alveolar stop 0 1 0 0 0
e palatal mid vowel 1 1 0 0 0
f labiodental fricative 0 0 0 0 0
g velar stop 0 1 0 0 0
h glottal fricative 0 0 0 0 0
i palatal high vowel 1 1 0 0 0
j alveolar a�ricate 0 1 0 0 0
k velar stop 0 0 0 0 0
l alveolar approximant 0 1 0 0 1
m bilabial stop 0 1 1 0 0
n alveolar stop 0 1 1 0 0
o velar mid vowel 1 1 0 0 0
p bilabial stop 0 0 0 0 0
q glottal stop 0 0 0 0 0
r retroex approximant 0 1 0 1 0
s alveolar fricative 0 0 0 0 0
t alveolar stop 0 0 0 0 0
u velar high vowel 1 1 0 0 0
v labiodental fricative 0 1 0 0 0
w velar (bilabial) high vowel 1 1 0 0 0
x velar fricative 0 0 0 0 0
y velar high vowel 1 1 0 0 0
z alveolar fricative 0 1 0 0 0

Table 4.30: The default feature assignments for base letters.

Place Manner High Back Round
a velar low vowel low central 0
e palatal mid vowel mid front 0
i palatal high vowel high front 0
o velar mid vowel mid back 1
u velar high vowel high back 1
w velar (bilabial) high vowel high back 1
y velar high vowel high front 0

Table 4.31: Additional feature assignments for non-syllabic segments.

Chapter 4. Phonetic alignment 60

Code Feature name Feature value
A Aspirated [aspirated]
B Back [back]
C Back [central]
D Place [dental]
F Back [front]
H Long [long]
N Nasal [nasal]
P Place [palatal]
R Round [round]
S Manner [fricative]
V Place [palato-alveolar]

Table 4.32: ALINE's input codes.

4.8 Evaluation

A proper evaluation of an alignment algorithm requires a \gold standard" | a suÆ-

ciently large set of alignments of nontrivial word pairs. Unfortunately, such a standard

is not easily available, and constructing it from scratch would be costly and diÆcult.

Although linguistic textbooks contain examples of genetically related words, their

alignment is almost never given explicitly. The determination of the correct align-

ment of two remote cognates is a task that usually calls for an expert historical

linguist. In addition, the compilation of test data by the author of the tested algo-

rithm runs the risk of introducing a subconscious bias reecting his knowledge of its

strengths and weaknesses.

Instead of building my own test set, I decided to use the 82 cognate pairs compiled

by Covington [1996]. The complete set, which contains mainly words from English,

German, French, Spanish, and Latin, is included in Appendix D. Unfortunately, the

fact that the set was also used for tuning the parameters of ALINE reduces the value

of the evaluation described in this section.

Covington's data set is not a particularly good candidate for a benchmark. In

Chapter 4. Phonetic alignment 61

addition to the errors in the phonetic transcriptions and the inconsistent selection of

morphological forms, the set contains too many undemanding word pairs: how bad

would an algorithm have to be to misalign long:lang? Nevertheless, it did become

something of a benchmark when Somers [1999], in order to demonstrate that his and

Covington's alignments are of comparable quality, applied his algorithm to the set.

4.8.1 Qualitative evaluation

The evaluation involves the alignment algorithms of Covington [1996], Somers [1999],

and Oakes [2000], as well as ALINE. Oakes's program JAKARTA has been provided

by the author. I re-implemented Covington's aligner from the description given in

his article, and veri�ed that my version produces the same alignments. Somers's

alignments were reconstructed from the description of the di�erences between his

and Covington's results, complemented by my understanding of the behaviour of his

algorithm. Appendix D contains a complete set of alignments of the 82 cognate pairs

generated by ALINE side by side with Covington's alignments. In order to perform

a fair and consistent comparison, I refrained from making any corrections in the set

of cognates.

Some of the alignments produced by Covington's algorithm give clues about the

weaknesses of his approach. In Spanish arbol and French arbre, his aligner prefers to

match [o] with [@] than to match [r] with [l]. The reason is that it has only a binary

notion of identity or non-identity of consonants, without any gradation of similarity

in between. This lack of discernment sometimes causes a proliferation of alternative

alignments. In the case of English �sh and Latin piscis there are four of them, and

without the bias against isolated indels there would be six.

The version that Somers applied to the cognate data set (CAT) employs binary,

Chapter 4. Phonetic alignment 62

rather than multivalued, features. Since CAT distinguishes between individual con-

sonants, it sometimes produces more accurate alignments than Covington's aligner.

For example, in the English/Greek pair daughter:thugat�er, it correctly opts for linking

[d] with [th] rather than with [g]. However, because of its unconditional alignment of

the stressed vowels, CAT is guaranteed to fail in all cases when the stress has moved

in one of the cognates. For example, in the Spanish/French pair cabeza:cap, it blindly

matches a labial stop with a dental fricative rather than with another labial stop.

In spite of its comprehensive set of edit operations, Oakes's JAKARTA aligner

performs poorly in comparison with the other algorithms. It does display occasional

brilliance; for example, it posits a complex correspondence between [t] with [ts] in

tongue:Zunge. However, it also makes elementary mistakes: it frequently aligns con-

sonants with vowels, postulates unusual sound changes with no foundation, and has

a tendency to align shorter words with the suÆxes of the longer words.

With the exception of a few mistakes, ALINE does a good job both on closely

and remotely related language pairs. On the Spanish/French set, ALINE makes no

mistakes at all. Unlike Covington's aligner, it properly aligns [l] in arbol with the

second [r] in arbre. On the English/German data, it selects the correct alignment in

those cases where Covington's aligner produces two alternatives. In the �nal, mixed

set, ALINE makes a single mistake in daughter:thugat�er, in which it posits a dropped

pre�x rather than a syncopated syllable; in all other cases, it is right on target.

The examples in Table 4.33 are taken from the English{Latin set, which is par-

ticularly interesting due to the ample diachronic distance between the two languages.

ALINE correctly discards inectional aÆxes in piscis and �are, and posits the opera-

tion of compression/expansion to account for the cases of diphthongization of vowels

in I and tooth. In �sh:piscis, Covington's aligner produces four alternative align-

ments, while ALINE selects the correct one. Both algorithms are technically wrong

Chapter 4. Phonetic alignment 63

Covington's alignments ALINE's alignments

three:tr�es T r i y k T r iy k
t r �e s k t r �e k s

blow:�are b l - - o w k b l o k w
f l �a r e - k f l �a k re

full:pl�enus f - - - u l k f u l k
p l �e n u s k p - l k �enus

�sh:piscis f - - - i �s k f i �s k
p i s k i s k p i s k kis

I:ego - - a y k ay k
e g o - k e k go

tooth:dentis - - - t u w T k t uw T k
d e n t i - s denk t i s k

Table 4.33: Examples of alignments of English and Latin cognates.

on tooth:dentis, but this is hardly an error considering that only the information

contained in the phonetic string is available to the aligners. In order to produce a

historically correct alignment shown in Table 4.34, an aligner would have to know

something about regular sound correspondences between English and Latin. I will

return to this example in Chapter 6.

k t uw - T k

k d e n t k is

Table 4.34: The correct alignment of tooth:dentis.

Chapter 4. Phonetic alignment 64

Subset # of pairs Score

Covington Somers Oakes Kondrak

Spanish{French 20 19.0 17.0 15.0 20.0

English{German 20 18.0 18.0 16.0 18.5

English{Latin 25 18.1 19.5 9.0 24.0

Fox{Menomini 10 9.0 9.0 9.0 9.5

Other 7 4.7 3.0 4.0 6.0

Total 82 68.8 66.5 53.0 78.0

Table 4.35: Evaluation of alignment algorithms on Covington's data set.

4.8.2 Quantitative evaluation

The tables containing the generated alignments take up a substantial part of Cov-

ington's article. However, the true alignments are never explicitly given; the author

only refers to them indirectly when he discusses the errors made by his program. In

order to make the comparison of various algorithms more rigorous, I recreated the

set of true alignments to the best of my knowledge, verifying the diÆcult cases in the

historical linguistic literature [Buck, 1949; Hall, 1976; Bloom�eld, 1946], which takes

into account the results of research conducted over a period of many decades, and

often also historical records that document the evolution of languages.

For the comparison, I adopted a straightforward evaluation scheme. One point

is awarded for every correct unique alignment. In the cases of k > 1 alternative

alignments, the score is 1

k
if one of them is correct, and 0 otherwise. So, for exam-

ple, Covington's aligner received 0:33 for the pair ager:ajras because one of the three

proposed alignments is right. In order to make the playing �eld even, complex corre-

spondences, such as compression/expansion, were treated as optional. The results of

Chapter 4. Phonetic alignment 65

the manual evaluation are given in Table 4.35.

ALINE is a clear winner in the comparison, achieving over 95% accuracy. Somers's

results are almost as good as Covington's, which, as Somers [1999] points out, \is a

good result for CAT [. . .] considering that Covington's algorithm is aimed at dealing

with this sort of data." Oakes's JAKARTA scores well below the rest.

4.9 Conclusion

The results on a limited set of cognate pairs show that, overall, ALINE produces

better alignments than Covington's and Somers's algorithms. However, the method

of evaluation used in this chapter is not completely satisfactory. In the absence of a

more comprehensive test set, a better form of evaluation would be to apply ALINE to

a task on which its performance could be easily appraised. Identi�cation of cognates,

which is the topic of Chapter 5, is an example of such a task. An alignment score of

two words can be taken as a measure of their phonetic similarity, which in turn is a

good indicator of the likelihood of cognation.

The alignment of corresponding segments in potential cognates is an essential

step of the comparative method of language reconstruction. ALINE, as well as other

alignment algorithms described in this section, aligns one word pair at a time, and

has no learning ability. The lack of knowledge about regular sound correspondences

limits the accuracy of the alignment. In Chapter 6, I will show how the alignment of

cognates can be driven by automatically determined correspondences.

Chapter 5

Identi�cation of cognates

In the narrow sense used in historical linguistics, cognates are words in related lan-

guages that have developed independently from the same proto-form (so-called ge-

netic cognates). Due to their common origin, genetic cognates often sound alike and

have the same or similar meaning. However, phonetic similarity of words in di�erent

languages can also be due to other reasons, which are illustrated in Table 5.1. In gen-

eral, deciding whether two words are genetically related requires expert knowledge of

the history of the languages in question.

Spanish English Classi�cation

sal salt genetic cognates

su�eter sweater direct borrowing

ambici�on ambition borrowing from a third language

mucho much chance similarity

carpeta `folder' carpet \false friends"

cuclillo cuckoo onomatopoeic words

mam�a mommy nursery words

Table 5.1: Examples of similar words in Spanish and English.

66

Chapter 5. Identification of cognates 67

The identi�cation of cognates is a component of two principal tasks of historical

linguistics: establishing the relatedness of languages and reconstructing the histories

of language families. In the past, languages were often grouped in families on the ba-

sis of similarity of basic vocabulary. Nowadays, most linguists insist on corroborating

the claims of relatedness with a list of regular sound correspondences. Nevertheless,

a recently developed approach of mass comparison [Greenberg, 1987] rejects corre-

spondences in favour of similarity, and has produced several proposals of very remote

genetic relationship.

In computational linguistics, cognates have been employed for a number of bitext-

related tasks.

� sentence and word alignment in bitexts [Simard et al., 1992; Church, 1993;

McEnery and Oakes, 1996; Melamed, 1999],

� improving statistical machine translation models [Al-Onaizan et al., 1999],

� inducing translation lexicons [Koehn and Knight, 2001; Mann and Yarowsky,

2001],

� automatic construction of weighted string similarity measures [Tiedemann, 1999],

� extracting lexicographically interesting word-pairs from multilingual corpora

[Brew and McKelvie, 1996].

Most of the above approaches take advantage of the property that almost all co-

occurring cognates in bitexts are mutual translations. Note that in computational

linguistics, the term cognate usually denotes words in di�erent languages that are

similar in form and meaning, without making a distinction between borrowed and

genetically related words. For example, English sprint and the Japanese loan supur-

Chapter 5. Identification of cognates 68

into are considered cognate for this purpose, even though these two languages are

unrelated. This broad de�nition is also adopted in this chapter.

The task addressed in this chapter can be formulated in two ways. On the word

level, given two words (lexemes) from di�erent languages, the goal is to compute a

value that reects the likelihood of the pair being cognate. I assume that each lexeme

is given in a phonetic notation, and that it is accompanied by one or more glosses

that specify its meaning in a metalanguage for which a lexical resource is available

(for example, English). On the language level, given two vocabulary lists representing

two languages, the goal is to order all pairs of vocabulary entries according to their

likelihood of cognation. Tables 5.2 and 5.3 show sample entries from two typical

vocabulary lists. Such vocabulary lists are sometimes the only data available for

lesser-studied languages.

In the traditional approach to cognate identi�cation, words with similar meanings

are placed side by side. Those pairs that exhibit some phonological similarity are

analyzed in order to �nd systematic correspondences of sounds. The correspondences

in turn can be used to distinguish between genuine cognates and borrowings or chance

resemblances.

The approach adopted in this chapter is based on the intuition that, in spite

of the inevitable diachronic changes, cognates on average display higher semantic

and phonetic similarity than words that are unrelated. In the following sections, I

discuss various ways of measuring phonetic and semantic similarity, and then present

COGIT, a similarity-based cognate-identi�cation system. COGIT combines ALINE,

the program described in Chapter 4, with a novel procedure for detecting semantic

relatedness from glosses that employs keyword selection and WordNet. Even though

the similarity-based approach does not di�erentiate between cognates and borrowings,

the experiments on data from four native American languages show that it can be

Chapter 5. Identification of cognates 69

�anisk�oh�o�cikan string of beads tied end to end

asikan sock, stocking

kam�amakos buttery

kost�a�c��win terror, fear

misiy�ew large partridge, hen, fowl

nam�ehpin wild ginger

napakihtak board

t�eht�ew green toad

wayak�eskw bark

Table 5.2: An excerpt from a Cree vocabulary list [Hewson, 1999].

�a�sikan dock, bridge

anaka'�ekkw bark

kipaskosikan medicine to induce clotting

kott�a�c��win fear, alarm

m�em��kwan' buttery

misiss�e turkey

nam�epin sucker

napakissakw plank

t�ent�e very big toad

Table 5.3: An excerpt from an Ojibwa vocabulary list [Hewson, 1999].

Chapter 5. Identification of cognates 70

successfully applied to the task of cognate identi�cation.

5.1 Phonetic similarity

The approaches to measuring word similarity can be divided into two groups. The

orthographic approaches disregard the fact that alphabetic symbols express actual

sounds, employing a binary identity function on the level of character comparison. A

one-to-one encoding of symbols has no e�ect on the results. The phonetic approaches,

on the other hand, attempt to take advantage of the phonetic characteristics of indi-

vidual sounds in order to estimate their similarity. This presupposes a transcription

of the words into a phonetic or phonemic representation.

5.1.1 The orthographic approaches

Simard et al. [1992] consider two words to be cognate if they are at least four charac-

ters long and their �rst four characters are identical. Naturally, such a crude approach

will fail to identify even very similar cognates, such as government and gouvernement.

On the other hand, the simple condition can be checked very quickly. This approach

can be generalized to yield a truncation coeÆcient in the [0; 1] range. One way of

doing this is to divide the length of the longest common pre�x by the average of the

lengths of the two words being compared. For example, the truncation coeÆcient of

English colour and French couleur is 2

6:5
' 0:31 because their longest common pre�x

is \co-". The truncation coeÆcient can be computed in O(n) time.

Dice's similarity coeÆcient, originally developed for the comparison of biologi-

cal specimens, was �rst used to compare words by Adamson and Boreham [1974].

It is based on the notion of a bigram | an ordered pair of characters. Adamson

and Boreham chose bigrams rather than single characters expressly to preserve infor-

Chapter 5. Identification of cognates 71

mation about the sequence of the letters in a word. Dice's coeÆcient was adopted

for cognate identi�cation by McEnery and Oakes [1996], who concluded that it per-

formed better on the task than a measure based on a simple edit distance. Brew

and McKelvie [1996] proposed four other bigram-based methods. Dice's coeÆcient

is determined by the ratio of the number of shared character bigrams to the total

number of bigrams in both words:

DICE(x; y) =
2jbigrams(x) \ bigrams(y)j

jbigrams(x)j+ jbigrams(y)j
;

where bigrams(x) is a multi-set of character bigrams in x. For example, colour and

couleur share three bigrams (co, ou, and ur), so their Dice's coeÆcient is 6

11
' 0:55.

Notice that the number of bigrams in a word is one less than its length measured in

characters. Dice's coeÆcient can be computed in O(n2) time.

Melamed [1999] detects orthographic cognates by thresholding the Longest Com-

mon Subsequence Ratio (LCSR). The LCSR of two words is computed by dividing

the length of their longest common subsequence (LCS) by the length of the longer

word:

LCSR(x; y) =
jLCS(x; y)j

max(jxj; jyj)
:

For example, LCSR(colour,couleur) = 5

7
' 0:71, as their longest common subsequence

is \c-o-l-u-r". Brew and McKelvie [1996] propose a variation in which the denominator

is the average of both word lengths. Melamed explicitly chooses LCSR over DICE

and truncation, but he does not provide any experimental results to support his

preference. A simple dynamic programming algorithm computes the LCSR in O(n2)

time, and more complicated algorithms are even faster.

It is worth noting that LCSR is closely related to edit distance. If the cost of

a substitution is set at more than twice the cost of an indel, the calculation of an

optimal alignment of the two strings is equivalent to �nding their longest common

Chapter 5. Identification of cognates 72

subsequence [Kruskal, 1983, page 30], and the edit distance d can be expressed in

terms of LCS:

d(x; y) = jxj+ jyj � j2� LCS(x; y)j:

5.1.2 The phonetic approaches

The approaches of Kessler [1995] and Nerbonne and Heeringa [1997] to estimating

phonetic distance between dialects have already been discussed in Chapter 4. Kessler's

surprising �nding was that a binary distance function based on the identity of phonetic

segments worked better than a feature-based measure. Nerbonne and Heeringa's

conclusion was the opposite. It has to be noted that in neither case was the evaluation

method totally objective: Kessler calculated the correlation with a distance measure

based on the number of isoglosses in a linguistic atlas, while Nerbonne and Heeringa

apparently visually compared their results with a dialect map. In any case, the task

of computing the distance between wordlists, albeit related, is clearly distinct from

the task of identifying cognates in wordlists.

Oakes [2000], on the other hand, focuses directly on cognate identi�cation. His

approach is very simple: two words are deemed to be cognate if their edit distance is

below a certain threshold; the length of the words is irrelevant. The threshold was

established by the analysis of the distances between cognate and non-cognate pairs

in four Indonesian wordlists.

ALINE (described in Chapter 4) was originally developed for aligning phonetic

strings, but since it chooses the optimal alignment on the basis of a similarity score,

no substantial modi�cation is necessary for the current application. The similarity

score returned by ALINE can be normalized by dividing it by the length of the longer

word multiplied by the maximum possible similarity score between segments, so that

Chapter 5. Identification of cognates 73

it falls in the range [0; 1]. Intuitively, a complex algorithm such as ALINE should be

more accurate than simple, orthographic coeÆcients. By applying various methods

to a speci�c task, such as cognate identi�cation, their relative performance can be

objectively evaluated.

5.2 Semantic similarity

Since the meanings of the lexemes are given by their glosses, the simplest method

to detect semantic similarity is to check if the lexemes have at least one gloss in

common. For example, the cognates kott�a�c��win `terror, fear' and kost�a�c��win `fear,

alarm' in Tables 5.2 and 5.3 are correctly associated by this method. However, in

many cases, the similarity of semantically related glosses is not recognized by this

method. The most common reasons are listed below with examples.

1. Spelling errors or variants: `vermilion' and `vermillion', `sweet grass' and `sweet-

grass', `plow' and `plough';

2. Morphological di�erences: `ash' and `ashes';

3. Determiners: `a mark' and `mark', `my �nger' and `�nger', `�sh' and `kind of

�sh';

4. Adjectival modi�ers: `small stone' and `stone';

5. Nominal modi�ers: `goose' and `snow goose';

6. Complements and adjuncts: `stone' and `stone of peach', `island' and `island in

a river';

7. Synonymy: `grave' and `tomb';

Chapter 5. Identification of cognates 74

8. Small semantic changes: `fowl' and `turkey';

9. Radical semantic changes: `broth' and `grease'.

Spelling errors, which may be especially frequent in data that have been acquired

through optical character recognition, are easy to detect but have to be corrected

manually. Morphological di�erences (category 2) can be removed by lemmatization.

Many of the cases belonging to categories 3 and 4 can be handled by adopting a stop-

list of determiners, possessive pronouns, and very common modi�ers such as certain,

kind of, his, big, female, etc.

Categories 4, 5, and 6 illustrate a common phenomenon of minor semantic shifts

that can be detected without resorting to a lexical resource. All that is needed is

the determination of the heads of the phrases, or, more generally, keywords. Pairs of

glosses that contain matching keywords are usually semantically related.

For the remaining categories, string matching is of no assistance, and some lexical

resource is called for.

5.2.1 WordNet

WordNet [Fellbaum, 1998] is a publicly available lexical knowledge base for English

developed at Princeton University. Lexical entries are organized into comprehensive

networks of synonym sets (synsets). Words that have more than one meaning (po-

lysemous words) may participate in several di�erent synsets. The synsets are linked

by various lexical relations. The noun database is the most developed part of the

semantic network. The main types of lexical links between noun synsets are shown in

Table 5.4. The hypernymy/hyponymy links form the hierarchy of nouns. They link

each synset to its immediately more general and more speci�c synsets. A chain of

Chapter 5. Identification of cognates 75

Type Name Example Inverse of

hypernymy is-a bird ! animal hyponymy

hyponymy subsumes bird ! robin hypernymy

meronymy part-of beak ! bird holonymy

holonymy has-a tree ! branch meronymy

antonymy complement-of leader $ follower itself

Table 5.4: The main lexical relations between nouns in WordNet.

hypernymy links can be traversed from each synset to one of the 11 abstract concepts

that are at the top of the hierarchy.

The coverage of WordNet is impressive. In version 1.6, the noun network alone is

made of over 60; 000 synsets, which contain over 100; 000 noun senses, and the number

of lexical links exceeds 150; 000. Nonetheless, the coverage of the English vocabulary

is inevitably only partial.

The idea of using WordNet for the detection of semantic relationships comes from

Lowe and Mazaudon [1994, footnote 13, page 406]. WordNet is well-suited not only

for detecting synonyms but also for associating lexemes that have undergone small

semantic changes. Trask [1996] lists several types of semantic change, including the

following:

� generalization (broadening): `partridge' ! `bird';

� specialization (narrowing): `berry' ! `raspberry';

� melioration (developing a more favourable sense): `woman' ! `queen';

� pejoration (developing a less favourable sense): `farm-worker' ! `villain';

� metaphor (extending the literal meaning): `steersman' ! `governor';

Chapter 5. Identification of cognates 76

� metonymy (using an attribute of an entity to denote the entity itself): `crown'

! `king';

� synechdoche (using a part to denote a whole, or vice-versa): `hand'! `sailor'.

Certain types of semantic change have direct parallels among WordNet's lexical

relations. Generalization can be seen as moving up the is-a hierarchy along a hyper-

nymy link, while specialization is moving in the opposite direction, along a hyponymy

link. Synecdoche can be interpreted as a movement along a meronymy/holonymy link.

However, other types of semantic change, such as metonymy, melioration/pejoration,

and metaphor, have no direct analogues in WordNet.

The use of WordNet for semantic similarity detection is possible only if English

is the glossing metalanguage. If the available vocabularies are glossed in other lan-

guages, one possible solution is to translate the glosses into English, which, however,

may increase their ambiguity. A better solution could be to use a multilingual lexi-

cal resource, such as EuroWordNet [Vossen, 1998], which is modeled on the original

Princeton WordNet. In general, WordNet could be replaced by any machine-readable

dictionary or thesaurus, or even word-frequency data extracted from a corpus.

5.3 Implementation

COGIT, the cognate identi�cation system, is schematically depicted in Figure 5.1.

The system is composed of a set of Perl scripts for preprocessing the vocabulary lists,

and phonetic and semantic modules written in C++. Given two vocabulary lists rep-

resenting distinct languages, COGIT produces a list of vocabulary-entry pairs, sorted

according to the estimated likelihood of cognation. In order to take full advantage of

WordNet's noun hierarchies, the vocabulary lists are restricted to contain only nouns.

Chapter 5. Identification of cognates 77

1. For each gloss in vocabularies L1 and L2:

(a) Remove stop words.

(b) Select keywords.

(c) Perform lemmatization.

(d) Generate lists of semantically related words.

2. For each pair of entries ((li; gi); (lj; gj)) 2 (L1 � L2):

(a) Compute the phonetic similarity score Simphon(li; lj).

(b) Compute the semantic similarity score Simsem(gi; gj).

(c) Simoverall (i; j) (1� �)� Simphon(li; lj) + �� Simsem(gi; gj).

(d) If Simoverall(i; j) � T , record i, j, and Simoverall(i; j).

3. Sort the pairs in descending order of Simoverall .

Table 5.5: Cognate identi�cation algorithm.

Brill tagger

QueryData

WordNet

Phonetic
module

Semantic
module

Vocabulary
list L2

Vocabulary
list L1

ALINE

Preprocessing

COGIT

List of
cognates

Figure 5.1: The structure of cognate identi�cation system.

Chapter 5. Identification of cognates 78

The algorithm is presented informally in Table 5.5. Each vocabulary entry consists

of a lexeme l and its gloss g. The overall similarity score is a linear combination of

the similarity scores returned by the phonetic and semantic modules. The parameter

� reects the relative importance of the semantic vs. phonetic score.

The preprocessing of the vocabulary data is performed by a suite of Perl scripts.

Checking and correcting the spelling of glosses is assumed to have been done before-

hand. Table 5.6 shows the complete list of stop words and phrases that are removed

from glosses in order to facilitate the matching of nearly-identical expressions. Glosses

that exceed 30 characters are truncated, and all comments enclosed in brackets are

deleted. The lemmatization process is carried out by the QueryData module, which

is described below. The phonetic similarity score can be computed either by ALINE

or through one of the orthographic methods described in section 5.1.1.

The keyword selection is performed according to a simple heuristic with the aid

of a part-of-speech tagger [Brill, 1995]. Since the tagger operates on sentences rather

than on phrases, all glosses are initially prepended with the string `It is a'. The string

is removed after the tagging process is completed. Since the lexemes are restricted to

nouns, only words with the nn tag are considered as possible keywords, except when

a gloss contains a single word, in which case the word is taken to be the keyword

regardless of the tag. The gloss is scanned from left to right, and all nouns are

marked as keywords unless a wh-word or a preposition other than `of' is encountered.

Table 5.7 contains examples of keyword selection in action. Keywords are under-

a an the my your

his her very large small

big little male female certain

kind of manner of piece of

Table 5.6: The stop-list of words that are removed from glosses.

Chapter 5. Identification of cognates 79

` stringNN forIN stretchingVBG hideNN '

` uprightJJ ornamentNN wornVBN onIN headNN '

` yellowJJ featherNN withIN blackJJ tipNN '

` sorcererNN whoWP hasVBZ a serpentNN '

` clotNN ofIN bloodNN '

` intNN , detonatingVBG capNN onIN cartridgeNN '

` snowNN dartNN , iceNN throwingVBG stickVB '

` signNN whichWDT pointsNNS the wayNN '

` a portageNN , settingVBG ashoreRB '

` little storyNN thatWDT isVBZ sometimesRB toldVBN '

` mysteriousJJ , hauntedVBN personNN orCC placeNN '

Table 5.7: Examples of automatically tagged glosses with keywords marked.

lined. Words are accompanied by the assigned part-of-speech tags: prepositions are

tagged as `IN', while wh-words have tags that start with `W'. Stop-words are shown

in a distinct font. It is evident from the handful of examples that the keyword scheme

is far from perfect. Because of the limited accuracy of the part-of-speech tagger, some

words are mistagged to begin with (e.g. `stick'). A comma separating two adjectives,

as in `mysterious, haunted' is indistinguishable from a comma separating two alter-

native glosses, so `mysterious' is erroneously assumed to be an independent gloss.

Nevertheless, the heuristic seems to pick most of the relevant nouns with reasonable

precision.

For the calculation of a WordNet-based semantic similarity score, I initially used

the length of the shortest path between synsets, measured in the number of is-a links.

One can imagine utilizing a more sophisticated measure of semantic similarity, such as

Chapter 5. Identification of cognates 80

Leacock and Chodorow's [1998] normalized path length, Resnik's [1999] information-

based approach, Lin's [1998] universal similarity measure, or other methods described

in Budanitsky [1999]. However, I found the e�ect of considering paths longer than one

link to be negligible. Moreover, the process of determining the link distances between

all possible pairs of glosses, separately for each pair, was too time-consuming.

The solution eventually adopted is to compute the semantic score by a faster

method that employs QueryData, a Perl interface to the WordNet module [Rennie,

1999]. A list of synonyms, hypernyms, and meronyms is generated for each gloss

and keyword in the preprocessing phase. During the execution of the core C++

program, regular string matching is performed directly on the listed senses. Words are

considered to be related if there is a relationship link between any of their senses. The

semantic score is determined according to a 9-point scale of semantic similarity, which

is shown in Table 5.8. The levels of similarity are considered in order, starting with

gloss identity. The scores are not cumulative. For example, if the program detects

that a keyword in one gloss is a hypernym of a keyword in another gloss (\keyword

hypernymy"), the check for a meronymy relation between the entire glosses (\gloss

meronymy") is not performed. The exact values corresponding to each level were

established by trial and error using the development set.

Let us follow the entire process of computing the similarity between vocabulary

entries on an example involving Cree w�ahkwa `a lump of roe' and Ojibwa w�akk `�sh

eggs'. After the preprocessing removes the determiner a from the �rst gloss, the glosses

are tagged and four nouns are identi�ed as keywords in the respective glosses: lump,

roe, �sh, eggs. The lemmatization removes the plural ending -s from eggs. Neither

of the complete glosses exists in WordNet, but each of the keywords is represented

by several senses. The WordNet sense lists for the keywords are shown in Table 5.9.

COGIT detects two semantic relations: roe is a kind of egg, and roe is a part of

Chapter 5. Identification of cognates 81

Rank Similarity level Score

1 gloss identity 1.00

2 gloss synonymy 0.70

3 keyword identity 0.50

4 gloss hypernymy 0.50

5 keyword synonymy 0.35

6 keyword hypernymy 0.25

7 gloss meronymy 0.10

8 keyword meronymy 0.05

9 none detected 0.00

Table 5.8: Semantic similarity levels.

�sh. Since keyword hypernymy has a higher precedence than keyword meronymy, the

resulting semantic score is 0:25. The combination with the phonetic score of 0:4167

between w�ahkwa and w�akk with � set to 0:2 produces an overall similarity coeÆcient

of 0:3834.

5.4 Evaluation

The test data suitable for the evaluation of the approach outlined above has to ful�ll

several requirements. It should be suÆciently large to contain most of the surviving

cognates. The lexemes should be given in a consistent notation that allows for an

automatic transcription into phonetic form. In order to take advantage of WordNet,

the glosses must be given in English. Finally, the cognation information has to be

provided in the electronic form as well, so that the performance of the program can

be measured objectively. The last condition is perhaps the most diÆcult to satisfy.

Even in the rare cases when machine-readable bilingual lexicons can be acquired,

the cognation judgements would have to be laboriously extracted from etymological

Chapter 5. Identification of cognates 82

Word Synonyms Hyponyms Meronyms

lump ball, clod, glob, clump,
chunk, swelling, klutz,
puÆness, lout, clod,
goon, stumblebum, oaf,
lubber, lummox, gawk,
hunk

agglomeration, piece,
part, symptom, clumsy
person

roe hard roe spawn, egg, seafood �sh

�sh chump, fool, gull, mark,
patsy, fall guy, sucker,
shlemiel, soft touch,
mug, go �sh

foodstu�, food product,
victim, card game,
cards, dupe, aquatic
vertebrate

pisces, school,
shoal

egg testis, gonad, testicle,
ball, ballock, bollock,
nut

endocrine gland,
ductless gland, ovum,
egg cell, foodstu�, food
product

male genitalia,
family jewels

Table 5.9: Lists of semantically related words generated from WordNet.

dictionaries. Note that optical scanning of phonetic symbols or unusual diacritics is

practically impossible.

In that situation, it was truly muni�cent of John Hewson to provide me with his

Algonquian data.

5.4.1 The Algonquian data

The machine-readable Algonquian data consists of two parts that complement each

other: the etymological dictionary, and the vocabulary lists from which the dictionary

was produced. The dictionary is available in book form [Hewson, 1993]. The computer

�les that I obtained from John Hewson contain both the dictionary and the raw lists.

The dictionary contains 4,068 cognate sets, including 853 marked as nouns. Two

typical cognate sets are shown in Table 5.10. Each set is composed of a reconstructed

proto-form and the corresponding cognates. The �rst line contains the reconstructed

lexeme, a two letter code indicating its grammatical category, the English gloss, the

Chapter 5. Identification of cognates 83

*kenwe:cye:wa NA pike 1027

C kinose:w fish

F keno:ce:wa pike

M kenu:si:w pickerel

O kino:ce: pike (kind of fish)

kenwehkwetamwa TI cut long (-ehkwet) 1028

C kinohkotam he cuts it long

O kino:kkota:n cut long(er)

Table 5.10: An excerpt from the Algonquian dictionary.

major morpheme of the lexeme (optional), and the lexeme number. The subsequent

lines describe the surviving cognates. Each line includes a one-letter language code,

the cognate lexeme, and its English gloss. Nearly all cognates belong to one of the

four principal Algonquian languages (Fox, Menomini, Cree, Ojibwa).

The dictionary �le is almost identical with the book version, and required only

minimal clean-up. The lexemes are already in a phonemic transcription, so no sophis-

ticated grapheme-to-phoneme conversion was necessary. A simple coding is used to

express phonemes that lack ASCII equivalents: c for [�s], 3 for [E], etc. In the experi-

ments described in this section, the dictionary �le served as a source of the cognation

information (\gold standard").

In contrast with the dictionary, the vocabulary lists can be characterized as noisy

data. They contain many errors, inconsistencies, duplicates, and lacunae. The Fox

�le is incomplete. In the Menomini �le, three di�erent phonemes ([�c], [E], and [P])

had been merged into one, and had to be painstakingly reconstructed on the basis

of phonotactic constraints. As much as possible, the entries were cross-checked with

the dictionary itself, which is much more consistent. Table 5.11 speci�es the number

of unique lexemes available for each language. It appears that only about a third of

the nouns present in the vocabulary lists had made it into the dictionary.

Chapter 5. Identification of cognates 84

Language Dictionary only Dictionary and lists

All words Nouns All words Nouns

Fox 1252 193 4759 575

Menomini 2231 361 8550 1540

Cree 2541 512 7507 1628

Ojibwa 2758 535 6334 1023

Total 8782 1601 27150 4766

Table 5.11: The size of the vocabulary lists.

5.4.2 Properties of the data

Table 5.12 shows, for each language combination, the number of cognate noun pairs

extracted from the dictionary, and the total number of possible pairings of lexemes,

which was calculated by multiplying the number of entries in the respective vocabu-

laries. To take the Menomini{Ojibwa pair as an example, the task of the system was

to identify 259 cognate-pairs from 1540 � 1023 possible lexeme-pairs. On average,

the ratio of non-cognate to cognate pairs was about 6500, which gives an idea of the

diÆculty of the task of identifying cognate pairs.

The values in Tables 5.13 and 5.14 con�rm that both the phonetic and the semantic

similarity between Algonquian cognates (C) is greater than between randomly selected

lexemes (R). The average weighted phonetic similarity between cognates can be seen

as a measure of the relative \closeness" of a pair of languages. According to all

measures, Cree{Ojibwa is the most closely related pair, Fox is somewhat removed

from the two, and Menomini is even more distant.

Figure 5.2 compares proportions of all cognate pairs in the data that are covered

by individual semantic similarity levels. Over 60% of cognates have at least one

Chapter 5. Identification of cognates 85

Languages Cognates Word pairs

Fox Menomini 121 885,500

Fox Cree 130 936,100

Fox Ojibwa 136 588,225

Menomini Cree 239 2,507,120

Menomini Ojibwa 259 1,575,420

Cree Ojibwa 408 1,665,444

Table 5.12: The number of shared cognates and the number of possible word pairs

for each language combination (nouns only).

Languages Trunc. DICE LCSR ALINE

R C R C R C R C

Fox Menomini .013 .247 .058 .343 .229 .570 .220 .607

Fox Cree .012 .290 .067 .466 .248 .633 .223 .616

Fox Ojibwa .013 .323 .060 .501 .236 .651 .212 .626

Menomini Cree .012 .266 .055 .316 .227 .599 .219 .620

Menomini Ojibwa .012 .216 .046 .277 .212 .551 .206 .590

Cree Ojibwa .013 .359 .083 .618 .255 .768 .224 .699

Table 5.13: Average phonetic similarity values computed by various methods for

randomly selected word pairs and for cognate pairs.

Chapter 5. Identification of cognates 86

Languages Random Cognates

Fox Menomini .003 .753

Fox Cree .002 .719

Fox Ojibwa .002 .710

Menomini Cree .003 .698

Menomini Ojibwa .003 .718

Cree Ojibwa .002 .681

Table 5.14: Average semantic similarity values for randomly selected word pairs and

for cognate pairs.

gloss in common. The cases in which the existence of a WordNet relation inuences

the value of the similarity score account for less than 10% of the cognate pairs. In

particular, instances of meronymy between cognates are very rare.

5.4.3 Performance of COGIT

The Cree{Ojibwa language pair was chosen as the development set. These two lan-

guages are represented by the most complete vocabularies and share the largest num-

ber of cognates. However, they also turned out to be the most closely related among

the four Algonquian languages, according to all measures of phonetic similarity (Ta-

ble 5.13). It is quite possible that the overall performance of the system would have

been better if a di�erent language pair had been chosen as the development set.

The values of all parameters, including �, ALINE's parameters, and the semantic

similarity scale given in Table 5.8, were established during the development phase of

the system, using only the Cree{Ojibwa data. The optimal value of � was found to

be near 0:2. Similarly, ALINE's parameters were set as follows: Cskip = {1, Csub =

10, Cexp = 15, and Cvwl = 1. The salience settings were as given in Chapter 4, except

Chapter 5. Identification of cognates 87

�
�
�
�

�
�
�
��� �� ��

10 20 30 40 50 60 700
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

�
�
�
�
�

�
�
�
�
�

������
������
������
������
������

������
������
������
������
������

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

KEYWORD SYNONYMY

KEYWORD MERONYMY

GLOSS MERONYMY

NONE

KEYWORD HYPONYMY

GLOSS HYPONYMY

KEYWORD IDENTITY

GLOSS SYNONYMY

GLOSS IDENTITY

Coverage

.120

.024

.012

.019

.003

.000

.193

.627

.020

Figure 5.2: Coverage of the similarity levels.

that the salience of feature Long was set to 5. The semantic similarity scores were

approximated by inducing a decision tree on the data and interpolating the phonetic

similarity thresholds for each level.

The 11-point interpolated average precision was adopted to measure the e�ective-

ness of the various cognate identi�cation methods. The output of the system is a

list of suspected cognate pairs sorted by their similarity scores. Typically, true cog-

nates are very frequent near the top of the list, and become less frequent towards the

bottom. The threshold value that determines the cut-o� depends on the intended

application, the degree of relatedness between languages, and the particular method

used. Rather than reporting precision and recall values for an arbitrarily selected

threshold, precision is computed for the recall levels of 0%, 10%, 20%, . . . , 100%,

and then averaged to yield a single number. In the experiments reported below, I

uniformly assumed the precision value at 0% recall to be 1, and the precision value

at 100% recall to be 0.

Chapter 5. Identification of cognates 88

Languages Trunc. DICE LCSR ALINE

Fox Menomini .122 .113 .163 .383

Fox Cree .196 .215 .303 .424

Fox Ojibwa .235 .277 .382 .508

Menomini Cree .122 .129 .245 .389

Menomini Ojibwa .108 .121 .202 .375

Average on test set .157 .171 .259 .416

Cree Ojibwa .239 .430 .592 .619

Table 5.15: Average precision for various phonetic methods.

Table 5.15 compares the average precision achieved by various methods on the six

language pairs. The results on the development set (Cree{Ojibwa) are separated from

the results on the test set (the remaining �ve pairs). ALINE outperforms all ortho-

graphic coeÆcients, including LCSR. The dominance of ALINE is more pronounced

for more remote pairs, such as Fox{Menomini. Dice's coeÆcient performs poorly as

a cognate identi�cation method, being only slightly better than a naive truncation

method.

Table 5.16 and 5.17 show the results when semantic information is combined with

LCSR and ALINE, respectively. Methods G, K, and W represent increasingly so-

phisticated semantic similarity detection: Method G considers gloss identity only,

Method K adds keyword-matching, and Method W employs also WordNet relations.

All methods that use the semantic information provided by the glosses perform sub-

stantially better than the purely phonetic methods. Impressive results are reached

even when only gloss identity is considered. Adding keyword-matching and WordNet

relations brings additional, albeit modest, improvements. Again, ALINE does better

Chapter 5. Identification of cognates 89

Languages Semantic method

None G K W

Fox Menomini .383 .579 .616 .630

Fox Cree .424 .631 .636 .655

Fox Ojibwa .508 .633 .655 .660

Menomini Cree .389 .548 .562 .569

Menomini Ojibwa .375 .554 .588 .598

Average on test set .416 .589 .611 .622

Cree Ojibwa .619 .739 .750 .762

Table 5.16: Average precision for ALINE combined with various semantic methods.

than LCSR.

Figure 5.3 shows a more detailed comparison of the e�ectiveness of various meth-

ods on test sets, in the form of precision{recall curves. The �gure allows one to

determine an approximate precision level for a broad range of recall levels, and vice

versa. For example, Method W is able to identify almost 75% of all cognate pairs

if we are willing to accept a one-to-one ratio of true to false positives (50% preci-

sion). The curve for Method K, which would be slightly below the curve for Method

W, is omitted for clarity. The staircase-shaped curve labeled \Semantic" illustrates

the performance of a purely semantic method, in which only the similarity of glosses

is considered. Each step corresponds to a semantic similarity level. For example,

selecting all cases of gloss identity yields .627 recall at .237 precision.

Figure 5.4 illustrates the e�ect of varying the setting of the parameter � on the av-

erage precision of COGIT when Method W is used. Recall that the value of � reects

the relative importance of the semantic vs. phonetic similarity. The average precision

Chapter 5. Identification of cognates 90

Languages Semantic method

None G K W

Fox Menomini .163 .460 .494 .498

Fox Cree .303 .569 .564 .583

Fox Ojibwa .382 .596 .615 .624

Menomini Cree .245 .479 .494 .504

Menomini Ojibwa .202 .414 .473 .479

Average on test set .259 .504 .528 .538

Cree Ojibwa .592 .727 .743 .749

Table 5.17: Average precision for LCSR combined with various semantic methods.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

In
te

rp
ol

at
ed

 p
re

ci
si

on

Recall

"Truncation"
"DICE"
"LCSR"
"ALINE"

"Method G"
"Method W"
"Semantic"

Figure 5.3: Precision-recall curves for various methods.

Chapter 5. Identification of cognates 91

0.4

0.45

0.5

0.55

0.6

0.65

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3-
po

in
t i

nt
er

po
la

te
d

av
er

ag
e

pr
ec

is
io

n

alpha

Method W

Figure 5.4: Interpolated 3-point average precision of Method W on test sets as a

function of the parameter �.

for � = 0 is :416, which represents the performance of ALINE (cf. Table 5.15). The

optimal value of � for both the development and the test sets is close to 0.2. Intu-

itively, more weight has to be given to the phonetic score because phonetic similarity

between cognates is more reliably detected than their semantic relationship. With �

approaching 1, the performance levels o� at :511, as precedence is increasingly given

to the semantic score, which divides all pairs into nine classes corresponding to the

scale of Table 5.8. When � is set to 1, Method W reduces to the pure \Semantic"

approach of Figure 5.3: because the phonetic score is no longer available to order

candidate pairs within semantic classes, the average precision plummets to :161.

Chapter 5. Identification of cognates 92

5.5 Discussion

5.5.1 The role of WordNet

The contribution of WordNet to the overall performance of the system is relatively

small. This is due both to the properties of the test data and to WordNet's shortcom-

ings. Since the data for all Algonquian languages originates from a single project, it

is quite homogeneous. As a result, many glosses match perfectly within cognate sets,

which limits the need for application of WordNet lexical relations.

Another problem is that even after preprocessing that includes checking the spell-

ing, lemmatization, and stop word removal, many of the glosses are not in a form

that can be recognized by WordNet. Some rare words, such as `spawner', `windigo',

`cradleboard', `smartweed', and `spot�sh', are simply not in WordNet. Compound

words that are recorded in WordNet as two words, such as `sweet grass' or `powder

horn' are not identi�ed if written as a single word.

When many words have several meanings that participate in di�erent synsets,

the senses detected to be related are not necessarily the senses used in the glosses.

For example, star and lead share a synset (`an actor who plays a principal role'),

but in the Algonquian vocabularies both words are always used in their most literal

sense. Only in the case of complete identity of glosses can the lexemes be assumed

to be synonymous in all senses. On the other hand, words that are semantically

very similar, such as puppy and dog, are often far from each other in the WordNet

hierarchy.

Apart from synonymy, two other semantic relations play a role. By following

the meronymy (is-a part-of) links, COGIT successfully associated such concepts as

mattress/bed, our/bread, and bowstring/bow. However, it also linked gun (a pedal

Chapter 5. Identification of cognates 93

that controls the throttle valve) with airplane, and ear in `ear of corn' with head in

`ox, head of cattle'. Examples of concepts correctly associated by the hypernymy

(is-a-kind-of) links include gooseberry/currant, kindness/goodness, sea/body of water,

but snare/drum is o� target (one of the senses of snare is `a small drum with two heads

and a snare stretched across the lower head').

In the majority of cases, the semantic associations made by WordNet are plau-

sible: acorn is a part of oak, mud is a kind of soil, and spittle is the same thing as

saliva. Unfortunately, most of such pairs are not cognates. The detection of semantic

similarity can help, but the main burden of cognate identi�cation has to be carried

by the phonetic module.

5.5.2 False positives

The performance �gures are adversely a�ected by the presence of the usual \noise",

which is unavoidable in the case of authentic data. Manual preparation of the vocab-

ulary lists would undoubtedly result in better performance. Nevertheless, I decided

against correcting individual entries or cognation judgements. One reason was that

a comprehensive clean-up of the data of such a size would not only be extremely

tedious and time-consuming, but would also require advanced expertise in the �eld of

Algonquian linguistics. Moreover, I felt that a noisy data set provides a more trust-

worthy test for a cognate identi�cation program designed to help solve real linguistic

problems. Only limited automatic validation of the data had been performed: the

entries marked as doubtful were omitted; in the case of multiple entries of the same

lexeme, a unique entry was selected, with the preference given to the entries included

in the published dictionary.

It is not always easy to decide whether two similar entries are duplicates or le-

Chapter 5. Identification of cognates 94

gitimate variants. For example, Hewson's dictionary distinguishes three distinct cog-

nate sets that correspond to the following reconstructed Proto-Algonquian etyma:

*menehsyi, *meneh�s-, and *mene'tekwi. The three proto-forms, which are uniformly

glossed as `island', have seven extant reexes in four languages, COGIT cannot be

faulted for identifying all 34 resulting cross-language combinations as probable cog-

nates, but only �ve of those are counted as correct guesses because the remaining

ones span di�erent cognate sets.

In the case of *mahkahkwi `box', there is just one cognate set containing words

from each of the four Algonquian languages, including Fox mahkahkwi. However,

the Fox vocabulary lists contain another similar entry, mahkahk�ohi `little box, pail',

which did not make it into the dictionary, perhaps because it is a diminutive variant

of the other word. Clearly, mahkahk�ohi is cognate with other reexes of *mahkahkwi.

Nevertheless, since it is not listed in the dictionary, it produces a false positive in

every experiment that involves Fox. It would be quite diÆcult to track down all such

entries in the data as neither their lexemes nor their glosses match perfectly.

The performance �gures are lower also because of the usual imperfections of the

gold standard. In many cases, examination of apparent false positives leads to the

discovery of true cognates that are not identi�ed as such in Hewson's dictionary. Ta-

bles 5.18 and 5.19 contains examples of such word pairs. Apart from their strong

similarity of form and meaning, they exhibit many of the regular sound correspon-

dences identi�ed by Bloom�eld [1946]. Although the ultimate judgement belongs to

the Algonquian scholars, it is almost certain that all those pairs are genuine cognates.

The examples in Tables 5.18 and 5.19 are by no means an exhaustive list of all

new cognate pairs that could be obtained from the analysis of COGIT's output,

but rather an illustrative sample. The second column from the left contains the

numbers of the corresponding cognate sets in Hewson's dictionary, if applicable. The

Chapter 5. Identification of cognates 95

Similarity score
Set Lang. Lexeme Gloss

phon sem overall

Cree p��s�akan�apiy `rope, rawhide thong'
1 |

Ojib. p���s�s�akaniy�ap `string'
0.62 0.00 0.50

Cree kaskipit�akan `tobacco pouch'
2 |

Ojib. ka�skipit�akan `pouch'
0.88 0.50 0.81

Cree s��kwan `grate for wood'
3 3087

Ojib. �s��kwan `grindstone'
0.83 0.00 0.67

Cree p��simohk�an `watch, clock'
4 |

Ojib. p��ssimokk�an `clock'
0.72 1.00 0.77

Cree p��minikan `twist tobacco'
5 2897

Ojib. p��minikan `auger, screw'
0.91 0.00 0.73

Cree amiskomin `yellow blackberry'
6 1731

Ojib. miskomin `raspberry'
0.82 0.00 0.66

Cree s��wit�akan `salt'
7 3114

Ojib. �s��witt�akan `salt'
0.75 1.00 0.80

Cree wat�ow `clot of blood'
8 3570

Fox at�owa `blood-clot'
0.68 0.50 0.64

Cree pipon `winter'
9 2665

Men. pep�on `year, winter'
0.77 1.00 0.82

Cree s��wit�akan `salt'
10 3114

Men. s�eweht�akan `salt'
0.74 1.00 0.79

Cree k�ahk�akiw `raven'
11 0843

Men. k�ak�akew `raven'
0.73 1.00 0.79

Cree t�oht�os�apoy `milk'
12 |

Men. t�ot�ohsapoh `milk'
0.65 1.00 0.72

Cree misis�ahk `horsey'
13 1874

Men. mes�as�ah `horsey'
0.64 1.00 0.71

Cree �emihkw�an `spoon'
14 0605

Men. �Emeskwan `ladle, spoon'
0.62 1.00 0.70

Cree kisis�owin `bodily heat, fever'
15 1112

Men. kes��swan `fever'
0.62 1.00 0.70

Cree s�ominis `raisin'
16 |

Men. s�omen `raisin, grape'
0.62 1.00 0.70

Cree mimikw�as `buttery'
17 |

Men. m��m��kw�Ew `buttery'
0.62 1.00 0.69

Cree m�os�ap�ew `unmarried man'
18 |

Men. m�os�ap�Ewew `bachelor, single man'
0.66 0.70 0.67

Fox m��k�atiweni `�ght'
19 1948

Men. m��k�atwan `war, �ghting'
0.66 0.70 0.67

Table 5.18: Examples of cognate pairs not included in Hewson's dictionary.

Chapter 5. Identification of cognates 96

Similarity score
Set Lang. Lexeme Gloss

phon sem overall

Fox pehkwikan�akani `ankle'
20 2704

Men. nep�Ehkikan�akon `ankle'
0.65 1.00 0.72

Fox m���ciweni `food'
21 |

Men. m���cehswan `food'
0.58 1.00 0.67

Fox p�a�skesikani `gun'
22 2502

Men. p��hkesekan `gun cap, dynamite'
0.64 0.50 0.61

Fox apahkwayik�ani `reed lodge'
23 |

Men. ap�ahkiwik�an `reed house'
0.63 0.50 0.60

Fox nah�akanihkw�ewa `daughter in law'
24 2103

Men. noh�ahkaniahkiw `daughter-in-law'
0.62 0.50 0.60

Fox kehtik�ani `�eld, farm'
25 1078

Ojib. kittik�an `�eld, garden'
0.66 1.00 0.73

Fox manet�owa `spirit'
26 1570

Ojib. manit�ons `worm, insect, spirit'
0.64 1.00 0.71

Fox nakam�oni `song'
27 2255

Ojib. nakamowin `song'
0.63 1.00 0.71

Fox kahke�s�ewi `charcoal'
28 |

Ojib. kekki�s�e `charcoal'
0.49 1.00 0.60

Fox keh�c��pis�oni `belt'
29 |

Ojib. ki�c�cippisowin `belt'
0.50 1.00 0.60

Fox at�amina `maize-plant'
30 1590

Ojib. mant�amin `grain of corn'
0.66 0.35 0.60

Fox �ates�ohk�akana `sacred story'
31 0129

Ojib. �atiss�okk�an `story or legend'
0.60 0.50 0.58

Men. pep�akewey�an `shirt'
32 |

Ojib. papakiwiy�an `shirt'
0.74 1.00 0.79

Men. w�awan `egg'
33 3513

Ojib. w�awanw `egg'
0.70 1.00 0.76

Men. s�omenapoh `wine'
34 |

Ojib. �s�omen�ap�o `wine'
0.64 1.00 0.72

Men. s�usk��kahekan `at iron'
35 |

Ojib. �s�o�skw�eka'ikan `at iron, iron'
0.64 1.00 0.71

Men. k�ohtakan `throat'
36 1371

Ojib. kunt�akan `throat'
0.62 1.00 0.69

Men. p��kipo�cekan `plow'
37 2725

Ojib. pimip�o�cikan `plough'
0.69 0.70 0.69

Men. p�Esekokasiw `horse'
38 |

Ojib. p�e�sik�oka�s�� `horse'
0.61 1.00 0.69

Table 5.19: Examples of cognate pairs not included in Hewson's dictionary (cont.).

Chapter 5. Identification of cognates 97

phonetic, semantic and overall similarity scores are given in the rightmost columns.

Some glosses have been truncated to preserve the space.

A successful detection of semantic similarity is usually due to some kind of surface

similarity. The majority of pairs in Tables 5.18 and 5.19 have the maximum semantic

similarity score of 1:00, thanks to the identity of at least one gloss. The score of 0:5,

which also comes up with some frequency, identi�es the cases where the keywords

match even though the entire glosses do not. In pair 24, `daughter' is identi�ed as

a keyword after the marking script splits `daughter-in-law' into three words. Pair 23

is an example where marking only the head noun as keyword would not work. One

could consider splitting the glosses containing the `or' conjunction, such as the one in

Pair 31, into two glosses; it is diÆcult however to handle cases like `making or supply

of moccasins'.

The cases where WordNet has made the di�erence are fewer. In pair 2, `pouch' is

actually a hypernym of `tobacco pouch', but keyword identity gets the same score as

gloss hypernymy. Pair 18 illustrates the precedence of gloss synonymy (`unmarried

man' ' `bachelor') over keyword identity (`man'). In pair 37, WordNet comes to the

rescue after string matching fails to associate two spelling variants. A real ash of

arti�cial intelligence occurs in pair 30, where the semantic similarity of `maize-plant'

and `grain of corn' is detected.

The similarity of pairs 1 and 6 was recognized by the early versions of COGIT,

which computed the link distance between concepts. Both `rope'/`string' and `black-

berry'/`raspberry' are coordinate terms, that is, words that have the same hypernym.

Such a close relationship is still possible to detect using the current approach: in

addition to comparing a gloss with the hypernymy list of the opposite gloss, the pro-

gram would have to compare both hypernymy lists with each other. However, the

real problem is that by increasing the radius of the semantic radar the program lets

Chapter 5. Identification of cognates 98

in an avalanche of false positives (cf. Table 5.9 on page 82). My experiments indicate

that, at least until better lexical resources become available, limiting the range of

comparisons to the most immediate WordNet neighbours may be the wisest strategy.

5.6 Conclusion

The results show that it is possible to identify a large portion of cognates in related

languages solely on the basis of phonetic and semantic similarity. Phonetic simi-

larity is a more reliable indication of cognation than semantic similarity. ALINE,

a phonetically-based program, outperforms the simple orthographic methods on the

cognate identi�cation task. Analysis of semantic information extracted from glosses

yields a dramatic increase in the number of identi�ed cognates. Most of the gain

comes from detecting entries that have matching glosses, but the use of a lexical

resource can further enhance the contribution of the semantic module.

A system such as COGIT can serve as one of the principal modules of a language

reconstruction system. On its own, it could be of assistance to comparative linguists

dealing with large vocabulary data from languages with which they are unfamiliar.

Beyond diachronic phonology, the techniques and �ndings presented here may also be

applicable to tasks such as bitext alignment or automatic construction of translation

lexicons.

Chapter 6

Determination of correspondences

The main objection that can be raised against the algorithm for cognate identi�cation

described in the previous chapter is that the phonetic alignment and the phonetic sim-

ilarity score depend solely on absolute phonetic similarity. Most linguists believe that

recurrent sound correspondences (henceforth referred to simply as correspondences)

provide a more reliable evidence of cognation. For example, the English verb have is

not cognate with Latin habere `to have', as implied by the phonetic and semantic sim-

ilarity, but rather with capire `to catch'. This follows from the well-known Grimm's

Law, which speci�es that English [h] regularly corresponds to Latin [k]. Other known

correspondences between English and Latin, such as t:d, T:t, n:n, are demonstrated by

the word pairs in Table 6.1. The corresponding phonemes shown in boldface originate

from a single proto-phoneme. Thus, correspondences make it possible to distinguish

cognates from loan words and chance resemblances. Could correspondences take the

place of phonetic similarity as the basis for the identi�cation of cognates?

The correspondences also provide decisive evidence for the relatedness of lan-

guages. However, because manual determination of correspondences is an extremely

time-consuming process, it has yet to be accomplished for many proposed language

99

Chapter 6. Determination of correspondences 100

English Latin English Latin

t E n d e k e `ten' t �u d u o `two'

�� t e d `eat' t �u T d e n t `tooth'

n E s t n i d `nest' n �� g e n `knee'

n E f j �u n e p o t `nephew' f u t p e d `foot'

f �o m s p u m `foam' w u l f l u p `wolf'

T r �� t r e `three' r �u t r a d i k `root'

s I t s e d `sit' h a r t k o r d `heart'

h O r n k o r n `horn' b r @ D @ r f r a t r `brother'

Table 6.1: Examples of English{Latin cognates exhibiting correspondences.

families. A system able to perform this task automatically from unprocessed bilingual

wordlists could be of great assistance to comparative linguists. The Reconstruction

Engine of Lowe and Mazaudon [1994], a set of programs designed to be an aid in

language reconstruction, as well as other approaches reviewed in Section 3.2, require

a set of correspondences to be provided beforehand.

Although it may not be immediately apparent, there is a strong similarity between

the task of matching phonetic segments in a pair of cognate words, and the task of

matching words in two sentences that are mutual translations (Figure 6.1). The

consistency with which a word in one language is translated into a word in another

language is mirrored by the consistency of sound correspondences. The former is due

to the semantic relation of synonymy, while the latter follows from the principle of

the regularity of sound change. Thus, as already asserted by Guy [1994], it should be

possible to use similar techniques for both tasks.

The primary objective of the method proposed in this chapter is the automatic

determination of correspondences in bilingual wordlists, such as the one in Table 6.1.

The method exploits the idea of relating correspondences in bilingual wordlists to

Chapter 6. Determination of correspondences 101

l f

l u p

w u

Nix iacet in terra

onlies the groundSnow

Figure 6.1: The similarity of word alignment in bitexts and phoneme alignment be-

tween cognates.

translational equivalence associations in bitexts through the employment of models

developed in the context of statistical machine translation. The second task addressed

in this chapter is the identi�cation of cognates on the basis of the discovered corre-

spondences. The experiments to be described in Section 6.5 show that the method is

capable of determining correspondences in bilingual wordlists in which less than 30%

of pairs are cognates, and outperforms comparable algorithms on cognate identi�ca-

tion. Although the experiments focus on bilingual wordlists, the approach presented

in this chapter could potentially be applied to other bitext-related tasks.

6.1 Related work

In a schematic description of the comparative method, the two steps that precede

the determination of correspondences are the identi�cation of cognate pairs and their

phonetic alignment. Indeed, if a comprehensive set of correctly aligned cognate pairs

is available, the correspondences could be extracted by simply following the alignment

links. Unfortunately, in order to make reliable judgements of cognation, it is necessary

Chapter 6. Determination of correspondences 102

to know in advance what the correspondences are. Historical linguists solve this

apparent circularity by guessing a small number of likely cognates and re�ning the

set of correspondences and cognates in an iterative fashion.

Guy [1994] outlines a correspondence-based algorithm for identifying cognates in

bilingual wordlists. It is discussed here rather than in Chapter 5 because it makes

no use of the notion of phonetic similarity. Since the method requires a set of word

pairs large enough to support a statistical analysis, it cannot be applied to an isolated

word pair.

The algorithm estimates the probability of phoneme correspondences by employ-

ing a variant of the �2 statistic on a contingency table, which indicates how often two

phonemes co-occur in words of the same meaning. The goal of the algorithm is not to

determine correspondences per se, but rather to use them to estimate the likelihood

of cognation of word pairs. For every word pair, it �nds an alignment that maximizes

the sum of the correspondence probabilities, and then converts the alignment score

into an estimate of cognation.

Guy's paper is not a model of clarity or rigour: the algorithm is de�ned by ex-

ample, the theoretical grounding is shaky, and there is no quantitative evaluation on

authentic language data. However, the program COGNATE, which implements the

algorithm, is publicly available and can be put to a test. An experimental evaluation

of COGNATE is described in Section 6.5.

Oakes [2000] adopts a much simpler approach to discovering correspondences.

Sound changes are deemed to be regular if they are found to occur more than once

in the aligned cognates. In contrast with Guy's method, Oakes does not compute

any co-occurrence statistics, but relies solely on the phonetic similarity of words. The

discovered correspondences are not used for separating cognates from non-cognates.

Section 6.5 contains an evaluation of one of his programs (JAKARTA) on the cognate

Chapter 6. Determination of correspondences 103

identi�cation task.

Because the tasks of determination of correspondence and the identi�cation of

cognates are intertwined, some of the bitext-related algorithms implicitly determine

and employ correspondences. Tiedemann [1999] considers automatic construction

of weighted string similarity measures from bitexts. He includes three lists of the

most frequent character \mappings" between Swedish and English, which correspond

to his three mapping approaches (single characters, vowel and consonant sequences,

and non-matching parts of two strings). However, because genetic cognates in the

data seem to be outnumbered by borrowings, the lists contain few genuine corre-

spondences. Mann and Yarowsky [2001] take advantage of language relatedness in

order to automatically induce translation lexicons. In their search for cognates, they

discover most probable character \substitutions" across languages. In the provided

French{Portuguese examples, phonologically plausible correspondences b:v, t:d mix

with mere orthographic regularities c:q, x:s.

Knight and Graehl [1998] in their paper on back-transliteration from the Japanese

syllabic script katakana to the English orthography consider the sub-task of aligning

the English and Japanese phonetic strings. They apply the estimation-maximization

(EM) algorithm to generate symbol-mapping probabilities from 8,000 pairs of un-

aligned English/Japanese sound sequences. It is possible to view the sound pairs

with the highest probabilities as the strongest recurrent correspondences between the

two languages. Naturally, the existence of those correspondences is an artifact of the

transliteration process, rather than a consequence of a genetic language relationship.

Nevertheless, it may be possible to employ a similar approach to discover recurrent

sound correspondences in genuine cognates. A drawback of the alignment model pre-

sented in the paper is an asymmetric, one-to-many mapping between the English and

Japanese sounds, and a restricted set of edit operations that excludes both insertions

Chapter 6. Determination of correspondences 104

and deletions. These restrictions are designed to make the models less expensive to

compute.

6.2 Statistical machine translation

Statistical machine translation was proposed by the IBM group [Brown et al., 1990a]

as the method of building translation systems automatically from large bitexts by

applying the noisy channel model. The idea is to combine a language model, which

assigns a probability to every sentence in the target language, with a translation

model, which assigns a probability to all pairings of the source language sentences with

the target language sentences. The third main component of a statistical machine

translation system, the decoder, actually �nds the actual target language sentence

that maximizes the product of the probabilities assigned by the language model and

the translation model.

A translation model approximates the probability that two sentences are mutual

translations by computing the product of the probabilities that each word in the

target sentence is a translation of some source language word. A model of translation

equivalence that determines the word translation probabilities can be induced from

bitexts. The diÆculty lies in the fact that the mapping of words in bitexts is not

known in advance. The sentences and the words within the sentences have to be �rst

aligned by some method. While the sentence order is by and large identical in both

parts of a bitext, the word order in not. The following section discuses the problem

of word alignment in bitexts in more detail.

Chapter 6. Determination of correspondences 105

6.2.1 The word-to-word model of translational equivalence

Algorithms for word alignment in bitexts aim at discovering word pairs that are mu-

tual translations. Since words that are mutual translations tend to co-occur more

frequently than other word pairs, a straightforward approach is to estimate the like-

lihood of translational equivalence by computing a similarity function based on a

co-occurrence statistic, such as mutual information, Dice's coeÆcient, or the �2 test.

The underlying assumption is that the association scores for di�erent word pairs are

independent of each other.

Melamed [2000] shows that the assumption of independence leads to invalid word

associations, and proposes an algorithm for inducing models of translational equiva-

lence that outperform the models that are based solely on co-occurrence counts. His

models employ the so-called one-to-one assumption, which formalizes the observa-

tion that most words in bitexts are translated to a single word in the corresponding

sentence. The algorithm, which is related to the expectation-maximization (EM) al-

gorithm, iteratively re-estimates the likelihood scores which represent the probability

that two word types are mutual translations.

I present here a summary of Melamed's algorithm, followed by a more detailed

description of its parts. In the �rst step, the likelihood scores are initialized using

only the co-occurrence information. Next, the likelihood scores are used to induce a

set of one-to-one links between word tokens in the bitext. The links are determined

by a greedy competitive linking algorithm, which proceeds to link pairs that have the

highest likelihood scores. After the linking is completed, the link counts are used to

re-estimate the likelihood scores, which in turn are applied to �nd a new set of links.

The process is repeated until the translation model converges to the desired degree.

For the initialization of the likelihood scores, Melamed employs the G2 statis-

Chapter 6. Determination of correspondences 106

tic [Dunning, 1993]. The G2 statistic provides, on the basis of a contingency table,

an estimate of how unlikely it is that two tokens co-occur by chance. Let cooc(u; v)

be the number of co-occurrences of u and v, Furthermore,

k1 = cooc(u; v); k2 = cooc(u;:v) =
X
t6=v

cooc(u; t)

n1 = cooc(�; v) =
X
s

cooc(s; v); n2 = cooc(�;:v) =
X
s

X
t6=v

cooc(s; t)

p1 =
k1
n1
; p2 =

k2
n2
; p =

k1 + k2
n1 + n2

Then, the G2 statistic is de�ned as:

G2(u; v) = �2 log
B(k1 jn1; p1)B(k2 jn2; p2)

B(k1 jn1; p)B(k2 jn2; p)

where B(k jn; p) =
�
n

k

�
pk(1�p)n�k denotes the probability of k being generated from

a binomial distribution with parameters n and p. The pairs in which one word token

is NULL are initialized to an in�nitesimal value.

The greedy competitive linking algorithm is used to induce a set of links in the

bitext. First, all likelihood scores are sorted in decreasing order. The pair (u; v) with

the highest score is selected and all co-occurring word pairs (u; v) in the bitext are

linked. For the pairs of the form (u;NULL), all u word tokens are linked to NULL.

Then, the process is repeated for the pair with the next highest score. Each word can

be linked at most once.

Melamed presents three translation-model estimation methods. Method A re-

estimates the likelihood scores as the logarithm of the probability of jointly generating

the pair of words u and v:

scoreA(u; v) = log
links(u; v)P

u0;v0 links(u0; v0)

where links(u; v) denotes the number of links induced between u and v. Note that

the co-occurrence counts of u and v are not used for the re-estimation.

Chapter 6. Determination of correspondences 107

In Method B, an explicit noise model with auxiliary parameters �+ and �� is con-

structed in order to improve the estimation of likelihood scores. �+ is the probability

that a link is induced between two co-occurring words that are mutual translations,

while �� is the probability that a link is induced between two co-occurring words that

are not mutual translations. Ideally, �+ should be close to 1 and �� should be close to

0. The actual values of the two parameters are calculated by the standard method of

maximum likelihood estimation. The probability of the link frequency distributions

Pr(links jmodel) =
Y
u;v

Pr(links(u; v) j cooc(u; v); �+; ��)

expressed as a function of �+ and �� has only one dominant global maximum, which

can be established by hill-climbing. The score function is de�ned as:

scoreB(u; v) = log
B(links(u; v) j cooc(u; v); �+)

B(links(u; v) j cooc(u; v); ��)
:

In Method C, bitext tokens are divided into classes, such as content words, function

words, punctuation, etc., with the aim of producing more accurate translation models.

The auxiliary parameters are estimated separately for each class. The score function

is de�ned as:

scoreC(u; v jZ = class(u; v)) = log
B(links(u; v) j cooc(u; v); �+Z)

B(links(u; v) j cooc(u; v); ��Z)
:

The evaluation was performed on a 16; 000-word French{English bitext. The

three translation-model estimation methods were compared to Model 1 of Brown

et al. [1990b], which is based exclusively on co-occurrence counts. In all experiments,

Methods B and C achieved signi�cantly higher accuracy than Model 1 and Method A.

When all links were considered, Method A outperformed Model 1, and Method C

outperformed Method B. However, when closed-class links were ignored, Model 1 was

better than Method A, and the performance of Methods B and C was roughly the

same.

Chapter 6. Determination of correspondences 108

6.2.2 Noncompositional compounds

As a way of relaxing the one-to-one restriction, Melamed [1997] proposes an elegant

algorithm discovering noncompositional compounds (NCCs) in bitexts. An NCC is

a word sequence, such as \high school", whose meaning cannot be synthesized from

the meaning of its components. Since many NCCs are not translated word-for-word,

their detection is essential in most NLP applications.

Melamed's information-theoretic approach is based on the observation that treat-

ing NCCs as a single unit rather than as a sequence of independent words increases the

predictive power of statistical translation models. Therefore, it is possible to establish

whether a particular word sequence should be considered a NCC by comparing two

translation models that di�er only in their treatment of that word sequence. For the

objective function that measures the predictive power of a translation model Pr(s; t),

Melamed selects mutual information:

I(S;T) =
X
s2S

X
t2T

Pr(s; t) log
Pr(s; t)

Pr(s)Pr(t)

Melamed's approach to identi�cation of NCCs is to induce a trial translation model

that involves a candidate NCC and compare the model's total mutual information

with that of a base translation model. The NCC is considered valid only if there is

an increase of the mutual information in the trial model. The contribution of s to

I(S;T) is given as:

i(s) =
X
t2T

Pr(s; t) log
Pr(s; t)

Pr(s)Pr(t)
:

In order to make this procedure more eÆcient, Melamed proposes inducing the trans-

lation model for many candidate NCCs at the same time.

A complex gain-estimation method is used to guess whether a candidate NCC is

useful before inducing a translation model that involves this NCC. Each candidate

Chapter 6. Determination of correspondences 109

NCC xy causes the net change �xy in the objective function, which can be expressed

as:

�xy = i0(x) + i0(y) + i0(xy)� i(x)� i(y);

where i and i0 are predictive value functions for source words in the base translation

model and in the trial translation model, respectively. i0(x) is estimated on the

assumption that the links involving x will not change in the trial translation model

unless y occurs to the right of x:

i0(x) = i(x : RC 6= y);

where (x : RC 6= y) denotes the set of tokens of x whose right context is y. Similarly,

i0(y) = i(y : LC 6= x);

where LC denotes word context to the left. Finally, i'(xy) is estimated as follows:

i0(xy) = i(x : RC = y) + i(y : LC = x):

Given parallel texts E and F , the algorithm iteratively augments the list of NCCs.

The iteration starts by inducing a base translation model between E and F . All con-

tinuous bigrams which are estimated to increase mutual information of the translation

model are placed on a sorted list of candidate NCCs, but for each word token, only the

most promising NCC is allowed to remain on the list. Next, a trial translation model

is induced between E 0 and F , where E 0 is obtained from E by fusing each candidate

NCC into a single token. If the net change in mutual information gain contributed

by a candidate NCC is greater than zero, all occurrences of that NCC in E are per-

manently fused; otherwise the candidate NCC is placed on a stop-list. The entire

iteration is repeated until reaching an application-dependent stopping condition.

The method was evaluated on a large English{French bitext containing transcripts

of Canadian parliamentary debates (Hansards). In one experiment, after six iterations

Chapter 6. Determination of correspondences 110

the algorithm identi�ed on both sides of the bitext about four hundred NCCs that

increased the mutual information of the model. Another experiment, which is partic-

ularly relevant for the application discussed in this chapter, showed that the method

was capable of discovering meaningful NCCs in a data set consisting of spellings and

pronunciations of English words (for example, \ng" was determined to be a NCC of

English spelling because it consistently \translates" into the sound /N/). Neverthe-

less, the author admits that the full NCC recognition algorithm was not tested in any

real application.

6.3 Models of phoneme correspondence

Thanks to its generality, Melamed's parameter estimation process can be adapted to

the problem of determining correspondences. Moreover, his models are symmetric,

which makes them more suitable for this task than the related IBM models [Brown et

al., 1990a]. The main idea is to induce a model of sound correspondence in a bilingual

wordlist, in the same way as one induces a model of translational equivalence among

words in a parallel corpus. After the model has converged, phoneme pairs with the

highest likelihood scores represent the most likely correspondences.

The most important modi�cation of the original algorithm concerns the method

of aligning the segments in two corresponding strings. In sentence translation, the

links frequently cross and it is not unusual for two words in di�erent parts of sen-

tences to correspond. On the other hand, the processes that lead to link intersec-

tion in diachronic phonology, such as metathesis, are sporadic. By imposing the

no-crossing-links constraint on alignments, a dramatic reduction of the search space

is achieved, and the approximate competitive linking algorithm of Melamed can be

replaced with a variant of the well-known dynamic programming algorithm of Wagner

Chapter 6. Determination of correspondences 111

and Fisher [1974].

Null links in statistical machine translation are induced for words on one side of

the bitext that have no clear counterparts on the other side of the bitext. Melamed's

algorithm explicitly calculates the likelihood scores of null links for every word type

occurring in a bitext. In diachronic phonology, phonological processes that cause

insertion or deletion of segments usually operate on individual words rather than

across the language. Therefore, I model insertion and deletion by employing an indel

penalty for unlinked segments.

The alignment score is computed by summing the number of induced links, and

applying a small constant penalty for each unlinked segment, with the exception of

the segments beyond the rightmost link (the so-called half-local alignment described

in Section 4.4.3). The exception reects the relative instability of word endings in

the course of linguistic evolution. Metathesis is not considered. In order to avoid

inducing links that are unlikely to represent recurrent sound correspondences, only

pairs whose likelihood scores exceed a set threshold are linked. All correspondences

above the threshold are considered to be equally valid. In the cases where more than

one best alignment is found, each link is assigned a weight that is its average over the

entire set of best alignments (for example, a link present in only one of two competing

alignments receives the weight of 0:5).

The NCC algorithm is adapted with one major change. After inducing a trial

translation model between E 0 and F , the original algorithm accepts all candidate

NCCs that contribute a positive net change in mutual information gain. For the

detection of phoneme NCCs, I decided to accept all candidate NCCs that result in

a correspondence that has a likelihood score above the minimum-strength threshold

t described in the following section. I found that the strength of an induced cor-

respondence better reects the importance of a phoneme cluster than the mutual

Chapter 6. Determination of correspondences 112

information gain criterion.

6.4 Implementation

The method described above has been implemented as a C++ program, named

CORDI, which takes as input a bilingual wordlist and produces an ordered list of

correspondences. A model for a 200-pair list usually converges after 3{5 iterations,

which takes only a few seconds on a Sparc workstation. The user can choose be-

tween methods A, B, and C, described in Section 6.2, and an additional Method D.

In Method C, phonemes are divided into two classes: non-syllabic (consonants and

glides), and syllabic (vowels); links between phonemes belonging to di�erent classes

are not induced. Method D di�ers from Method C in that the syllabic phonemes do

not participate in any links.

Adjustable parameters include the indel penalty ratio d and the minimum-strength

correspondence threshold t. The parameter d �xes the ratio between the negative indel

weight and the positive weight assigned to every induced link. A lower ratio causes the

program to be more adventurous in positing sparse links. The parameter t controls

the tradeo� between reliability and the number of links. In Method A, the value of

t is the minimum number of links that have to be induced for the correspondence

to be valid. In methods B, C, and D, the value of t implies a score threshold of

t � log �+

��
, which is a score achieved by a pair of phonemes that have t links out of t

co-occurrences. In all experiments described below, d was set to 0:15, and t was set

to 1 (suÆcient to reject all non-recurring correspondences). In Method D, where the

lack of vowel links causes the linking constraints to be weaker, a higher value of t = 3

was used.

The NCC approach is activated by specifying a -nN option, where N is the maxi-

Chapter 6. Determination of correspondences 113

mum number of iterations of the algorithm. The algorithm may terminate sooner if

two subsequent iterations fail to produce any candidate NCCs.

6.5 Evaluation

This section describes four experiments aimed at assessing CORDI's accuracy.

6.5.1 The data for experiments

The raw vocabulary lists and the dictionary of Proto-Algonquian described in Sec-

tion 5.4.1 constitute a valuable test data set also in this chapter. The Algonquian

correspondences are not included in the set, but they are relatively well documented

in [Bloom�eld, 1925; 1946]. Because of the large number of complex 1:2 and 2:2

correspondences, the Algonquian languages are ideal for testing the NCC approach.

The Comparative Indo-European Data Corpus is an important lexical resource

that is freely available on the World Wide Web. The corpus contains the Swadesh

200 lists for over 80 Indo-European languages and dialects, together with almost com-

plete cognation judgements. It was compiled in the 1960s by the renowned historical

linguist Isidore Dyen of Yale University, and played an important part in lexicosta-

tistical research [Dyen et al., 1992]. The data was originally represented on punched

cards by 26 ASCII letters, with diacritical marks handwritten on the cards. Unfortu-

nately, as the diacritical marks have not yet been transferred to electronic form, the

words are unsuitable for automatic phonetic analysis.

Kessler [2001] includes in his book the Swadesh 200 lists for Albanian, English,

French, German, Latin, Hawaiian, Navajo, and Turkish. The �rst �ve languages

belong to the Indo-European family and share a number of cognates. The lists are

available in the XML format from the author's web page. The data is of high quality.

Chapter 6. Determination of correspondences 114

Four variants of each etymon are provided: the root and the stem are given in a

phonetic transcription, and the full word is speci�ed both in the phonetic and in the

orthographic form. The cognation judgements are speci�ed either as incontrovertible

or as doubtful. Succinct notes provide bibliographical references as well as other

information.

In order to go beyond the Swadesh list of basic concepts, I extracted from the

linguistic literature a set of 112 established English{Latin cognate pairs. English

words were transcribed into phonetic notation with the aid of the publicly available

Carnegie Mellon Pronouncing Dictionary, version 0.6. A straightforward Perl script

was suÆcient to map letters to sounds in Latin words. The entire set is listed in

Appendix E.

6.5.2 Determination of correspondences in cognate pairs

In order to test CORDI's ability to determine correspondences in clean cognate data,

Method D was applied to the set of 112 English{Latin cognate pairs given in Ap-

pendix E. The correspondences with scores above the threshold of t = 3 are shown

in Table 6.2. The perfect agreement between the number of links and the number of

co-occurrences is striking, but not implausible, considering that the input set includes

many \textbook" examples of cognates, which are usually selected to illustrate the

regularity of correspondences. CORDI correctly identi�es the most salient segments

that have been preserved from Proto-Indo-European, and partially re-discovers the

venerable Grimm's Law, a set of sound changes that occurred in prehistoric times in

Proto-Germanic. As a result of discovering the t:d and T:t correspondences, the pro-

gram correctly aligns the troublesome tooth:dente pair, which was beyond the power

of a phonetic aligner (Section 4.8.1). The erroneous y:w correspondence is caused by

Chapter 6. Determination of correspondences 115

cooc links score valid
r:r 28 28 193.1 yes
n:n 23 23 158.6 yes
l:l 20 20 138.0 yes
s:s 17 17 117.3 yes
m:m 15 15 103.5 yes
f:p 13 13 89.7 yesy

t:d 11 11 75.9 yesy

k:g 8 8 55.1 yesy

y:w 6 6 41.4 no
b:f 6 6 41.4 yesy

h:k 5 5 34.5 yesy

T:t 4 4 27.6 yesy

Table 6.2: English{Latin correspondences discovered by Method D in pure cognate

data. The correspondences marked with a y are predicted by Grimm's Law.

the practice of transcribing the English diphthong [aI] as a vowel-consonant pair ay.

For comparison, Table 6.3 contains the correspondences identi�ed by Oakes's pro-

gram JAKARTA program in the same data. Only the correspondences identi�ed

more than three times are shown. JAKARTA is clearly less e�ective in linking the

related segments. For example, only 12 out of 20 co-occurrences of /l/ are detected,

whereas CORDI classi�es all 20 co-occurrences as correspondences. A quick perusal

of the relevant cognates con�rms that this is indeed the case. It is not surprising,

therefore, that overall CORDI discovers more correspondences than JAKARTA.

6.5.3 Determination of correspondences in word pairs

The assumption that a set of identi�ed cognates is already available as the input for

the program is not very plausible. The very existence of a reliable set of cognate pairs

implies that the languages in question have already been thoroughly analyzed and

that the sound correspondences are known. A more realistic input requirement is a

list of word pairs from two languages where that the corresponding words have the

Chapter 6. Determination of correspondences 116

RSC cooc count valid
r:r 28 21 yes
n:n 23 17 yes
s:s 17 17 yes
m:m 15 14 yes
l:l 20 12 yes
f:p 13 11 yes
t:t 8 8 yes
b:f 6 5 yes
k:g 8 4 yes
y:k 6 4 no

Table 6.3: Correspondences discovered by JAKARTA in pure cognate data.

same, well-de�ned meaning (such as the bilingual wordlist in Table 2.3 on page 11).

Determining correspondences in a list of synonyms is clearly a more challenging task

than extracting them from a list of reliable cognates because the non-cognate pairs

introduce noise into the data. Note that Melamed's original algorithm is designed to

operate on aligned sentences that are mutual translations.

In order to test CORDI's ability to determine correspondences in noisy data,

Method D was applied to Kessler's English{Latin 200-word list. Only 29% of word

pairs are actually cognate; the remaining 71% of the pairs are unrelated lexemes.

The top ten correspondences discovered by the program are shown in Table 6.4.

Remarkably, all but one are valid.

For comparison, the top ten phoneme matchings picked up by the �2 statistic are

shown in Table 6.5. Only four of them are valid correspondences. freq1 and freq2

refer to the frequencies of the pertinent phonemes in the English and Latin data,

respectively. Macrons denote double consonants, which are transcribed as single

segments in Kessler's data. One of the weaknesses of the �2 statistic is illustrated by

the fact that four of the pairs in Table 6.5 have high �2 values in spite of a single

co-occurrence in the data. It is tempting to try to correct this bias by establishing

Chapter 6. Determination of correspondences 117

cooc links score valid
r:r 26 24 158.7 yes
n:n 24 23 154.2 yes
t:d 18 18 122.4 yes
k:k 12 11 72.5 yes
s:s 11 10 65.7 yes
f:p 9 9 61.2 yes

m:m 10 9 58.9 yes
d:t 10 8 49.8 no
l:l 14 9 49.7 yes
h:k 7 7 47.6 yes

Table 6.4: English{Latin correspondences discovered by CORDI in noisy synonym

data.

freq1 freq2 cooc �2 valid
T:�s 10 1 1 22.3 no
T:�r 10 1 1 22.3 no
n:n 43 60 24 14.4 yes
m:m 20 30 10 12.9 yes
f:p 24 24 9 11.6 yes
t:d 49 37 18 11.6 yes
l:f 37 15 9 10.8 no
D:�n 10 2 1 9.0 no
N:g 6 21 3 8.7 no
v:y 6 3 1 8.4 no

Table 6.5: English{Latin correspondences discovered using the �2 statistic.

a threshold for the number of co-occurrences. Guy's [1994] program COGNATE

contains a number of such ad hoc corrections. The following section includes an

assessment of the program's e�ectiveness.

6.5.4 Identi�cation of cognates in word pairs

The quality of correspondences produced by CORDI is diÆcult to validate, quan-

tify, and compare with alternative approaches. However, it is possible to evaluate

the correspondences indirectly by using them to identify cognates. The likelihood

Chapter 6. Determination of correspondences 118

of cognation of a pair of words increases with the number of correspondences that

they contain. Since CORDI explicitly posits correspondence links between words, the

likelihood of cognation can be estimated by simply dividing the number of induced

links by the length of the words that are being compared. A minimum-length param-

eter can be set in order to avoid computing cognation estimates for very short words,

which tend to be unreliable. However, in order to provide a fair comparison with the

programs that do not impose any length constraints on words, the minimum-length

parameter was not used in the experiments described here.

ri word pair cognate? i pi
1 /hArt/:/kord/ yes 1 1.00
2 /hAt/:/kalid/ no
3 /sn�o/:/niw/ yes 2 0.66

Table 6.6: An example ranking of cognate pairs.

The evaluation method for cognate identi�cation algorithms adopted in this sec-

tion is to apply them to a bilingual wordlist and order the pairs according to their

scores (refer to Table 6.6). The ranking is then evaluated against a gold standard

by computing the n-point average precision, where n is the total number of cognate

pairs in the list. The n-point average precision is obtained by taking the average of

n precision values.

P =

Pn
i=1 pi
n

The partial precision values pi are calculated for each point in the list where we �nd

a cognate pair by the following formula:

pi =
i

ri

where i is the number of the cognate pair counting from the top of the list produced

by the algorithm, and ri is the rank of this cognate pair among all word pairs. The

Chapter 6. Determination of correspondences 119

n-point precision of the ranking in Table 6.6 (1:0+0:66)=2 = 0:83. A perfect ordering

of all cognate pairs before all non-cognate pairs achieves P = 1:0. The expected

n-point precision of a program that randomly orders word pairs is close to c, where c

is the proportion of cognate pairs in the list.

The n-point precision can further be normalized as: � = P�c
1�c

. Such a normaliza-

tion allows to compare accuracy without the need to take into account the density

of cognates in the input word list. The maximum value of � is of course 1:0. The

expected value of � for a random ordering turns out to be independent of c, and

approaches zero as the number of pairs N increases:

�(N) = (HN � 1)=(N � 1)

where Hn is the n-th harmonic number. �(200) is approximately :0245.

The development set consisted of three Swadesh 200 list pairs adapted from the

Comparative Indo-European Data Corpus. The Polish{Russian, Spanish{Rumanian,

and Italian{Serbo-Croatian were selected because they represent three di�erent lev-

els of relatedness, and also because they have relatively transparent grapheme-to-

phoneme conversion rules. They were transcribed into a phonetic notation by means

of Perl scripts and then stemmed and corrected manually. The ambiguities caused by

the imperfect transcription were corrected with the help of dictionaries and/or native

speakers of the languages in question.

Table 6.7 compares the average precision achieved by methods A, B, C, and D

on the development set. The cognation judgements from the Comparative Indo-

European Data Corpus served as the gold standard. The `Cognates' column contains

the ratio of the number of cognate pairs to the length of the list. Naturally, the

smaller the ratio, the harder the task becomes.

In order to objectively compare the methods proposed in this paper with other

Chapter 6. Determination of correspondences 120

Languages Proportion Method

of cognates A B C D

Polish Russian .735 .989 .994 .994 .986

Rumanian Spanish .585 .898 .948 .948 .875

Italian Serbo-Croatian .253 .499 .455 .527 .615

Table 6.7: Average cognate identi�cation precision on the development set for various

methods.

cognate identi�cation programs, �ve 200 Swadesh lists compiled by Kessler [2001]

were adopted as the test set. As the lists contain rich phonetic and morphological

information, the stemmed forms were automatically converted from the XML format

with virtually no extra processing. The word pairs classi�ed as doubtful cognates

were assumed to be unrelated.

The lists represent �ve Indo-European languages: English, German, French, Latin,

and Albanian. Apart from the English{German and the French{Latin pairs, all re-

maining language pairs are quite challenging for a cognate identi�cation program. In

many cases, the gold-standard cognate judgments distill the �ndings of decades of

linguistic research. In fact, for some of those pairs, Kessler �nds it diÆcult to show

by statistical techniques that the surface regularities are unlikely to be due to chance.

Nevertheless, in order to avoid making subjective choices, cordi was evaluated on

all possible language pairs in Kessler's set.

Two programs mentioned in Section 6.1, COGNATE and JAKARTA, were also

applied to the test set. COGNATE is available as an MS-DOS executable on the

World Wide Web. A special Perl script was written to transcribe the phonetic input

data into the required one-letter-per-phoneme format. Unfortunately, the program's

highly interactive nature (Table 6.8) makes it diÆcult to analyze the results of pro-

Chapter 6. Determination of correspondences 121

p i s k i

f 82 33 55 59 33

I 41 70 38 62 70

S 0 63 0 49 63

fIS/piski (word pair #49, pass #1)

I am 28% sure that they are NOT related.

I allowed only for matches >= 50.

The best I found were: fI S

piski

N(ext), P(revious), J(ump), M(inimum match), O(ther pass), Q(uit) ?

Table 6.8: A sample screen from Guy's program COGNATE.

cessing entire wordlists. The problem is aggravated by the fact that the MS-DOS

operating system is no longer in common use. For each word pair, the output had

to be manually captured and pasted into a �le, which was subsequently processed by

another dedicated Perl script. The script ordered the word pairs according to the de-

creasing con�dence scores, with the ties broken randomly. It took several thousands

of mouse clicks to arrive at the average precision �gures for the ten test wordlists.

The source code of JAKARTA was obtained directly from the author. Since in its

original form it only recognizes 26 phonemes, the program was amended according

to the author's instructions in order to make it recognize additional phonemes. As

in the case of COGNATE, special scripts handled the input data conversion and

the calculation of the average precision. Word pairs were ordered according to the

increasing edit distances, with random breaking of ties. Because of the adopted

evaluation method, JAKARTA's edit distance threshold of 4 for separating cognates

from non-cognates was ignored.

Chapter 6. Determination of correspondences 122

The results on the test set are shown in Table 6.9. The best result for each lan-

guage pair is underlined. The performance of COGNATE and JAKARTA is quite

similar, even though they represent two radically di�erent approaches to cognate iden-

ti�cation. On average, methods B, C, and D outperform both comparison programs.

On closely related languages, Method B, with its relatively unconstrained linking,

achieves the highest precision. Method D, which considers only consonants, is the

best on fairly remote languages, where vowel correspondences tend to be weak. The

only exception is the extremely diÆcult Albanian{English pair, where the relative

ordering of methods seems to be accidental. As expected, Method A is outperformed

by methods that employ an explicit noise model. However, in spite of its extra com-

plexity, Method C is not consistently better than Method B, perhaps because of its

inability to detect important vowel-consonant correspondences, such as the ones be-

tween French nasal vowels and Latin /n/. The results of Table 6.9 are normalized as

� in Table 6.10.

6.5.5 Determination of complex correspondences

In all the experiments described so far, the correspondences were assumed to consist

of single phonemes. In order to test the suitability of the NCC approach, a separate

experiment was performed on a subset of the Algonquian data. As in Section 6.5.3,

the goal was to determine correspondences from noisy wordlists. In this experiment, it

was possible to rigorously evaluate the resulting list of correspondences by comparing

it to the set of correspondences determined by Bloom�eld [1925; 1946].

The input data was automatically extracted from the raw vocabulary lists by

selecting all pairs of noun lexemes that had at least one gloss in common. The end

result of such an operation is bilingual wordlists containing both cognate and non-

Chapter 6. Determination of correspondences 123

Languages Proportion COGNATE JAKARTA Method

of cognates A B C D

English German .590 .878 .888 .936 .957 .952 .950

French Latin .560 .867 .787 .843 .914 .838 .866

English Latin .290 .590 .447 .584 .641 .749 .853

German Latin .290 .532 .518 .617 .723 .736 .857

English French .275 .324 .411 .482 .528 .545 .559

French German .245 .390 .406 .347 .502 .487 .528

Albanian Latin .195 .449 .455 .403 .432 .568 .606

Albanian French .165 .306 .432 .249 .292 .319 .437

Albanian German .125 .277 .248 .156 .177 .154 .312

Albanian English .100 .225 .227 .302 .373 .319 .196

Average .283 .484 .482 .492 .554 .567 .616

Table 6.9: Average cognate identi�cation precision on the test set for various methods.

Languages Proportion COGNATE JAKARTA Method

of cognates A B C D

English German .590 .702 .726 .844 .894 .882 .877

French Latin .560 .697 .517 .643 .804 .633 .695

English Latin .290 .423 .221 .415 .494 .646 .794

German Latin .290 .341 .321 .461 .610 .628 .799

English French .275 .067 .188 .285 .349 .372 .392

French German .245 .192 .213 .136 .340 .320 .375

Albanian Latin .195 .315 .322 .258 .294 .463 .511

Albanian French .165 .169 .320 .101 .153 .185 .325

Albanian German .125 .174 .141 .035 .059 .033 .214

Albanian English .100 .139 .141 .225 .304 .244 .107

Average .283 .322 .311 .340 .430 .441 .509

Table 6.10: Average cognate identi�cation precision normalized as �.

Chapter 6. Determination of correspondences 124

cognate pairs. This method of producing bilingual wordlists is not only faster than

the manual compilation, but also has the potential of incorporating cognates that are

outside the basic set of 200 concepts.

The Cree{Ojibwa list served as the development set, and the Fox{Menomini list

as the test set. Again, the latter turned out to be more challenging than the former.

The Cree{Ojibwa contained 732 pairs, including 242 (33.1%) cognate pairs. The Fox{

Menomini list contained 397 word pairs, including only 79 (19.9%) cognate pairs. This

is less than the number given in Table 5.12 on page 85 because not all cognate pairs

have a gloss in common.

Since the vowel correspondences in Algonquian are rather inconsistent, following

Hewson [1974], I decided to concentrate on consonants and consonant clusters. The

models were induced using Method C, which separates the syllabic and the non-

syllabic phonemes. On the Fox{Menomini data, the algorithm terminated after 12

iterations, which took several minutes. (When the NCC option is switched on, the

computation takes much longer because each iteration involves inducing anew both

the base and the trial translation models.)

Figure 6.2 shows the correspondences determined by CORDI (the right circle)

intersected with the ones enumerated by Bloom�eld (the left circle). S represents the

phoneme [S], C represents [Ù], and q represents the glottal stop [P]. The intersection of

both circles contains 20 correspondences that were correctly identi�ed by the program.

The three erroneous correspondences on the right (false positives) can be traced to

alignments of unrelated words. The resulting precision was therefore 87%. As for

the false negatives on the left, I manually analyzed the 79 cognate pairs available to

the program, and found that �s:hk and p:hp occur twice, h�c:q�c occurs once, and the

remaining seven complex correspondences do not occur at all. The h:q correspondence

is dubious because it only occurs within clusters. Since, by de�nition, recurrent

Chapter 6. Determination of correspondences 125

n:n m:m

s:hs

s:qns:hn

h:q

Sk:hk p:hp

k:hk

hk:Ck hp:sp

hC:hC ht:ht t:sk

hk:t

p:C

s:sh:h p:p

t:t k:k S:s

C:C hp:hp ht:qt

hk:hk C:hCSk:sk

s:qs S:qsS:hs n:hn

CORDIBloomfield

t:ht

hC:qC

Figure 6.2: The Fox{Menomini consonantal correspondences determined by a linguist

and by CORDI.

correspondences are those that occur at least twice, the recall on the test set was

91%. For comparison, on the same Fox{Menomini list, JAKARTA identi�es only

eight consonantal correspondences: n:n, m:m, h:h, s:s, p:p, t:t, k:k, and h:hs, of

which the single complex correspondence is not in Bloom�eld's set.

The results of the experiment are extremely encouraging. The accomplishment of

a very high precision and recall on a test set composed of 80% noise con�rms that

the iterative statistical approach advocated here is highly robust. The impressive

outcome should, however, be interpreted with caution. Because of the (unavoid-

ably) small number of target correspondences, the change of a single classi�cation

Chapter 6. Determination of correspondences 126

makes a di�erence of about 5% in the resulting precision/recall �gures. Moreover,

the decision to ignore vowels and glides helped the program to focus on the right

type of correspondences. Finally, the Algonquian consonantal correspondences are

almost context-free, which nicely suits the program's principles. Nevertheless, it is

a very satisfying situation when the author has to justify the results that seem too

outstanding.

6.6 Conclusion

I have presented a novel approach to the determination of correspondences in bilingual

wordlists. The results of experiments indicate that the approach is robust enough to

handle a substantial amount of noise that is introduced by unrelated word pairs.

CORDI does well even when the number of non-cognate pairs is more than double

the number of cognate pairs. When tested on the cognate-identi�cation task, CORDI

achieves substantially higher precision than comparable programs.

Since the correspondences determined by my program are explicitly posited, they

can be veri�ed by examining individual cognate pairs. This is in contrast with statis-

tical approaches of Ringe [1998] and Kessler [2001] that estimate the probability of

the existence of cognates in bilingual wordlists. Those methods do not provide veri�-

able evidence beyond a single value which expresses the likelihood that the correlation

between languages is statistically signi�cant. In addition, due to the stochastic na-

ture of the methods, such results are often diÆcult to reproduce. In my opinion, the

signi�cance tests alone are unlikely to convince historical linguists.

Another advantage of the algorithm presented here is its capability of linking

phonemes in any word position. The approaches that rely on the syllabic structure

of words [Ringe, 1992] or the character position within word [Tiedemann, 1999] tend

Chapter 6. Determination of correspondences 127

to produce rigid alignments, which are unable to handle phenomena such as epenthe-

sis (insertion of a vowel between consonants) or syncope (loss of a vowel between

consonants).

The results presented here prove that the techniques developed in the context of

statistical machine translation can be successfully applied to a problem in diachronic

phonology. I am convinced that the transfer of methods and insights is also possible

in the other direction.

Chapter 7

Wrap-up and outlook

I have presented algorithms for the three principal steps of the comparative method of

language reconstruction: the alignment of cognates, the identi�cation of cognates, and

the determination of correspondences. In this �nal chapter, I discuss the possibility of

integrating all three components into a self-contained program capable of performing

a large part of the reconstruction process, and I point out some other directions for

future research. I conclude with a review of the main results presented in the thesis.

7.1 Identi�cation of cognates

In this thesis, I have presented two distinct algorithms for the identi�cation of cog-

nates: a similarity-based method described in Chapter 5, and a correspondence-based

method introduced in Chapter 6. Both approaches are valid and have been used

before: Oakes's program JAKARTA is an example of the former, while Guy's COG-

NATE belongs to the latter. Similarly, for the related task of estimating the likelihood

of historical connection between languages, Baxter and Manaster Ramer [2000] and

Oswalt [1998] employ similarity-based measures, while Ringe [1998] and Kessler [2001]

128

Chapter 7. Wrap-up and outlook 129

Languages JAKARTA Trunc. DICE LCSR ALINE

English German .888 .856 .786 .903 .918

French Latin .787 .792 .653 .809 .865

English Latin .447 .515 .360 .539 .733

German Latin .518 .443 .399 .498 .704

English French .411 .570 .428 .561 .616

French German .406 .435 .382 .483 .497

Albanian Latin .455 .558 .437 .582 .623

Albanian French .432 .595 .451 .487 .613

Albanian German .248 .253 .310 .282 .307

Albanian English .227 .151 .194 .181 .276

Average .482 .517 .440 .533 .615

Table 7.1: Average cognate identi�cation precision on the test set for various

similarity-based methods.

concentrate on correspondences. Is it possible to determine which of the two ap-

proaches achieves better results?

Although it would be diÆcult to settle this issue once and for all, it is relatively

straightforward to compare the algorithms proposed in this thesis by calculating their

average precision on the same input data. Table 7.1 shows the performance of var-

ious similarity-based methods on �ve 200 Swadesh lists compiled by Kessler [2001].

Because the words in the lists are already matched by meaning, the semantic compo-

nent of COGIT is not applicable here, which means that the identi�cation of cognates

is performed solely on the basis of phonetic similarity. ALINE's parameter settings

are the same as used in Chapter 4. The results con�rm again that ALINE performs

consistently better than other methods. Surprisingly, some orthographic measures

outperform Oakes's program JAKARTA.

In order to facilitate comparison with the correspondence-based methods, Ta-

Chapter 7. Wrap-up and outlook 130

Languages Cognates Method B Method D ALINE

English German .590 .957 .950 .918

French Latin .560 .914 .866 .865

English Latin .290 .641 .853 .733

German Latin .290 .723 .857 .702

English French .275 .528 .559 .615

French German .245 .502 .528 .497

Albanian Latin .195 .432 .606 .622

Albanian French .165 .292 .437 .612

Albanian German .125 .177 .312 .307

Albanian English .100 .373 .196 .276

Average .283 .554 .616 .615

Table 7.2: Average cognate identi�cation precision on the test set for various methods.

ble 7.2 reproduces some of the results from Chapter 6. On average, ALINE does

about as well as Method D and better than other correspondence-based methods

proposed in Section 6.5.4. Even on the language pairs involving Albanian, where the

proportion of cognates is below 20%, ALINE's performance is surprisingly good.

Both the correspondence-based and the similarity-based methods perform well.

Intuitively, a judicious combination of both techniques should produce even better

results. One possible approach is to use the information about correspondences to

boost the similarity values of certain phoneme pairs. First, the translation model

would be induced on the data as described in Chapter 6. The phoneme pairs repre-

senting strong correspondences (correspondences that have a likelihood score above

the threshold t) would have their similarity scores increased by a constant value. This

constant value should be a parameter that can be established on a development set.

A design problem that must be solved in order to implement this idea is the incor-

poration of complex, multi-phoneme correspondences into a similarity scheme that is

Chapter 7. Wrap-up and outlook 131

currently de�ned only for pairs of individual phonemes.

The combined similarity-cum-correspondences approach could also be used for

the task of identifying cognates from raw vocabulary data, in the manner described

in Chapter 5. The idea is to �rst identify a set of likely cognate pairs, then in-

duce a translation model on the set, and �nally use the determined correspondences

to improve COGIT, the cognate identi�cation algorithm. Such an approach would

integrate virtually all algorithms proposed in this thesis.

One possible way to determine the set of likely cognate pairs is to select n can-

didate pairs starting from the top of the ordered list produced by COGIT. After all,

these are the most likely cognate pairs. The problem with such an approach is that

the selected pairs are certain to exhibit high phonetic similarity. When a translation

model is induced on such set, the strongest correspondences can be expected to con-

sist mostly of pairs of identical phonemes. This is because the set of candidates is

going to be biased by the method used for their selection.

A better idea is to select candidate cognates on the basis of semantic similarity

only. Analysis of the Algonquian vocabulary lists shows that selecting all vocabulary

entries characterized by the highest level of semantic similarity, that is, gloss identity,

produces a set of candidate pairs containing a substantial proportion of cognates.

Table 7.3 shows the number of pairs that have at least one gloss in common, and

the proportion of cognates in such set. The experiments described in Section 6.5.5

indicate that such levels of cognate content may be suÆcient for the determination

of the strongest correspondences. Again, the values of the boosting constant and the

mixing parameter � should be estimated on a development set.

Chapter 7. Wrap-up and outlook 132

Languages All Cognate Proportion

pairs pairs of cognates

Fox Menomini 397 79 .199

Fox Cree 409 85 .208

Fox Ojibwa 326 86 .263

Menomini Cree 834 146 .175

Menomini Ojibwa 656 160 .244

Cree Ojibwa 732 242 .331

Table 7.3: The proportion of cognates among the pairs that have at least one gloss

in common.

7.2 Reconstruction

Following the determination of correspondences, the next step of the comparative

method is the reconstruction of proto-phonemes and proto-forms. For each corre-

spondence, the linguist posits a phonetic segment as the hypothetical source of the

pair of phonemes that make up the correspondence. In the previous chapters, I have

proposed algorithms for the antecedent stages of the reconstruction process. Is it

possible to automate also this �nal step of the comparative method?

The rules of comparative reconstruction are intuitive and informal. The selection

of phonemes requires extensive knowledge about the languages in question, as well as

about the typological principles that determine the plausibility of a given phonological

system. In order to reconstruct, say, Proto-Germanic, the facts about other Indo-

European sub-families have to be taken into account. Also, the reconstructed system

should not have abnormal properties (for example, a total lack of fricatives) that are

at odds with what is known about existing languages. Ideally, a proposal should

Chapter 7. Wrap-up and outlook 133

include an ordered set of regular sound changes which transform the hypothesized

proto-language etyma into the attested forms.

The proto-languages proposed by independent researchers are often very di�erent.

The following observation by Greenberg summarizes the current views on Proto-Indo-

European.

After more than a century of e�ort, which has involved the majority of the
linguistic community in the nineteenth century and a substantial group
of specialists in the twentieth, it is not too much to say that the only
matters on which everyone agrees in regard to the sound system of Proto-
Indo-European are that there were at least four points of articulation for
stops, including at least labials and dentals or alveolars, at least three
manners of articulation for stops, and at least one sibilant and one vowel.
[Greenberg, 1993]

He then gives an example of laryngeals, of which \almost every number from zero to

ten or more has been posited". There does not seem to be any accepted procedure for

evaluating the validity of a hypothesized proto-language. Speci�c proposals regarding

relatedness of languages and the shape of the genealogical trees of language families

may become gradually accepted by achieving the support of the majority of linguists.

In my opinion, the design of the phonological proto-system is best left to human

experts. In the future, I would like to implement a module that facilitates such a

task by allowing the user to propose a proto-phoneme for each of the correspon-

dences determined by CORDI, and subsequently generates a proto-form for each of

the identi�ed cognate sets. Such an interactive approach would have much in common

with the Reconstruction Engine of Lowe and Mazaudon [1994], with the important

di�erence of relieving the user of the task of determining correspondences. As an ex-

ample, let us assume that the user has tagged the correspondences in Table 7.4 with

the reconstructed segments shown in boxes, The program could then automatically

posit Proto-Algonquian *m(e:E)�ck(w)i(h) for the possible cognate pair me�skwi (Fox,

`blood') and mEhk��h (Menomini, `blood'). The user could continue the reconstruction

Chapter 7. Wrap-up and outlook 134

Fox Menomini Proto-segment

m m m

�sk hk �ck

i �� i

Table 7.4: A partial table of correspondences.

by deciding on the status of segments included in brackets, perhaps ending up with

something like *me�ckwi.

In the future it should be possible to integrate ALINE, COGIT, and CORDI, and

the proposed reconstruction module into a system that given nothing more than vo-

cabulary lists of two related languages outputs a partial reconstruction of the lexicon

of their proto-language. Other issues that should be addressed before such a system

becomes functional include the construction of a comprehensive training corpus of

aligned cognates that would make it possible to to derive the similarity matrices au-

tomatically, and the extension of the algorithms proposed here to handle more than

two languages at the same time.

Although it may seem somewhat disappointing to stop short of creating a com-

puter system that performs the entire process of reconstruction of proto-languages

in a fully unsupervised fashion, the algorithms proposed in this thesis are intended

to assist rather than replace comparative linguists. The proposed correspondences,

cognates, and their alignments should be considered as a starting point for further

investigations. The information that can be gleaned from the word lists must be

supplemented by other types of information, which include the morphology and syn-

tax of the languages in question, the clues from related languages, general linguistic

knowledge, and sometimes even extra-linguistic sources. As in machine translation,

it would be unrealistic to expect a computer program to exceed or even match the

Chapter 7. Wrap-up and outlook 135

performance of a human expert on such a diÆcult problem. The best results may

come from combining the speed and thoroughness of the former with the intuition

and knowledge of the latter.

7.3 Summary of results

In this thesis, I have reported innovative algorithms for the three principal steps of

the comparative method of language reconstruction: the alignment of cognates, the

identi�cation of cognates, and the determination of recurrent sound correspondences.

In Chapter 4, I considered the problem of the alignment of phonetic strings, which

is a necessary step in many applications in computational phonology. After discussing

various approaches to phonetic alignment, I presented a new algorithm that combines

the dynamic programming approach to �nding the optimal alignment with a complex

scoring scheme for computing phonetic similarity between phonetic segments. The

new algorithm, which is inspired by ideas taken from bioinformatics, incorporates sev-

eral techniques developed for sequence comparison: an extended set of edit operations

that includes compression and expansion, local and semi-global modes of alignment,

and the capability of retrieving a set of near-optimal alignments. Unlike previously

proposed distance-based algorithms, it is based on the notion of similarity between

sounds, which is likely to better reect the relatedness of corresponding segments.

The scoring scheme is not tied to any language-speci�c system of phonemic contrasts,

but instead is derived from a universal set of phonetic features which is suÆciently

general and exible to express all possible speech sounds that exist in the world's

languages. Similar schemes have been proposed before, but they all lacked the key

concept of feature salience, which is necessary to properly balance the importance of

various features. The algorithm was evaluated on an independently compiled set of

Chapter 7. Wrap-up and outlook 136

cognates, and was found to outperform other algorithms reported in the literature.

In Chapter 5, I developed a method for identifying cognates directly from the

vocabularies of related languages. The only requirement of the method is that the

user provides two wordlists containing phonetically-transcribed lexemes with their

meaning explained by short English glosses. The wordlists do not have to be syn-

chronized, nor the lexemes forced into semantic slots. The phonetic transcription of

orthographic data can be performed automatically for most languages. The over-

all similarity between vocabulary items is calculated as a linear combination of the

phonetic and the semantic similarity. I showed that the phonetic measure proposed

in Chapter 4 outdoes the orthographic measures commonly used in computational

linguistics. The procedure for estimating semantic similarity, which employs an elec-

tronic lexical database and a part-of-speech tagger, is able to associate glosses that

have little or no surface aÆnity. The experiments performed on actual vocabularies

of four Algonquian languages demonstrate that the method not only identi�es with

good precision a large portion of cognates in the data, but also contributes new entries

to the existing etymological dictionary.

In Chapter 6, I proposed an original approach to the determination of recurrent

sound correspondences in bilingual wordlists based on the idea of relating recur-

rent correspondences between sounds to translational equivalences between words.

Through induction of statistical models that are similar to those developed for sta-

tistical machine translation, the method is able to recover recurrent sound corre-

spondences from bilingual wordlists that consist mostly of unrelated pairs. A cog-

nate identi�cation method that takes advantage of the discovered correspondences

achieves higher accuracy than the previously reported algorithms. Finally, I showed

how an algorithm designed for extracting noncompositional compounds from bitexts

can be used to determine complex sound correspondences in wordlists. By applying

Chapter 7. Wrap-up and outlook 137

the powerful expectation-maximization approach, a computer program can within

minutes come close to replicating the results of prolonged linguistic investigations.

7.4 Conclusion

Although it is impossible to predict the impact that this thesis will have on research

in computational linguistics, the responses that I have received so far indicate that

the scope of applications extends well beyond language reconstruction. The phonetic

alignment algorithm described in Chapter 4 has already been found suÆciently practi-

cal for implementation in research projects on declarative prosodic morphology [Girgs-

dies, 2000], and on aligning reference and hypothesized speech transcriptions [Fisher,

2000]. During informal discussions following my presentations at computational lin-

guistics conferences, several experts commented positively on the relevance of my

work on the identi�cation of cognates to the issues arising in machine translation.

The experiments reported in this thesis provide a novel assessment of various al-

gorithms and resources commonly employed in computational linguistics. Because

genetic cognates arise by evolving from a single word in a proto-language, they are

ideal for testing various lexical and semantic measures of similarity. An objective

evaluation of such measures is diÆcult as evidenced by the fact that Brew and McKel-

vie [1996] devoted several days to judge the translational equivalence of several thou-

sand word-pairs automatically extracted from a bilingual corpus. In contrast, the

average precision of the lexical measures computed in Chapter 5 was instantly cal-

culated by comparing it against the standard of previously established cognate sets.

Other experiments that I performed con�rm the generality of Melamed's algorithms

for the induction of translational models and for the discovery of noncompositional

compounds, and cast light on the quality of WordNet noun hierarchies.

Chapter 7. Wrap-up and outlook 138

The focus of this thesis has been the problem of automatic language reconstruc-

tion. I do not claim that the algorithms described here o�er a comprehensive and

fully satisfying solution to the problem. Indeed, I consider it unlikely that such a

solution will be found soon. However, the results of the careful evaluations to which

I submitted the proposed methods should leave no doubt that I have advanced the

state of the art in the area of computational diachronic phonology. I hope that the

set of publicly available programs that arise from this research will help comparative

linguists to provide conclusive evidence for hitherto conjectural language groupings.

Appendix A

The Swadesh 200-word list

Many variants of the Swadesh 200-word list exist. The following version is used in the

Comparative Indo-European Data Corpus [Dyen et al., 1992]. Kessler [2001] employs

another variation, which includes breast, claw, full, go, grease, horn, hot, human, knee,

knife, moon, now, path, round, true; but not fat, fear, oat, how, leg, live, person, right,

road, rope, turn, walk, warm, when, where.

139

Appendix A. The Swadesh 200-word list 140

all far in root that

and fat to kill rope there

animal father know rotten they

ashes to fear lake rub thick

at feather to laugh salt thin

back few leaf sand to think
bad to �ght left (hand) to say this

bark �re leg scratch thou

because �sh to lie (on side) sea three

belly �ve to live to see to throw

big to oat liver seed to tie

bird to ow long to sew tongue

to bite ower louse sharp tooth

black to y man (male) short tree

blood fog many to sing to turn

to blow foot meat (esh) to sit two

bone four mother skin to vomit

to breathe to freeze mountain sky to walk
to burn fruit mouth to sleep warm

child to give name small to wash

cloud good narrow to smell water

cold grass near smoke we

to come green neck smooth wet

to count guts new snake what

to cut hair night snow when

day hand nose some where

to die he not to spit white

to dig head old to split who

dirty to hear one to squeeze wide
dog heart other to stab wife

to drink heavy person to stand wind

dry here to play star wing

dull (knife) to hit to pull stick wipe

dust hold to push stone with

ear how to rain straight woman

earth to hunt red to suck woods

to eat husband right (correct) sun worm

egg I right (hand) to swell you (plural)

eye ice river to swim year

to fall if road tail yellow

Appendix B

A historical derivation program

This appendix describes a Perl program that simulates the phonological evolution of

Polish, and its results. The program takes as input a Proto-Slavic etymon, trans-

forms it by a series of sound changes, and produces a predicted modern Polish word.

The descriptions of sound changes were extracted from textbooks on the historical

phonology of Slavic. The changes are implemented as sequences of regular expressions

substitutions. The program has no notion of phonological features, but uses sets of

phonemes instead.

The program was applied to 706 Proto-Slavic etyma extracted from books on the

historical phonology of Slavic. 80 (11.3%) of the Proto-Slavic etyma have no extant

cognates in Polish because of the lexical replacement phenomenon. The results on the

remaining 626 etyma are summarized in Table B.1. Most of the predictions match the

actual Polish words exactly. In other cases, the phonemic edit distance betwen the

prediction and the actual word is calculated. The percentage of exact matches could

probably be increased by a more careful implemenation of the sound changes, but it is

unlikely to reach 100%. Because of phenomena such as analogy and hypercorrection,

sound changes are never perfectly regular.

141

Appendix B. A historical derivation program 142

Edit distance Number of forms Percent of total

0 454 72.5%

1 84 13.4%

2 63 10.1%

3 20 3.2%

4 5 0.8%

Total retained 626 100%

Table B.1: Tested proto-forms grouped by the accuracy of the output.

Some words that have undergone semantic shifts are given in Table B.2. Those

words have survived, but their modern meaning has changed. Some of the words have

retained their original meaning in other Slavic languages.

Proto-Slavic Gloss Generated form Modern meaning
Xr��st�u `cross' chrzest `baptism'
iskati `to seek' iska�c `to groom'
j�e¸a `disease' j�edza `witch'
napast' `temptation' napa�s�c `assault'
pl�ut�� `body' p le�c `sex'
t��ma `darkness, myriad' �cma `moth'
volst' `power' w los�c `estate, property'
znamenije `sign' znami�e `scar'

Table B.2: Examples of semantic shifts.

Table B.3 contains forms produced by applying the sequences of sound changes to

the Proto-Slavic etyma that have been replaced by other words during the evolution

of Polish. The words marked with a y are attested in Old Polish. What is interesting

about the generated forms is that they conform to the phonotactic constraints of

Polish. The words do sound Polish, but their meaning is totally opaque to the native

Polish speakers.

Appendix B. A historical derivation program 143

Proto-Slavic Gloss Generated form Modern meaning
�cr��v�� `worm' czerwy ?
d�ever�� `husband's brother' dziewierzy ?
golgol�u `word' g logo l ?
govor�u `noise' gowor ?
jazva `wound' jazwa ?
kl�et�� `room' kle�c ?
kosn�oti `to touch' kosn�a�c ?
kov�u `ambush' k�ow ?
krov�u `roof' kr�ow ?
kysl�uj�� `sour' kis lyy ?
l�okav�uj�� `sly' l�akawy ?
li�siti `to deprive' liszy�c ?
l`ubod�ejica `hussy' lubodziejka ?
m��zda `wages' mzda ?
napast�� `temptation' napas�c ?
nastav��nik�u `supervisor' nastawnik ?
nog�ut�� `claw' nogie�c ?
otro�c�e `child' otrocz�e ?
p�ot�� `path' p�a�c ?
poglumiti s�e `to ponder' poglumi�c si�e ?
posp�e�s��nik�u `helper' pospiesznik ?
pr�emuditi `to delay' przemudzi�c ?
rab�u `slave' rab ?
s�um�er��n�uj�� `humble' �smierzny ?
skot�u `cattle' skoty ?
st�ugna `street' stegna ?
taina `secret' tajna ?
um�u `mind' um ?
vel�eti `to order' wiele�c ?
vr�em�e `time' wrzemi�e ?
Xram�u `temple' chrom ?
Xytj��nik�u `predator' chycnik ?
�z��dati `to wait' _zda�c ?
�zekti `to burn' _ze�c ?

Table B.3: Examples of the generated words that have no existing counterparts.

Appendix C

The alignment code

This appendix contains the C++ code for the phonetic alignment. The code, which

has been constantly evolving since 1999, integrates several extensions of the basic

dynamic programming algorithm described in Section 4.4. It constitutes the core of

ALINE, and is also of prime importance in both COGIT and CORDI. By including

the code, I hope to make it easier for other developers to incorporate advanced features

into their alignment programs. Although I believe that it is essentially error-free, no

warranty is implied.

144

Appendix C. The alignment code 145

/**
The routine `align' finds all alignments that are within a margin of the
optimal alignment, which is set by the parameter `scoreMargin'.
However, if ONE_ONLY is defined, a single alignment is
constructed (which may not be optimal if scoreMargin < 1.0).

The following names correspond to four possible modes of comparison:
GLOBAL, SEMI_GLOBAL, HALF_LOCAL, and LOCAL.
Exactly one of them must be defined.
**/

#include "external.h"

/*
The following external names are used:

const int MAXL; // max length of a word
const int NUL; // deletion filler
const int DUB; // compression filler
const int LIM; // local alignment delimiter
const int NoScore; // very large negative integer

// A straightforward FIFO data structure.
class Stack
{
public:

void clear(); // remove all elements
void push(int i1, int i2 = 0); // add element (i1) or (i1,i2) to the top
void pop(short k = 1); // pop k elements from the top
bool allowed(); // false if insertion follows deletion
void result(int); // output alignment

};

// An interface between the alignment algorithm and the actual words.
class Sigma
{
public:

short phlenA(); // phonetic length of word A
short phlenB(); // phonetic length of word B
int sub(short i, short j); // cost of substituting A[i] with B[j]
int expA(short i, short j); // cost of expanding A[i] to B[j-1] B[j]
int expB(short j , short i); // cost of expanding B[j] to A[i-1] A[i]
int skipA(short i); // cost of deleting A[i]
int skipB(short j); // cost of deleting B[j]

};
*/

// global variables
int S[MAXL][MAXL]; // the score matrix
float AcptScore; // minimal acceptable score
Stack Trace; // links between corresponding segments
Stack Out; // alignment constructed by dynamic programming
Stack Cost; // cost of individual operations
bool FallThru; // for ONE_ONLY mode

Appendix C. The alignment code 146

int similarity(Sigma *sig);
void alignment(Sigma *sig, short i, short j, int T);

// Wrapper function for the score matrix.
inline int Score(short i, short j)
{

return ((i >= 0) && (j >= 0) ? S[i][j] : NoScore);
}

// Finds all alignments within the scoreMargin.
void align(Sigma *sig, float scoreMargin = 1.0)
{

short lenA = sig->phlenA();
short lenB = sig->phlenB();

Cost.clear();
Trace.clear();
Out.clear();
FallThru = false;

int dpScore = similarity(sig); // determine the maximum similarity
AcptScore = dpScore * scoreMargin;

for (short i = 0; i <= lenA; i++)
{

for (short j = 0; j <= lenB; j++)
{

#if defined(GLOBAL) || defined(HALF_LOCAL)
if (i < lenA || j < lenB) // corner start point only

continue;
#endif
#if defined(SEMI_GLOBAL)

if (i < lenA && j < lenB) // border start points only
continue;

#endif
if (S[i][j] >= AcptScore)
{

// padding at the beginning
for (short j1 = lenB; j1 > j; j1--)

Out.push(NUL, j1);
for (short i1 = lenA; i1 > i; i1--)

Out.push(i1, NUL);
Out.push(LIM, LIM); // delimits the alignment
alignment(sig, i, j, 0); // recursion starts here
Out.pop(lenA-i+lenB-j+1);
if (FallThru)

return;
}

}
}

}

Appendix C. The alignment code 147

// Fills the score matrix S; returns the similarity between words A and B.
int similarity(Sigma *sig)
{

short lenA = sig->phlenA();
short lenB = sig->phlenB();
int sgmax = 0; // not meaningful for global case
int m1, m2, m3, m4, m5, lmax;

S[0][0] = 0;

for (short i = 1; i <= lenA; i++)
#if defined(GLOBAL)

S[i][0] = S[i-1][0] + sig->skipA(i);
#else

S[i][0] = 0;
#endif

for (short j = 1; j <= lenB; j++)
#if defined(GLOBAL)

S[0][j] = S[0][j-1] + sig->skipB(j);
#else

S[0][j] = 0;
#endif

for (short i = 1; i <= lenA; i++)
{

for (short j = 1; j <= lenB; j++)
{

m1 = Score(i-1,j) + sig->skipA(i);
m2 = Score(i,j-1) + sig->skipB(j);
m3 = Score(i-1,j-1) + sig->sub(i,j);
m4 = Score(i-1,j-2) + sig->expA(i,j);
m5 = Score(i-2,j-1) + sig->expB(j,i);

#if defined(LOCAL) || defined(HALF_LOCAL)
lmax = max(m1, m2, m3, m4, m5, 0);

#else
lmax = max(m1, m2, m3, m4, m5);

#endif
S[i][j] = lmax;

if (lmax > sgmax)
#if defined(SEMI_GLOBAL)

if (i == lenA || j == lenB) // border only for semi-global
#endif

sgmax = lmax;
}

}
#if defined(GLOBAL) || defined(HALF_LOCAL)

dpScore = Score(lenA, lenB);
#endif

return sgmax;
}

Appendix C. The alignment code 148

// Recursively retrieves alignments from the score matrix S;
// i and j indicate the current position within words A and B, respectively;
// T accumulates the total score of the current alignment.
void alignment(Sigma *sig, short i, short j, int T)
{
#ifdef ONE_ONLY

if (FallThru) return;
#endif

if (i == 0 && j == 0)
{

record:
assert(Score(i,j) == 0);
if (Out.allowed() && !FallThru)
{

Out.push(LIM, LIM); // delimits the alignment
// padding at the end
for (short i1 = i; i1 > 0; i1--)

Out.push(i1, NUL);
for (short j1 = j; j1 > 0; j1--)

Out.push(NUL, j1);
// output the alignment

#if defined(GLOBAL)
Out.result(T + (i+j)*sig->skipA(0));

#else
Out.result(T);

#endif
Out.pop(i+j+1);

#ifdef ONE_ONLY
FallThru = true;

#endif
}

}
else
{

#if defined(LOCAL) || defined(HALF_LOCAL) || defined(SEMI_GLOBAL)
if ((i == 0) || (j == 0)) goto record; // shortcut

#endif
int subSc = sig->sub(i,j);
if (Score(i-1,j-1) + subSc + T >= AcptScore)
{

Cost.push(subSc);
Out.push(i, j);
Trace.push(i, j);
alignment(sig, i-1, j-1, T + subSc);
Trace.pop();
Out.pop();
Cost.pop();

}

int insSc = sig->skipB(j);
if ((i == 0) || (Score(i,j-1) + insSc + T >= AcptScore))
{

Cost.push(insSc);

Appendix C. The alignment code 149

Out.push(NUL, j);
alignment(sig, i, j-1, T + insSc);
Out.pop();
Cost.pop();

}

int expSc = sig->expA(i,j);
if (Score(i-1,j-2) + expSc + T >= AcptScore)
{

Cost.push(expSc);
Cost.push(NUL);
Out.push(i, j);
Out.push(DUB, j-1);
Trace.push(i, j);
Trace.push(i, j-1);
alignment(sig, i-1, j-2, T + expSc);
Trace.pop(2);
Out.pop(2);
Cost.pop(2);

}

int delSc = sig->skipA(i);
if ((j == 0) || (Score(i-1,j) + delSc + T >= AcptScore))
{

Cost.push(delSc);
Out.push(i, NUL);
alignment(sig, i-1, j, T + delSc);
Out.pop();
Cost.pop();

}

int cmpSc = sig->expB(j,i);
if (Score(i-2,j-1) + cmpSc + T >= AcptScore)
{

Cost.push(cmpSc);
Cost.push(NUL);
Out.push(i, j);
Out.push(i-1, DUB);
Trace.push(i, j);
Trace.push(i-1, j);
alignment(sig, i-2, j-1, T + cmpSc);
Trace.pop(2);
Out.pop(2);
Cost.pop(2);

}
#if defined(LOCAL) || defined(HALF_LOCAL)

if (Score(i,j) == 0) goto record; // shortcut
#endif

}
}

Appendix D

Covington's test set

This appendix contains the full set of alignments generated by ALINE on Cov-

ington's test set of 82 cognates. They are given in the right column. The left column

reproduces the alignments produced by Covington's program. In the cases where

Covington's program produces more than one alternative alignment, only the �rst

one is given.

150

Appendix D. Covington's test set 151

Spanish-French cognate pairs (I)

Covington's alignments ALINE's alignments

yo/je
y o k y o k

�z @ k �z @ k
tu/tu
t u k t u k

t �u k t �u k

nosotros/nous
n o s o t r o s k n o k sotros
n u { { { { { { k n u k

qui�en/qui
k y e n k k ye k n
k i { { k k i k

qu�e/quoi
k { e k k e k
k w a k k wa k

todos/tous
t o d o s k t o k dos
t u { { { k t u k

una/une
u n a k u n k a
�u n { k �u n k

dos/deux
d o s k d o k s
d �o { k d �o k

tres/troix
t r { e s k t r e k s
t r w a { k t r wa k

hombre/homme
o m b r e k o m k bre
o m { { { k o m k

Appendix D. Covington's test set 152

Spanish-French cognate pairs (II)

Covington's alignments ALINE's alignments

�arbol/arbre
a r b { o l k a r b o l k

a r b r @ { k a r b { r k @

pluma/plume
p l u m a k p l u m k a
p l �u m { k p l �u m k

cabeza/cap
k a b e T a k k a b k eTa
k a p { { { k k a p k

boca/bouche
b o k a k b o k k a
b u �s { k b u �s k

pie/pied
p y e k p y e k
p y e k p y e k

coraz�on/coeur
k o r a T o n k k o r k aTon
k �o r { { { { k k �o r k

ver/voir
b { e r k b e r k

v w a r k v wa r k

venir/venir
b e n i r k b e n i r k

v @ n i r k v @ n i r k

decir/dire
d e T i r k d e T i r k

d { { i r k d { { i r k

pobre/pauvre
p o b r e k p o b r e k

p o v r @ k p o v r @ k

Appendix D. Covington's test set 153

English-German cognate pairs (I)

Covington's alignments ALINE's alignments

this/dieses
D i { { s k D i s k

d �� z e s d�� k z e s k
that/das
D � t k D � t k

d a s k d a s k

what/was
w a t k w a t k

v a s k v a s k

not/nicht
n a { t k n a { t k

n i x t k n i x t k

long/lang
l o N k l o N k
l a N k l a N k

man/Mann
m � n k m � n k

m a n k m a n k

esh/Fleisch
f l e { �s k f l e �s k

f l a y �s k f l ay �s k

blood/Blut
b l @ d k b l @ d k

b l �u t k b l �u t k

feather/Feder
f e D @ r k f e D @ r k

f �e d @ r k f �e d @ r k

hair/Haar
h � r k h � r k

h �a r k h �a r k

Appendix D. Covington's test set 154

English-German cognate pairs (II)

Covington's alignments ALINE's alignments

ear/Ohr
i r k i r k

�o r k �o r k
eye/Auge
a { { y k a y k

a w g @ k a w k g@
nose/Nase
n o w z { k n ow z k

n �a { z @ k n �a z k @

mouth/Mund
m a w { T k m aw { T k

m { u n t k m u n t k

tongue/Zunge
t { @ N { k t @ N k
t s u N @ t k s u N k @

k t { @ N k

k t s u N k @

foot/Fu�
f u t k f u t k

f �u s k f �u s k

knee/Knie
- n i y k n iy k

k n �� { k k n �� k

hand/Hand
h � n d k h � n d k

h a n t k h a n t k

heart/Herz
h a r t { k h a r t k

h e r t s k h e r t k s
liver/Leber
l i v @ r k l i v @ r k

l �e b @ r k l �e b @ r k

Appendix D. Covington's test set 155

English-Latin cognate pairs (I)

Covington's alignments ALINE's alignments

and/ante
� n d { k � n d k

a n t e k a n t k e
at/ad
� t k � t k

a d k a d k

blow/�are
b l { { o w k b l o k w
f l �a r e { k f l �a k re
ear/auris
i { r { { k i r k

a w r i s k aw r k is
eat/edere
i y t { { { k iy t k
e { d e r e k e d k ere
�sh/piscis
- { { f i �s k f i �s k

p i s k i s k p i s k kis
ow/uere
f l o w { { { k f l ow k

f l { u e r e k f l u k ere
star/st�ella
s t a r { { k s t a r k

s t �e l l a k s t �e l k la
full/pl�enus
- { { f u l k f u l k

p l �e n u s k p { l k �enus
grass/gr�amen
g r { { � s k g r � k s
g r �a m e n k g r �a k men
heart/cordis
h a r { { t k h a r t k

k o r d i s k k o r d k is
horn/corn�u
h o r n { k h o r n k

k o r n �u k k o r n k �u
I/ego
- { a y k ay k

e g o { k e k go

Appendix D. Covington's test set 156

English-Latin cognate pairs (II)

Covington's alignments ALINE's alignments

knee/gen�u
- { n i y k n i k y
g e n �u { ge k n �u k
mother/m�ater
m @ D @ r k m @ D @ r k

m �a t e r k m �a t e r k

mountain/m�ons
m a w n t @ n k m aw n t k @ n
m �o { n { { s k m �o n s k

name/n�omen
n e y m { { k n ey m k

n �o { m e n k n �o m k en
new/novus
n y u w { { k n yu w k
n { o w u s k n o w k us
one/�unus
w @ n { { k w@ n k

- �u n u s k �u n k us
round/rotundus
r a { w n d { { k r a { w n d k

r o t u n d u s k r o t u n d k us
sew/suere
s o w { { { k s ow k

s { u e r e k s u k ere
sit/s�edere
s i t { { { k s i t k

s �e d e r e k s �e d k ere
three/tr�es
T r i y k T r iy k

t r �e s k t r �e k s
tooth/dentis
- { { t u w T k t uw T k

d e n t i { s den k t i s k

thin/tenuis
T i n { { { k T i n k

t e n u i s k t e n k uis

Appendix D. Covington's test set 157

Fox-Menomini cognate pairs

Covington's alignments ALINE's alignments

kiinwaawa/kenuaq
k �� n w �a w a { k k �� n w �a k wa
k e n { { u a P k k e n u a k P

niina/nenah
n �� n a { k n �� n a k

n e n a h k n e n a k h
naapeewa/naapEEw
n �a p �e w a k n �a p �e w k a
n �a p �E w { k n �a p 	E w k

waapimini/waapemen
w �a p i m i n i k w �a p i m i n k i
w �a p e m e n { k w �a p e m e n k

nameesa/namEEqs
n a m �e { s a k n a m �e { s k a
n a m �E P s { k n a m 	E P s k

okimaawa/okeemaaw
o k i m �a w a k o k i m �a w k a
o k �e m �a w { k o k �e m �a w k

�si�siipa/seeqsep
�s �� { �s �� p a k �s �� - �s �� p k a
s �e P s e p { k s �e P s e p k

ahkohkwa/ahkEEh
a h k o h k w a k a h k o h k kwa
a h k �E h { { { k a h k 	E h k

pemaatesiweni/pemaateswen
p e m �a t e s i w e n i k p e m �a t e s i w e n k i
p e m �a t e s e w e n { k p e m �a t e s e w e n k

asenya/aqsEn
a { s e n y a k a { s e n k ya
a P s E n { { k a P s E n k

Appendix D. Covington's test set 158

Cognate pairs from other languages

Covington's alignments ALINE's alignments

did�omi/d�o
d i d �o m i di k d �o k mi
- { d �o { { k d �o k
thugat�er/Tochter
th u g a t �e r k th u g a t �e r k

t o x { t @ r k t o x { t @ r k

daughter/thugat�er
- { d o t @ r k d o t @ r k

th u g a t �e r thu k g a t �e r k

ager/ajras
a { g e r k a g e r k

a �� r a s k a �� { r k as
bhar�ami/pher�o
bh a r �a m i k bh a r �a k mi
ph e r { { o k ph e r o k

centum/hekaton
- { k e n t u m k k e n t u m k
h e k a { t o n he k k a { t o n k

centum/sat@m
k e n t u m k k e n t u m k

s a { t @ m k s a { t @ m k

Appendix E

A list of English{Latin cognates

This list of 112 established English{Latin cognate pairs has been taken from linguistic

literature. It is not meant to be complete, and it may contain a few errors. English

words were transcribed into phonetic notation with the aid of the publicly available

Carnegie Mellon Pronouncing Dictionary, version 0.6.

�ek@r agr `acre' d�u feki `do'
�gn�el angust `agnail' dOr fore `door'
Old@r aln `alder' Ir aur `ear'
�m sum `am' ��t ed `eat'
��s orn `ash' �et okto `eight'
�ks@l aks `axle' Elb�o uln `elbow'
b�� fuit `be' y�u ow `ewe'
bEr fer `bear' ay okul `eye'
bIrd barb `beard' fEr�o pork `farrow'
b���c fag `beech' faD@r patr `father'
b@r�c fraksin `birch' fED@r penn `feather'
bl�ed foli `blade' f��d pask `feed'
br@D@r fratr `brother' f��ld plan `�eld'
k�om gemm `comb' fIlm pell `�lm'
kOrn gran `corn' fayv kwinkwe `�ve'
kaw bowe `cow' �� pulik `ea'

159

Appendix E. A list of English{Latin cognates 160

�o plu `ow' nayt nokte `night'
f�om spum `foam' nayn nowem `nine'
fut pede `foot' n�oz nas `nose'
fOr kwart `four' nat non `not'
ful plen `full' ra kruor `raw'
gard@n hort `garden' rEd rube `red'
g�us ansr `goose' r�ut radike `root'
gEst host `guest' sOlt sal `salt'
hart korde `heart' s��d semen `seed'
hOrn kornu `horn' sEv@n septem `seven'
hawnd kan `hound' s�o su `sew'
h@ndr@d kent `hundred' �sOrt kurt `short'
ay ego `I' sIst@r soror `sister'
Iz est `is' sIt sedet `sit'
kIn gen `kin' sIks seks `six'
n�� genu `knee' sn�o niwem `snow'
n�o gnosk `know' spIt spu `spit'
lIk ling `lick' st�nd stare `stand'
lay lekt `lie' star stell `star'
layt lew `light' (adj) s@k sug `suck'
layt luk `light' (noun) s@n sol `sun'
lIs@n klu `listen' sw��t suaw `sweet'
lON long `long' tEn dekem `ten'
l@v lube `love' TIn tenu `thin'
m��l mol `meal' Tr�� tres `three'
mElt moll `melt' Tr@�s turd `thrush'
mIr mare `mere' t@N lingw `tongue'
mIk@l magn `mickle' t�uT dente `tooth'
mId@l medi `middle' tr�� dur `tree'
maynd mente `mind' t�u duo `two'
m@nT mens `month' wOrm form `warm'
m@D@r matr `mother' wOt@r und `water'
maws mur `mouse' h�u kwis `who'
m@rd@r morte `murder' wId�o widu `widow'
n�el ungw `nail' waynd went `wind'
n�ek@d nud `naked' wulf lup `wolf'
n�em nomine `name' wul lan `wool'
nEfy�u nepot `nephew' rIN wert `wring'
nEst nid `nest' y�ok iug `yoke'
n�u now `new' y@N yuwenk `young'

Bibliography

[Adamson and Boreham, 1974] George W. Adamson and Jillian Boreham. The use

of an association measure based on character structure to identify semantically

related pairs of words and document titles. Information Storage and Retrieval,

10:253{260, 1974.

[Al-Onaizan et al., 1999] Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. La�erty,

D. Melamed, F. Och, D. Purdy, N. Smith, and D. Yarowsky. Statistical machine

translation. Technical report, Johns Hopkins University, 1999.

[Allen, 1995] James Allen. Natural Language Understanding. The Benjamin Cum-

mings Publishing Company, second edition, 1995.

[Baxter and Ramer, 2000] William H. Baxter and Alexis Manaster Ramer. Beyond

lumping and splitting: probabilistic issues in historical linguistics. In Colin Ren-

frew, April McMahon, and Larry Trask, editors, Time Depth in Historical Linguis-

tics, pages 167{188. The McDonald Institute for Archeological Research, 2000.

[Bloom�eld, 1925] Leonard Bloom�eld. On the sound-system of central Algonquian.

Language, 1:130{156, 1925.

[Bloom�eld, 1946] Leonard Bloom�eld. Algonquian. In Harry Hoijer et al., editor,

Linguistic Structures of Native America, volume 6 of Viking Fund Publications in

Anthropology, pages 85{129. New York: Viking, 1946.

[Brew and McKelvie, 1996] Chris Brew and David McKelvie. Word-pair extraction

for lexicography. In K. Oazer and H. Somers, editors, Proceedings of the 2nd

International Conference on New Methods in Language Processing, pages 45{55,

Ankara, Bilkent University, 1996.

161

Bibliography 162

[Brill, 1995] Eric Brill. Transformation-based error-driven learning and natural lan-

guage processing: A case study in part-of-speech tagging. Computational Linguis-

tics, 21(4):543{566, 1995.

[Brown et al., 1990a] P. Brown, J. Cocke, S. Della Pietra, V. Della Pietra, F. Je-

linek, J. La�erty, R. Mercer, and P. Roossin. A statistical approach to machine

translation. Computational Linguistics, 16(2):79{85, 1990.

[Brown et al., 1990b] P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer. The

mathematics of statistical machine translation: Parameter estimation. Computa-

tional Linguistics, 19(2):263{311, 1990.

[Buck, 1949] Carl Darling Buck. A dictionary of selected synonyms in the principal

Indo-European languages: a contribution to the history of ideas. Universtity of

Chicago Press, 1949.

[Budanitsky, 1999] Alexander Budanitsky. Lexical semantic relatedness and its ap-

plication in natural language processing. Technical Report CSRG-390, University

of Toronto, 1999. Available at ftp.cs.toronto.edu/csrg-technical-reports.

[Burton-Hunter, 1976] Sarah K. Burton-Hunter. Romance etymology: a computer-

ized model. Computers and the Humanities, 10:217{220, 1976.

[Chomsky and Halle, 1968] Noam Chomsky and Morris Halle. The Sound Pattern of

English. New York: Harper & Row, 1968.

[Church, 1993] Kenneth W. Church. Char align: A program for aligning parallel

texts at the character level. In Proceedings of ACL-93: 31st Annual Meeting of the

Association for Computational Linguistics, pages 1{8, Columbus, Ohio, 1993.

[Connolly, 1997] John H. Connolly. Quantifying target-realization di�erences. Clini-

cal Linguistics & Phonetics, 11:267{298, 1997.

[Covington, 1996] Michael A. Covington. An algorithm to align words for historical

comparison. Computational Linguistics, 22(4):481{496, 1996.

Bibliography 163

[Covington, 1998] Michael A. Covington. Alignment of multiple languages for his-

torical comparison. In Proceedings of COLING-ACL'98: 36th Annual Meeting of

the Association for Computational Linguistics and 17th International Conference

on Computational Linguistics, pages 275{280, 1998.

[Dayho� et al., 1983] M. O. Dayho�, W. C. Baker, and L.T. Hunt. Establishing

homologies in protein sequences. Methods in Enzymology, 91:524{545, 1983.

[Dunning, 1993] Ted Dunning. Accurate methods for the statistics of surprise and

coincidence. Computational Linguistics, 19(1):61{74, 1993.

[Durbin et al., 1998] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme

Mitchison. Biological sequence analysis. Cambridge University Press, 1998.

[Dyen et al., 1992] Isidore Dyen, Joseph B. Kruskal, and Paul Black. An In-

doeuropean classi�cation: A lexicostatistical experiment. Transactions of

the American Philosophical Society, 82(5), 1992. Word lists available at

http://www.ldc.upenn.edu/ldc/service/comp-ie.

[Eastlack, 1977] Charles L. Eastlack. Iberochange: a program to simulate systematic

sound change in Ibero-Romance. Computers and the Humanities, 11:81{88, 1977.

[Eppstein, 1998] David Eppstein. Finding the k shortest paths. SIAM Journal on

Computing, 28(2):652{673, 1998.

[Fellbaum, 1998] Christiane Fellbaum, editor. WordNet: an electronic lexical

database. The MIT Press, Cambridge, MA, 1998.

[Fisher, 2000] William Fisher. Personal communication, 2000.

[Fox, 1973] Bennett L. Fox. Calculating the Kth shortest paths. INFOR { Canadian

Journal of Operational Research and Information Processing, 11(1):66{70, 1973.

[Gildea and Jurafsky, 1996] Daniel Gildea and Daniel Jurafsky. Learning bias and

phonological-rule induction. Computational Linguistics, 22(4):497{530, 1996.

[Girgsdies, 2000] Stefan Girgsdies. Personal communication, 2000.

Bibliography 164

[Gotoh, 1982] Osamu Gotoh. An improved algorithm for matching biological se-

quences. Journal of Molecular Biology, 162:705{708, 1982.

[Greenberg, 1987] Joseph H. Greenberg. Language in the Americas. Stanford Uni-

versity Press, 1987.

[Greenberg, 1993] Joseph H. Greenberg. Observations concerning Ringe's Calculat-

ing the factor of chance in language comparison. Proceedings of the American

Philosophical Society, 137:79{89, 1993.

[Guy, 1994] Jacques B. M. Guy. An algorithm for identifying cognates in bilingual

wordlists and its applicability to machine translation. Journal of Quantitative Lin-

guistics, 1(1):35{42, 1994. MS-DOS executable available at http://garbo.uwasa.�.

[Hall, 1976] Robert A. Hall. Proto-Romance phonology. New York: Elsevier, 1976.

[Hartman, 1981] Steven Lee Hartman. A universal alphabet for experiments in com-

parative phonology. Computers and the Humanities, 15:75{82, 1981.

[Hewson, 1974] John Hewson. Comparative reconstruction on the computer. In Pro-

ceedings of the 1st International Conference on Historical Linguistics, pages 191{

197, 1974.

[Hewson, 1989] John Hewson. Computer-aided research in comparative and historical

linguistics. In I. Batori, W. Lenders, and W. Putschke, editors, Computational

linguistics: an international handbook on computer oriented language research and

applications, pages 576{580. Berlin: W. de Gruyter, 1989.

[Hewson, 1993] John Hewson. A computer-generated dictionary of proto-Algonquian.

Hull, Quebec: Canadian Museum of Civilization, 1993.

[Hewson, 1999] John Hewson. Vocabularies of Fox, Cree, Menomini, and Ojibwa,

1999. Computer �le.

[Johnson, 1985] Mark Johnson. Computer aids for comparative dictionaries. Linguis-

tics, 23(2):285{302, 1985.

Bibliography 165

[Kay, 1964] Martin Kay. The logic of cognate recognition in historical linguistics.

Memorandum RM-4224-PR, The RAND Corporation, Santa Monica, September

1964.

[Kessler, 1995] Brett Kessler. Computational dialectology in Irish Gaelic. In Proceed-

ings of EACL-95: 6th Conference of the European Chapter of the Association for

Computational Linguistics, pages 60{67, 1995.

[Kessler, 2001] Brett Kessler. The Signi�cance of Word Lists. Stanford: CSLI Publi-

cations, 2001. Word lists available at http://spell.psychology.wayne.edu/�bkessler.

[Knight and Graehl, 1998] Kevin Knight and Jonathan Graehl. Machine translitera-

tion. Computational Linguistics, 24(4):599{612, 1998.

[Koehn and Knight, 2001] Philipp Koehn and Kevin Knight. Knowledge sources for

word-level translation models. In Proceedings of the 2001 Conference on Empirical

Methods in Natural Language Processing, pages 27{35, 2001.

[Kondrak, 2000] Grzegorz Kondrak. A new algorithm for the alignment of phonetic

sequences. In Proceedings of NAACL 2000: 1st Meeting of the North American

Chapter of the Association for Computational Linguistics, pages 288{295, 2000.

[Kondrak, 2001a] Grzegorz Kondrak. Identifying cognates by phonetic and semantic

similarity. In Proceedings of NAACL 2001: 2nd Meeting of the North American

Chapter of the Association for Computational Linguistics, pages 103{110, 2001.

[Kondrak, 2001b] Grzegorz Kondrak. Review of Brett Kessler's The signi�cance of

world lists. Computational Linguistics, 27:588{591, 2001.

[Kondrak, 2002] Grzegorz Kondrak. Determining recurrent sound correspondences by

inducing translation models. In Proceedings of COLING 2002: 19th International

Conference on Computational Linguistics, 2002. To appear.

[Kruskal, 1983] Joseph B. Kruskal. An overview of sequence comparison. In David

Sanko� and Joseph B. Kruskal, editors, Time warps, string edits, and macro-

molecules: the theory and practice of sequence comparison, pages 1{44. Reading,

Mass.: Addison-Wesley, 1983.

Bibliography 166

[Ladefoged, 1995] Peter Ladefoged. A Course in Phonetics. New York: Harcourt

Brace Jovanovich, 1995.

[Leacock and Chodorow, 1998] Claudia Leacock and Martin Chodorow. Combining

local context and WordNet similarity for word sense identi�cation. In Christiane

Fellbaum, editor, WordNet: an electronic lexical database, pages 265{283. The MIT

Press, Cambridge, MA, 1998.

[Lin, 1998] Dekang Lin. An information-theoretic de�nition of similarity. In Proceed-

ings of the 15th International Conference on Machine Learning, pages 296{304,

1998.

[Lowe and Mazaudon, 1994] John B. Lowe and Martine Mazaudon. The reconstruc-

tion engine: a computer implementation of the comparative method. Computa-

tional Linguistics, 20:381{417, 1994.

[Lowrance and Wagner, 1975] Roy Lowrance and Robert A. Wagner. An extension of

the string-to-string correction problem. Journal of the Association for Computing

Machinery, 22:177{183, 1975.

[Mann and Yarowsky, 2001] Gideon S. Mann and David Yarowsky. Multipath trans-

lation lexicon induction via bridge languages. In Proceedings of NAACL 2001:

2nd Meeting of the North American Chapter of the Association for Computational

Linguistics, pages 151{158, 2001.

[McEnery and Oakes, 1996] Tony McEnery and Michael Oakes. Sentence and word

alignment in the CRATER Project. In J. Thomas and M. Short, editors, Using

Corpora for Language Research, pages 211{231. Longman, 1996.

[Melamed, 1997] I. Dan Melamed. Automatic discovery of non-compositional com-

pounds in parallel data. In Proceedings of the Second Conference on Empirical

Methods in Natural Language Processing, pages 97{108, 1997.

[Melamed, 1999] I. Dan Melamed. Bitext maps and alignment via pattern recogni-

tion. Computational Linguistics, 25(1):107{130, 1999.

Bibliography 167

[Melamed, 2000] I. Dan Melamed. Models of translational equivalence among words.

Computational Linguistics, 26(2):221{249, 2000.

[Myers, 1995] Eugene W. Myers. Seeing conserved signals. In Eric S. Lander and

Michael S. Waterman, editors, Calculating the Secrets of Life, pages 56{89. Wash-

ington, D.C.: National Academy Press, 1995.

[Nerbonne and Heeringa, 1997] John Nerbonne and Wilbert Heeringa. Measuring

dialect distance phonetically. In Proceedings of SIGPHON-97: 3rd Meeting of

the ACL Special Interest Group in Computational Phonology, 1997. Available at

http://www.cogsci.ed.ac.uk/sigphon.

[Nerbonne et al., 1996] John Nerbonne, Wilbert Heeringa, Erik van den Hout, Peter

van der Kooi, Simone Otten, and Willem van de Vis. Phonetic distance between

Dutch dialects. In G. Durieux, W. Daelemans, and S. Gillis, editors, CLIN VI:

Proceedings of the Sixth CLIN Meeting, pages 185{202, Antwerp, Centre for Dutch

Language and Speech (UIA), 1996.

[Nerbonne et al., 1999] John Nerbonne, Wilbert Heeringa, and Peter Kleiweg. Edit

distance and dialect proximity. In David Sanko� and Joseph B. Kruskal, editors,

Time warps, string edits, and macromolecules: the theory and practice of sequence

comparison, pages v{xv. Stanford: CSLI Publications, 1999.

[Oakes, 2000] Michael P. Oakes. Computer estimation of vocabulary in protolanguage

from word lists in four daughter languages. Journal of Quantitative Linguistics,

7(3):233{243, 2000.

[Oommen and Loke, 1997] B. J. Oommen and R. K. S. Loke. Pattern recognition

of strings with substitutions, insertions, deletions and generalized transpositions.

Pattern Recognition, 30(5):789{800, 1997.

[Oommen, 1995] B. John Oommen. String alignment with substitution, insertion,

deletion, squashing, and expansion operations. Information Sciences, 83:89{107,

1995.

Bibliography 168

[Oswalt, 1998] Robert L. Oswalt. A probabilistic evaluation of North Eurasiatic Nos-

tratic. In Joseph C. Salmons and Brian D. Joseph, editors, Nostratic: sifting the

evidence, pages 199{216. Amsterdam: John Benjamins, 1998.

[Raman et al., 1997] Anand Raman, John Newman, and Jon Patrick. A complexity

measure for diachronic chinese phonology. In Proceedings of SIGPHON-97: Third

Meeting of the ACL Special Interest Group in Computational Phonology, 1997.

[Remmel, 1979] Mart Remmel. Computer techniques in Balto-Finnic historical pho-

netics. Technical Report Preprint KKI{11, Academy of Sciences of the Estonian

S.S.R., 1979.

[Remmel, 1980] Mart Remmel. Computers in the historical phonetics and phonology

of Balto-Finnic languages: problems and perspectives. Technical Report Preprint

KKI{14, Academy of Sciences of the Estonian S.S.R., 1980.

[Rennie, 1999] Jason Rennie. Wordnet::QueryData Perl module, 1999. Available at

http://www.ai.mit.edu/�jrennie.

[Resnik, 1999] Philip Resnik. Semantic similarity in a taxonomy: An information-

based measure and its application to problems of ambiguity in natural language.

Journal of Arti�cial Intelligence Research, 11:95{130, 1999.

[Ringe, 1992] Don Ringe. On calculating the factor of chance in language comparison.

Transactions of the American Philosophical Society, 82(1), 1992.

[Ringe, 1998] Don Ringe. Probabilistic evidence for Indo-Uralic. In Joseph C.

Salmons and Brian D. Joseph, editors, Nostratic: sifting the evidence, pages 153{

197. Amsterdam: John Benjamins, 1998.

[Simard et al., 1992] Michel Simard, George F. Foster, and Pierre Isabelle. Using

cognates to align sentences in bilingual corpora. In Proceedings of the Fourth In-

ternational Conference on Theoretical and Methodological Issues in Machine Trans-

lation, pages 67{81, Montreal, Canada, 1992.

[Smith and Waterman, 1981] T. F. Smith and Michael S. Waterman. Identi�cation

of common molecular sequences. Journal of Molecular Biology, 147:195{197, 1981.

Bibliography 169

[Smith, 1969] Raoul N. Smith. A computer simulation of phonological change. ITL:

Tijdschrift voor Toegepaste Linguistiek, 1(5):82{91, 1969.

[Somers, 1998] Harold L. Somers. Similarity metrics for aligning children's artic-

ulation data. In Proceedings of COLING-ACL'98: 36th Annual Meeting of the

Association for Computational Linguistics and 17th International Conference on

Computational Linguistics, pages 1227{1231, 1998.

[Somers, 1999] Harold L. Somers. Aligning phonetic segments for children's articula-

tion assessment. Computational Linguistics, 25(2):267{275, 1999.

[Somers, 2000] Harold L. Somers. Personal communication, 2000.

[Swadesh, 1952] Morris Swadesh. Lexico-statistical dating of prehistoric ethnic con-

tacts. Proceedings of the American Philosophical Society, 96:452{463, 1952.

[Tiedemann, 1999] J�org Tiedemann. Automatic construction of weighted string sim-

ilarity measures. In Proceedings of the Joint SIGDAT Conference on Empirical

Methods in Natural Language Processing and Very Large Corpora, College Park,

Maryland, 1999.

[Trask, 1996] R. L. Trask. Historical Linguistics. London: Arnold, 1996.

[Vossen, 1998] Piek Vossen, editor. EuroWordNet: a Multilingual Database with Lex-

ical Semantic Networks. Kluwer Academic, Dordrecht, 1998.

[Wagner and Fischer, 1974] Robert A. Wagner and Michael J. Fischer. The string-

to-string correction problem. Journal of the Association for Computing Machinery,

21(1):168{173, 1974.

