
UNIVERSITY OF ALBERTA

RELEASE FORM

NAME OF AUTHOR: Robert M. Lake

TITLE OF THESIS: Dynamic Motion Control of an Articulated Figure

DEGREE FOR WHICH THIS THESIS WAS PRESENTED: Master of Science

YEAR THIS DEGREE GRANTED: 1990

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific research pur-
poses only.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

(Signed) ...
Permanent Address:
11610 111 Avenue
Edmonton, Alberta
Canada T5G 0E1

Dated 20 April 1990

University of Alberta

DYNAMIC MOTION CONTROL OF AN ARTICULATED FIGURE

by

Robert M. Lake

A thesis
submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree
of Master of Science

Department of Computing Science

Edmonton, Alberta
Spring, 1990

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate

Studies and Research, for acceptance, a thesis entitled Dynamic Motion Control of an Articulated Figure

submitted by Robert M. Lake in partial fulfillment of the requirements for the degree of Master of Sci-

ence.

..

Supervisor

..

..

..

Date

ABSTRACT

Dynamics is becoming an increasingly popular method for producing realistic animation. While the

motion of simple objects such as blocks and spheres is easily controlled using this technique, applying

dynamics to articulated figures such as humans presents two major difficulties. The first is specifying the

motion in a language familiar to the animator. Animators want to work with a natural motion language

rather than directly entering the forces and torques required for a particular motion. The onus should be on

the animation system to translate high-level motion commands into the necessary forces and torques. The

second issue involves controlling the figure’s motion. What magnitude and combination of force and

torque is required to execute a specific motion within a fixed time interval?

This thesis focuses on issues related to articulated figure animation and motion control. A new ani-

mation system, designed to dynamically control articulated figure motion by performing interpolations

along quaternion curves, is presented. The system uses ballroom dancing as an example. Motion

sequences are entered using an easy to learn, high-level, ballroom dance notation language. The system

decomposes these motion sequences into series of primitive movements and activates a motion control

model to execute each movement within an animator-specified time interval. A description of the model

structure is provided along with results from a set of animation experiments.

Acknowledgements

I extend my appreciation and thanks to the following:

My supervisor, Dr. Mark Green, for his support and encouragement throughout the course of this

work. The members of my committee - Dr. Barry Joe, Dr. Hong Zhang, and Dr. Jacques Bobet for their

critical evaluation of this thesis. Dr. Bill Armstrong for his assistance with the dynamics package. Ken

Hruday for reading an earlier draft of this thesis and offering numerous comments and improvements.

Cindy Webber for her assistance with defining dance positions. The Department of Computing Science for

providing me with the time to complete this work. The University of Alberta and the University of Alberta

Dance Club for the technical and artistic knowledge incorporated in this thesis. My family for their support

and encouragement. Lastly, Chris Shaw for exploring quaternions, discussing how we move, video assis-

tance, and proofreading. Chris also inducted me as an honorary member of the Canadian Institute for

Advanced Bogosity Research (CIABR), surely a profound tribute a person can receive only once in a life-

time.

Table of Contents

Chapter Page

Chapter 1: Introduction .. 1

1.1. Importance of Modeling and Animating Articulated Figures .. 2

1.2. Methods for Animating Articulated Figures .. 3

1.3. Thesis Overview .. 6

Chapter 2: Articulated Figure Animation and Movement Notation Systems 7

2.1. Early Work ... 7

2.2. Key Frame Animation Systems ... 9

2.3. Kinematic and Dynamic Systems .. 10

2.3.1. A Goal-Directed Finite State Machine .. 10

2.3.2. A Low-Level Kinematic/Dynamic System ... 12

2.3.3. A Near-Real Time Dynamic System ... 14

2.3.4. Motion Specification by a Structured Language ... 15

2.3.5. Animating Multi-Legged Animal Motion ... 16

2.3.6. A Dynamic Motion System ... 17

2.3.7. A Hybrid Kinematic/Dynamic Walking Model .. 18

2.4. Movement Notation Systems ... 20

2.4.1. Movement Notation Languages .. 20

2.4.2. Labanotation Editors and Interpreters ... 21

2.4.3. Benesh Notation Editors and Interpreters ... 22

2.5. Other Systems .. 23

2.6. Thesis Goals ... 24

Chapter 3: Background Material ... 26

3.1. Coordinate Systems and Rotation Matrices ... 26

3.2. Quaternions .. 28

3.2.1. The Algebra of Quaternions .. 28

3.2.2. Relationship between Rotations and Quaternions ... 30

3.3. Dynamic Analysis .. 32

3.3.1. Dynamically Moving Reference Frames ... 32

3.3.2. Rigid Bodies .. 34

3.3.3. Articulated Figures .. 36

3.3.4. Dynamics Equations for Articulated Figures .. 36

3.3.5. Solving the Dynamics Equations .. 38

3.3.6. Springs and Dampers .. 40

3.3.7. Frictional Ground Forces .. 40

Chapter 4: Motion Control ... 42

4.1. Green’s Hierarchical Motion Control Model ... 43

4.2. The Hierarchical Structure of Ballroom Dances .. 45

4.3. Mapping the Structure of Ballroom Dancing to the Motion Control Model 46

Chapter 5: The Ballroom Dance Animation System .. 48

5.1. Overview .. 48

5.2. Ballroom Dance Notation Language .. 50

5.3. Dance Library and Pattern Editor .. 54

5.4. Gesture Editor .. 58

5.4.1. Overview ... 58

5.4.2. Internal Structure ... 61

5.5. Dynamics Module .. 63

5.5.1. Overview ... 63

5.5.2. Internal Structure ... 65

5.5.3. Ground Model ... 66

Chapter 6: Motor Control ... 69

6.1. Upper Levels .. 69

6.2. Low-Level Motor Programs ... 72

6.2.1. General Limb Motor Programs ... 72

6.2.1.1. Free Swing Motor Program .. 72

6.2.1.2. Move Limb Motor Program ... 72

6.2.1.3. Maintain Limb Motor Program .. 76

6.2.2. Position Motor Programs .. 76

6.2.3. Autonomic Motor Programs ... 77

6.3. Intermediate Goal Positions ... 78

6.4. Low-Level Motor Control .. 80

Chapter 7: Experimental Results ... 83

7.1. Arm Reaches to Dance Position ... 83

7.2. Forward Step into 4th Position .. 86

7.3. Backward Step into 4th Position .. 89

7.4. Side Step into 2nd Position .. 91

7.5. Forward and Back Basic in the Foxtrot ... 95

Chapter 8: Summary and Conclusions .. 96

References ... 99

List of Figures

Figure Page

4.1 Green’s Hierarchical Motion Control Model .. 43

5.1 Software Architecture ... 49

5.2 Forward Basic in Foxtrot .. 50

5.3 Pattern Editor Screen Layout .. 55

5.4 Pattern Analyzer Screen Layout ... 57

5.5 Gesture Editor Screen Layout ... 59

5.6 Tree Structure of the Human Figure Model .. 62

5.7 Dynamics Module Screen Layout ... 64

6.1 Motor Control Structure ... 70

6.2 Limb Motor Feedback System .. 81

7.1 Reaching Dance Position in 1 Second .. 84

7.2 Reaching Dance Position in 2 Seconds .. 84

7.3 Reaching Dance Position in 3 Seconds .. 85

7.4 Reaching Dance Position in 4 Seconds .. 85

7.5 Forward Step in 1 Second ... 88

7.6 Forward Step in 2 Seconds ... 88

7.7 Backward Step in 1 Second .. 90

7.8 Backward Step in 2 Seconds ... 90

7.9 Side Step in 1 Second ... 93

7.10 Side Step in 2 Seconds .. 93

Chapter 1

Introduction

_ __

Computer graphics and mathematics can be used to accurately model the behavior, shape, and texture

of objects. Over the years, computer graphics has advanced from simple pen plotter drawings to sophisti-

cated images containing a multitude of colors displayed on high quality raster devices. The introduction of

better, faster hardware has enabled the complexity of an image to evolve from scenes composed of a few

dozen polygons to modern images constructed from many hundreds of thousands of polygons. The

development of sophisticated modeling techniques based on the laws of nature has resulted in surface pro-

perties of objects changing from a uniform plastic look to a very realistic appearance with the simulation of

optical properties such as reflection, refraction, and transparency. Despite these technological achieve-

ments, modern computer-generated animation still lacks one important feature - the lifelike representation

of a human figure and its behavior.

The realistic modeling and animation of human figures remains one of the most challenging prob-

lems in computer graphics. Although computer graphics has been applied to television animation for a

number of years, few commercial productions have attempted to represent human figures and their motion.

There are two fundamental reasons for the lack of realistic human animation. Designing a complete

body model and animating it in a natural manner are both difficult tasks. Unlike the underlying bone,

human flesh is not rigid. As a figure moves through a sequence of postures, the muscles on the limbs and

tissues around the joints change shape in a manner difficult to consistently model. The human body is an

immensely complex figure containing over 200 bones and several hundred degrees of freedom. A human

figure is capable in moving in such a multitude of ways that scientists are still learning how to define and

measure movement. Because human movement is a familiar activity, people are well-trained to distinguish

realistic from unnatural movement. Computer-generated animation sequences of human motion must

1

2

therefore meet a very high standard to be acceptable.

Specifying human movement in computer animation systems also raises interesting issues. How can

a realistic movement sequence be defined using minimal effort and a language familiar to the animator?

How should an animation system translate these high-level descriptions into a set of movement instruc-

tions? How should these movement instructions be translated into a series of time-related motion

sequences? What method should be employed to execute the motion and how can it be controlled?

This thesis focuses on issues related to articulated figure animation and motion control. A new

model, designed to produce realistic and controlled human movement based on ballroom dancing, is

presented. All motion is generated by modeling the behavior of objects under the influence of forces and

torques. Movement sequences are derived from symbols entered using a high-level, easy to learn, ballroom

dance notation language.

1.1. Importance of Modeling and Animating Articulated Figures

Computer-generated figure models and animation sequences have many applications in a variety of

fields. In medicine and related disciplines, accurate human models can be used to study human anatomy

and physiology. In commercial animation, including life-like figures enhances the interest and quality of

animation sequences [Lasseter87]. Employing computer systems in commercial animation can help reduce

the cost of hand-drawn animation and produce more accurate motion. An animation system modeling any

articulated figure motion can be used in biomechanics to study movement and gait patterns [Alexander84b]

[McMahon84a]. Many techniques and algorithms used to animate articulated figures can also be applied to

the field of robotics [Herbison-Evans84b] [Miura84].

Human figure animation systems have extensive uses in the dance world. Computer-based editors

and interpreters can produce animation by reading and translating into visual form a movement description

based on one or more notation languages [Dransch86] [Sealey80]. Systems like these can then be used to

train dance annotators to record movement using these notations [McNair82]. Choreographers can com-

3

pose and edit new sequences before hiring performers, thus saving production costs [Herbison-Evans85].

In conjunction with video, previous dance masterpieces can be viewed, archived, and stored for future

reference. Dance can also provide computing with an artistic flavor [Herbison-Evans82].

A human figure animation system based on forces and torques has a variety of applications. In

sports, feasibility studies of dangerous activities (for example, a dive off a cliff) can be done without risking

injury. Simulations can be used to explore new methods to maximize performance while avoiding injury

[McMahon84a]. Ergonomic analysis can benefit from experiments on the interaction between a human fig-

ure and a simulated working environment [Dooley82]. Evaluation studies can be performed on how a

human figure reacts to forces resulting from automobile accidents [Willmert82]. In ballroom dancing, these

systems can be used to explore interaction between dance partners and illustrate the principles of lead, fol-

low, and frame [Green90].

1.2. Methods for Animating Articulated Figures

Three-dimensional articulated figure animation systems require specifying the figure’s support posi-

tion and orientation of all body segments during each frame. Three translational terms describe the support

position and three rotational terms describe the orientation angle of body segments. A common procedure

is to let one segment define the figure’s support position and have the orientation angles of all other seg-

ments defined relative to the orientation of adjoining segments. Thus, each segment has three rotational

degrees of freedom and the segment defining the figure’s support position has an additional three transla-

tional degrees of freedom. Many different animation techniques exist for determining these positions and

orientations.

Two methods involve measuring the body position and limb angles from a live human subject.

Rotoscoping is the digitization of the joint coordinates from a film or video recording. Instrumentation is

the recording of a motion sequence using special instrumentation (for example, a set of goniometers)

attached to the subject. Many recent commercial animation sequences have been produced using one or

both of these techniques. However, both methods have serious deficiencies. Motion recording

4

instrumentation attached to a subject often inhibits movement. Animation obtained from these techniques

is usually limited to the sequences generated by the human figure acting under the imposed conditions.

Changing the set of environmental conditions (for example, replacing a sidewalk with a skating rink) likely

requires re-recording the subject’s motion under the new conditions.

Key-frame animation systems simulate motion by having the animator create an ordered set of key

frames describing the appearance and position of one or more objects at specific times [Reeves81] [Stur-

man84]. Interpolation algorithms read the key frames and create a series of inbetween frames containing

object positions required to link successive key frames. Motion results when all key frames and inbetween

frames are rapidly played back in sequential order.

While key framing can be applied to articulated figure animation, several serious problems exist with

these systems [Catmull78]. Human figures can perform motion not easily represented by the linear and

cubic spline interpolation methods commonly used by these systems. This requires either the development

of more sophisticated interpolation methods, or that the user hand-specify the motion. Two-dimensional

systems have difficulty generating correct inbetween frames because key frame information is lost when

three dimensional scenes are transformed into two dimensional images. Lengthy animation sequences can

consume vast amounts of computer resources because key frame systems often require large amounts of

space for frame storage.

Kinematic systems describe motion by the positions, velocities, and accelerations occurring at each

joint of the articulated figure [Calvert82] [Wilhelms85]. These systems do not account for the forces and

torques responsible for producing the motion. Motion is obtained either by showing the position of the fig-

ure through a series of key and inbetween frames, or by solving the kinematic equations of motion for each

degree of freedom. Unlike key framing, kinematically calculated positions work well in three dimensions.

Most articulated figure animation systems are kinematic systems. While these systems produce real-

istic animation sequences, kinematic systems have several disadvantages. Although kinematic motion

specification is fairly efficient and easy to implement, it is awkward to use with complex figures containing

5

many degrees of freedom. Correct and realistic motion descriptions are often difficult to produce. Even if

the figure moves in accordance to a realistic kinematic motion specification, the figure cannot react to sud-

den, unexpected forces such as those resulting from a shove.

Dynamic systems produce motion by accounting for forces (responsible for translational motion) and

torques (responsible for rotational motion) acting on each body segment [Armstrong87] [Wilhelms85].

Assuming quantities such as the mass and rotational inertia of each body segment are known, physics and

mechanical engineering can be applied to model the resulting acceleration. The acceleration can then be

integrated twice to obtain the velocity and position of the body segment. In the case of articulated figures,

the dynamic equations describing motion for each degree of freedom are usually complex second order dif-

ferential equations which are solved numerically.

The major advantage to dynamic analysis is its ability to correctly predict motion based on mechani-

cal principles. Dynamic analysis can accurately predict motion in other environments such as the moon,

whereas a realistic kinematic description may be impossible to obtain. Dynamic analysis can also be used

to explore interactions between one or more objects. Until recently, dynamic analysis was much more com-

putationally expensive than kinematic analysis. However, efficient solution techniques now exist for pro-

ducing near real time dynamic motion specifications [Armstrong85a] [Armstrong85b].

The main disadvantage with dynamic analysis is that motion must be specified in terms of forces and

torques. While some forces (such as gravity) are obvious, most people do not have an intuitive feel for the

magnitude of the forces and torques required to produce a particular motion. Despite this, a growing

number of computer scientists believe dynamic analysis is the proper method to use for animation purposes.

Several other methods are used for animating articulated figures. Notation systems usually consist of

two components. Movement commands are entered using an editor designed for a particular notation

language [Brown76] [Dransch86] [Singh83]. These commands are then parsed by an interpreter which

produces the desired motion [Herbison-Evans86] [Politis85] [Wolofsky74]. Goal directed models define a

sequence of goal positions for the figure [Badler87]. The animation system attempts to sequentially orient

6

the figure to each goal position. Knowledge base systems apply artificial intelligence theory to determine

motion sequences from definitions and relationships stored in object and motion knowledge bases

[Drewery86] [Ridsdale86]. The description of motion with each model uses a higher level of abstraction

than the level used by the methods previously introduced. However, all motion produced by these models

is output using either a kinematic or a dynamic specification.

1.3. Thesis Overview

The remainder of this thesis describes a hierarchical and controllable dynamically-based human fig-

ure animation system. This system, hereafter referred to as the Ballroom Dance Animation System (or

BDAS), uses a hierarchical motion control model to generate ballroom dance animation from a high-level

movement notation language.

Chapter 2 highlights previous work done in animating articulated body motion and outlines the goals

of this thesis. Since the construction of BDAS relies on concepts from other fields, Chapter 3 provides a

survey of the relevant material.

The remaining chapters describe the structure of the animation model and discuss the results of

experiments performed with the system. Chapter 4 presents a recently proposed hierarchical motion control

model incorporated into BDAS. Chapter 5 introduces the movement notation language supported by BDAS

and describes the system’s main components. Chapter 6 discusses the motor control model applied to con-

trol the figure’s motion. Chapter 7 presents the experimental results and other observations. Finally,

Chapter 8 summarizes the work and outlines directions for future research.

Chapter 2

Articulated Figure Animation and Movement Notation Systems

_ __

Within the past thirty years, a number of systems have appeared which produce articulated figure ani-

mation using a variety of techniques. These systems have had applications ranging from the study of how a

human reacts to an environment to issues related to recording human movement performed in artistic pro-

ductions. Highlights of this work are presented with special emphasis on systems which inspired the design

of the animation model introduced in Chapter 5.

2.1. Early Work

Ergonomic analysis (the study of how a human interacts with its environment) provided some of the

earliest applications in computer graphics for modeling a human figure and its motion. One of the earliest

figures used for ergonomic analysis was William Fetter’s Landing Signal Officer (LSO), developed for

Boeing in 1959 [Fetter82]. The LSO was a fixed database that gave the position and size of a landing ser-

vices officer on an aircraft carrier, as viewed from the cockpit of the simulated flying aircraft. It was

displayed as a 12-point, 2-dimensional figure. Further studies with 30 point figures simulated passenger

movement down the aisles of commercial aircraft.

Fetter developed several additional models [Fetter82]. The seven jointed "First Man", used for

studying the instrument panel of a Boeing 747, enabled many pilot motions to be displayed by articulating

the figure’s pelvis, neck, shoulders, and elbows. Possibly the first use of computer graphics in commercial

advertising took place in 1970 when this figure was used for a Norelco television commercial. The addi-

tion of twelve extra joints to "First Man" produced "Second Man". This figure was used to generate a set of

animation film sequences based on a series of photographs produced by Eadweard Muybridge

[Muybridge55]. "Third Man and Woman" was a hierarchical figure series with each figure differing by an

order of magnitude in complexity. These figures were used for general ergonomic studies. The most

7

8

complex figure had 1000 points and was displayed with lines to represent the contours of the body. In

1977, Fetter produced "Fourth Man and Woman" figures based on data from biostereometric tapes. These

figures could be displayed as a series of colored polygons on raster devices.

Cyberman (Cybernetic man-model) was developed by Chrysler Corporation for modeling human

activity in and around a car [Blakeley80]. A 15-link stick figure (with or without a wireframe outline)

could be interactively manipulated by the user. Reach attempts were performed either by the operator from

one of 36 operator eye locations, or by an associated supplementary program. No provision was made for

enforcing realistic positions, and the user was responsible for determining the comfort and feasibility of a

position after each operation. Results of each reach attempt were displayed on a vector device.

Combiman (Computerized biomechanical man-model) was designed for research in aircraft design

and evaluation by the Aerospace Medical Research Laboratory and the University of Dayton Research

Institute [Bapu80]. The model consisted of 33 links, with 2 of these providing a seat-based reference point.

Reach attempts were performed by the operator specifying and initiating the limb used in the operation. All

angular movements were constrained to realistic values during the operation. Although the system indi-

cated success or failure with each reach operation, the operator was required to determine the amount of

clearance (or distance remaining to the goal).

Sammie (System for Aiding Man Machine Interaction Evaluation) was developed by the University of

Nottingham, Nottingham, England for general ergonometric design and analysis [Kingsley81]. The user

defined the environment by either building objects from simple primitives, or by defining the vertices and

edges of irregular shaped objects. The human model was based on a measurement survey of a general

population group. Users could, however, alter the various limb and segment lengths. After attempting a

one-step reach, the system displayed the final position of the model and indicated whether or not the reach

was successful. If the reach failed, the amount of distance between the object and the model was given.

Notification was provided when maximum comfort or the maximum limb angle was obtained. This helped

to decide if a position could be achieved or maintained.

9

Boeman was designed in 1969 by the Boeing Corporation in Seattle, Washington [Dooley82]. The

human model was based on data representing a 50th-percentile human model obtained from studies by

Dreyfus, Dempster, and Hertzberg. All input data concerning the model and its environment were read

from computer cards. Output was displayed on a plotter. Although this program is dated by the hardware it

used, the model’s database provided a basis for many subsequent anthropometric modeling programs.

Buford was developed at Rockwell International in Downey, California to find reach and clearance

areas around a model positioned by the operator [Dooley82]. The figure represented a 50th-percentile

human model and was covered by CAD-generated polygons. The user could interactively design the

environment and change the body position and limb sizes. However, repositioning the model was done by

individually moving the body and limb segments.

2.2. Key Frame Animation Systems

Several key frame animation systems have been developed for representing a human model and

animating its movement. These systems have also been used for exploring interpolation and inbetweening

techniques.

BBOP, produced at the New York Institute of Technology’s Graphics Lab, displayed the figure as a

jointed structure with each node represented by a transformation matrix [Sturman84]. Joints (or limbs)

could be scaled, translated, or rotated by using function keys to select appropriate parameters which were

set through the manipulation of a joystick. All parameter changes were reflected in updates to the screen.

Key frames were created by storing values for every joint. This implementation, though simple, required

much storage. A motion editor allowed the animator to specify the interpolation method used for key frame

inbetweening.

EM, also produced at NYIT, was a more complicated key frame animation system [Sturman84]. This

system represented a figure using a structure similar to the one used by BBOP. Unlike BBOP, EM used a

geometric modeling language to define parameters controlling the joint transformations and shape of the

10

body parts. The model’s motion could be influenced by coordinating these parameters with respect to con-

stants and other parameters. Interaction modes were configured according to each parameter and joint in

the tree structure. Although this made animating a model more difficult, the system could display more

complicated motions.

Other key frame animation systems explored different methods of inbetweening and object represen-

tation. Ron Baecker’s 1969 Ph.D. thesis described efforts to provide more animator control by using P-

curves for inbetweening [Baecker69]. William Reeves controlled inbetween motion using moving point

constraints [Reeves81]. Craig Reynolds’ ASAS (Actor/Scriptor Animation System) was an extension of

LISP and could be used for both object definition and action specification [Reynolds82].

2.3. Kinematic and Dynamic Systems

Kinematic systems produce articulated figure motion through the specification of velocities and

accelerations acting on the figure’s limbs. Position is then calculated as a function of time. Dynamic sys-

tems take this one step further by applying forces and torques to the figure. Equations are then solved to

obtain the acceleration, velocity, and position of the figure. During the past decade, a number of systems

based on these methods have been used to produce articulated figure animation.

2.3.1. A Goal-Directed Finite State Machine

In 1982, David Zeltzer and Charles Csuri of Ohio State University developed an extensible and gen-

eral model whereby the animator could define complex articulated objects and kinematically simulate their

motion [Zeltzer82b] [Zeltzer82a]. The eventual goal of the project was to have a goal-directed, extensible,

and interactive system capable of producing animation of real or imaginary objects in close to real time.

General motion commands input by the user were parsed by the system into many primitive, sequential

movements which would then be applied to the figure.

Articulated figures were represented as skeletons of arbitrary complexity. Skeletons were defined

using a language based on a context free grammar. Every skeletal description contained a declarations and

11

a description block. The declarations block assigned a name to each joint and set any rotational constraints.

As an example, the declarations block for a jaw was:

jaw: x -60 0 y -10 10

Two structures were used in the description block. Limb structures defined a sequence of connected

segments by listing the names of the segments in a string enclosed by round parentheses. Compound struc-

tures defined joints where two or more segments met. These structures were enclosed by begin/end blocks.

The first string following the begin statement was the name of the joint and all remaining entries up to the

end statement were interpreted as dependent joints. For example, the following structure defined a wrist as

a compound joint with five limbs and each limb having two or more joints:

begin
wrist

(thumb1 thumb2)
(index1 index2 index3)
(middle1 middle2 middle3)
(ring1 ring2 ring3)
(little1 little2 little3)

end

The parser generated a binary transformation tree and a symbol table. The tree represented the skele-

ton and the symbol table held information about each joint. These structures were subsequently used by

other components of the motion simulation system.

The motion animation system was a hierarchy of three levels modeled after synergic control systems

of animals. Kinematic studies of human and mechanical motion were applied to the decomposition of

movement commands. The task manager accepted commands from the user and parsed them into a series

of component skills. These skills were placed into a movement queue for subsequent processing by the

middle level. Every skill represented a type of motion (such as walking, grasping, and jumping) the figure

could perform.

The middle and lower levels were implemented as finite state machines. Skills were executed at the

middle level by a series of motor programs. Every motor program handled a particular type of motion by

executing a fixed set of low-level local motor programs (LMPs). The LMPs were procedures which per-

12

formed the actual motion by modifying the rotational angles of the joints represented in the skeletal data-

base. Each LMP handled a specific movement primitive. Motion synchronization was done by having the

LMP return a feedback signal to the controlling program. At the end of each time frame, the graphics

display was updated to reflect the changed state of the skeletal database. All motion within the model was

kinematically produced.

As an example, a command requiring a ’walk’ had the walk motor program placed on the movement

queue by the task manager. Each time a walk was performed a set of eight LMPs were executed. These

LMPs consisted of four LMPs responsible for regulating the left swing, left stance, right swing, and right

stance of the hips and leg, and four LMPs responsible for regulating the swinging of the arms.

Most of the work on the system was focused on the lower levels. By having the user input com-

ponent skills directly to the task manager, interesting animation sequences of a skeletal figure walking,

somersaulting, jumping, and running were produced.

2.3.2. A Low-Level Kinematic/Dynamic System

In 1985, Jane Wilhelms of the University of California, Berkeley published a thesis describing an

articulated figure animation system Deva which could produce both kinematic and dynamic specified

motion [Wilhelms85] [Wilhelms86] [Wilhelms87].

Deva was a low-level system where the animator defined articulated figure motion by creating a set

of motion control functions responsible for the motion of each degree of freedom. These functions

represented either the position and orientation, or the magnitude of the applied force or torque, as a function

of time.

Deva consisted of two components. Dynamic and kinematic calculations and all output to the display

device were handled within the Deva animation system. Control functions governing the motion of the

body were created and modified with the motion control editor Virya.

The animator defined the articulated figure structure from a language based on the body grammar

13

proposed by Zeltzer [Zeltzer82b]. The system then produced an ASCII file containing information about

the names of the body segments, the degrees of freedom available to all joints in the figure, and the connec-

tivity between the body segments and joints. Joints could either be revolute or sliding. Joints with multiple

degrees of freedom were treated as a series of joints with a single degree of freedom. The notation could

describe arbitrary articulated figures representable by a tree-like structure. Figures generally had no more

than 12 limbs or 36 degrees of freedom due to Virya limitations and the computational overhead of the

dynamic analysis routines.

Deva converted the contents of this file into a database for its internal use. Deva-internal database

functions allowed the animator to add or modify information pertaining to the physical properties of each

segment. These values included the length, mass, center of mass, inertia tensor matrix, and orientation to

the segment’s parent link. Once the figure was specified, motion was produced either kinematically

through a series of key frame positions read from an ASCII file, or kinematically and dynamically by inter-

polating motion control functions for each degree of freedom. In addition to using these motion control

functions for dynamic analysis, Deva also accounted for gravity acting on each segment of the body and

used springs and dampers to simulate ground reaction forces and joint limits.

Virya was used primarily for displaying and interactively creating and editing the motion control

function associated with each degree of freedom. A motion control function consisted of a second-

derivative continuous-cubic interpolatory spline. All displayed motion control functions had time

represented along the horizontal axis. The vertical axis represented position for kinematic functions, and

force or torque for dynamic functions.

During dynamical analysis, a degree of freedom could be in one of five modes. Relaxed mode

enabled the degree of freedom to interact freely with the environment without any user specified restric-

tions. Dynamic mode caused Deva to apply pseudo-muscular torques required to perform simple motions.

Freeze caused the degree of freedom to be maintained at a particular position through the application of a

strong restorative spring and damper. Balance resulted in the degree of freedom maintained at a particular

14

orientation with respect to the world frame. Hybrid Kinematic-Dynamic mode resulted in the application of

forces and torques to the degree of freedom based upon the current velocity and position of the limb. These

modes could be set as a function of time within the Virya editor. Deva could also run in pure kinematic

mode with all the other modes turned off.

The equations of motion for the figure were derived using the Gibbs-Appell formulation and solved

numerically with fourth order Runge-Kutta integration techniques. Output from the dynamics calculations

was either in the form of Virya kinematic control functions or updates to the Deva data structures.

Kinematic control functions could be modified by the animator at a later time to produce kinematic motion.

The data structures were directly used by Deva to update the display of the figure.

Most experiments with Deva involved simple motions such as making an object fall onto a frictional

and frictionless floor, testing joint limits, balancing a man, raising and lowering an arm, raising a leg from a

horizontal position, and performing a sit up. While the resulting motion appeared realistic, the solution

technique used in Deva was computationally expensive for bodies composed of many degrees of freedom.

Animation sequences lasting a few seconds required many hours or days to compute.

This problem was somewhat alleviated by Wilhelms and Forsey in 1988 with the construction of

Manikin [Forsey88]. This system, designed for the interactive manipulation of an articulated figure, used a

computationally efficient recursive formulation of the dynamics equations of motion [Armstrong85a]

[Armstrong85b]. The computational complexity of this solution method increased linearly in the number

of links. The main difficulty with Manikin was finding the precise forces and torques required to handle

collisions and reach goals. Additional computational power was also necessary for the system to run in

near-real time.

2.3.3. A Near-Real Time Dynamic System

A system which dynamically manipulated articulated figures in close to real time was produced in

1985 at the University of Alberta [Armstrong86b] [Armstrong87]. This system was based on the same for-

15

mulation and solution used by Manikin for the equations of motion of articulated figures.

The system was composed of two modules. Interaction with the user and display of the articulated

figure model were handled by the front end. All dynamic computations were performed within the dynamic

analysis module. This module either resided on the same processor as the front end, on a different proces-

sor, or on a network of processors [Armstrong86a]. Both modules communicated with each other through a

series of packet exchanges using either a pipe or a local area network.

Motion was controlled using a set of global and limb motion processes. Global motion processes

included a balance procedure to maintain the figure in an upright position, and a friction process to simulate

horizontal ground friction.

One of four limb processes controlled the motion of each limb. Free swing removed all forces and

torques from a limb, thereby leaving the limb to freely interact with the environment. Friction generated a

velocity-dependent force or torque to retard a limb’s motion. Maintain held a limb at its current angular

position with respect to an adjoining limb. Move applied torques produced by torque functions to move a

limb from one position to another. Torque functions were based on results obtained from biomechanical

studies of torques produced by muscle contraction.

This system was designed primarily to allow the animator to experiment with simple movements on

an articulated figure model in close to real time. Results indicated real-time dynamic animation could be

achieved using a network of four SUN 3 workstations.

2.3.4. Motion Specification by a Structured Language

In 1986, Danny Cachola and Gunther Schrack of the University of British Columbia discussed a sys-

tem which enabled a model’s motion to be described by a structured language [Cachola86].

A figure was constructed using a grammar to define the components connecting each joint. These

components represented either a single link or a previously defined submodel of the body. Joint definitions

included any rotational constraints limiting joint movement. The parser assigned each joint a unique iden-

16

tifier for subsequent motion commands and then built a tree structure to map the figure’s links and joints to

the nodes and arcs.

Motion verbs were defined either explicitly or implicitly. Explicitly defined motion commands con-

sisted of a motion name followed by a list of affected joints. The joint list contained the identifier of the

joint and time-ordered sequence of key frame positions giving the joint angle and the interpolation tech-

nique used to reach the orientation. Frame identification numbers were defined either within the motion

command or passed as a parameter. Once a motion was defined, it could be implicitly executed by a pro-

cedure call from other motion commands. Other commands allowed synchronization of concurrently exe-

cuting motion commands and the application of a motion command to a subset of affected limbs.

Animation was produced by executing scene procedures composed of functions displaying static

components (such as the background and inanimate objects) and functions executing dynamic components.

A dynamic component consisted of a model name, the time period allotted for the animation, and a set of

motion verbs describing the action to be performed. All motion within the system was produced kinemati-

cally.

2.3.5. Animating Multi-Legged Animal Motion

PODA, a computer animation system for simulating the motion of multi-legged animals using

dynamics, kinematics, and spline interpolations, was first introduced in 1986 by Michael Girard of Ohio

State University [Girard85] [Girard87].

Limbs were positioned using either forward kinematics (solving for the position of the end-effector

given the joint angles) or inverse kinematics (solving for the joint angles given the position of the end-

effector). A third mode allowed the user to adjust the joint angles with the end-effector clamped at a

desired position. The angles were solved using inverse kinematics calculated by means of a pseudoinverse

Jacobian.

PODA defined a posture sequence as a series of limb postures. The path within a posture sequence

17

was given by a spline interpolation of the joint angles or a three dimensional interpolating spline of the

end-effector coordinates. Speed was controlled by reparameterizing the arc lengths of an interpolating

spline curve giving position as a function of time, and by expressing postures as a function of distance and

time.

The limb motion was coordinated using gait specification terminology from biomechanics and robot-

ics. This involved specifying time intervals describing the support and non-support phases of each limb. In

addition to handling a wide range of gaits, the system also attempted smooth transitions from one form of

gait to another.

The animator specified horizontal motion using cubic splines. Vertical motion during the non-

support phases was calculated using simple dynamics based on the gravity acting on the body. Additional

dynamics were applied to handle angular motion such as turning and banking.

Non-periodic movement such as dance was animated by displaying sequences of body trajectories. A

body trajectory consisted of the union of a series of trajectories belonging to each body limb (including the

pelvis). Interpolations of vertical motion such as hops or jumps were based on the height of the body speci-

fied in postures prior to lift-off and immediately following contact with the ground.

2.3.6. A Dynamic Motion System

In 1987, Paul Isaacs and Michael Cohen of Cornell University described a system which produced

dynamic motion based on a combination of inverse dynamics incorporated with kinematic constraint check-

ing and behavior functions [Isaacs87].

DYNAMO accepted input describing the physical and behavior characteristics of a linked object.

Physical characteristics included quantities such as the size, shape, mass, moments of inertia, and center of

mass of each link. Behavior characteristics were specified by behavior functions. These included environ-

mental factors such as gravity, and key frame path sequences giving the acceleration of a linkage based on a

time-specified input path.

18

Dynamic simulation at each time increment took place in four phases. First, the behavior functions

were executed to obtain the force acting on a linkage or the motion a linkage was about to undergo. Next,

joint forces were calculated from spring and dampers acting on each degree of freedom and added to the

internal force and torque vectors for the joint. Finally, the equations of motion were formulated and solved

for the object.

The equations were derived from D’Alembert’s principle of virtual work. A kinematic constraint

consisted of explicitly specifying the acceleration of a degree of freedom, thereby necessitating its removal

from the system of equations. Once the accelerations of the remaining degrees of freedom were found,

inverse dynamics was applied to find the unknown forces acting on each link. The new positions and velo-

cities for each link would be subsequently calculated and the solution checked for violation of any

kinematic constraints present within the degrees of freedom. If none occurred, the model was updated with

the new solution. Otherwise, a constraining acceleration for the affected degree of freedom was specified

and the degree of freedom removed from the equations. The equations would be reformulated and the con-

straint checking process repeated.

This system produced realistic motion for simple objects such as a small tree swaying in the wind

and an arm catching and throwing a ball, but computation time was exponentially dependent upon the

number of degrees of freedom in the object.

2.3.7. A Hybrid Kinematic/Dynamic Walking Model

In 1989, Armin Bruderlin and Thomas Calvert of Simon Fraser University presented a goal directed

walking model which incorporated both kinematic and dynamic motion control [Bruderlin89]. One of the

primary objectives of the Keyframe-Less Animation of Walking (KLAW) system was to produce realistic

human gait at a variety of speed and step lengths.

In addition to the body height and mass, three fundamental locomotion parameters (forward velocity,

step frequency, and step length) were provided by the animator. If none of these parameters were specified,

19

the system computed normalized parameters based on the height of the body model. The animator could

further customize the locomotion by specifying other attributes such as the amount of rotation of the pelvis

and the height of toe clearance during the swing phase. Thus, all input was specified in terms and quanti-

ties familiar to the animator.

Control of the locomotion cycle was maintained by a hierarchical model consisting of three levels.

The highest (conceptual abstraction) level transformed the fundamental locomotion parameters into a

number of step constraints required by the lower levels. These constraints included the maximum angle of

the legs from a vertical position based on a compass gait [McMahon84a] [McMahon84b], and the length of

a telescopic segment simulating knee flexion and plantar flexion of the ankle.

The middle (gait refinement) level operated similarly to the middle level in Zeltzer’s finite state

machine motor control model [Zeltzer82b]. This level oversaw the changes in the model’s state during the

gait cycle. A state change occurred whenever a limb entered either the stance or swing phase of a gait

cycle.

The lowest (physical abstraction) level generated the motion through the application of kinematic and

dynamic motion algorithms. The dynamic algorithms were used as a starting point for obtaining the motion

of the legs. These algorithms consisted of a limited constrained set of equations applied to the body and

legs. The equations were derived by the Lagrangian method and solved using numerical integration. A

technique referred to as the virtual leg principle displayed the stance leg during the gait cycle. This tech-

nique superimposed a human leg over the telescopic stance leg by calculating the angles of the leg based on

the motion of the foot during the stance phase. Foot rotation and arm swings were simulated using

kinematic algorithms. Further "cosmetic" kinematic algorithms were applied to the body to animate vari-

ous determinants of gait [McMahon84a] [McMahon84b].

Preliminary results with KLAW indicated the system could produce a wide range of realistic appear-

ing human walks in close to real time. However, since the figure had been modeled to walk on a stiff floor

surface with a high coefficient of friction, the system likely could not produce an accurate description of

20

gait resulting from surfaces similar to skating rinks or foam mats.

2.4. Movement Notation Systems

Throughout recorded history music and dance have been a part of culture. Many of the musical mas-

terpieces composed by artists within the past four centuries are known because of a musical notation

language. Until recently, dance has not enjoyed the benefits of a notation language or archival system.

Nearly all of the classics composed in the past have been either entirely lost or altered to an unknown

degree because demonstration and repetition were the only means for passing these works on from genera-

tion to generation. This shortcoming has been somewhat alleviated in the twentieth century with the

development of movement notation languages and video.

While video is useful for recording and archiving dance sequences, it has several limitations

[Herbison-Evans85]. A tradeoff exists between recording the flow and overall pattern of the dance versus

focusing on the subtle movements of the head, arms, and feet of the dancers. Video offers a two-

dimensional interpretation of a three-dimensional work. Some movements may be concealed if the perfor-

mance involves more than one dancer. Since video is very dependent upon how the performer interprets

the choreographer’s work, some of the choreographer’s intent may be lost in the final production.

2.4.1. Movement Notation Languages

The recent development of movement notation languages has provided a means for translating dance

into symbolic form and has helped to enhance dance literacy. Although many notation languages for

describing body movement have been proposed, two languages are in common use throughout the dance

world [Royce77].

Labanotation, developed by Rudolf Laban, is used throughout the United States and Europe

[Laban75]. This notation language has a high level of accuracy and is capable of recording almost any type

of human movement. Movement is described along a vertical staff with time running upward. The

columns of the staff correspond to the various major body parts and the movement of these parts is

21

indicated by the direction of the symbols. There are approximately 1500 different symbols in this

language.

Benesh notation, developed in the United Kingdom by Rudolf and Joan Benesh in 1947, is used pri-

marily in the Commonwealth countries [Benesh56]. This notation language is more suited towards dance,

particularly ballet. A Benesh score has many similarities to a musical score. Movement is described using

a horizontal staff with time running discontinuously from left to right. Body parts are projected onto the

staff with the upper lines corresponding to the head and arms, and the lower lines to the legs and feet. A

series of symbols along these lines indicate the direction of movement of the analogous body parts.

Although many of the symbols are compound, approximately 52,000 symbols fully describe the language.

While movement notation languages solve many problems introduced by video, they present prob-

lems of their own. Both notation languages require many months of study to learn. As a result, few danc-

ers and choreographers can read or write movement notation. It is also difficult to record a score in real

time while a movement sequence is performed.

Within the past twenty years several attempts have been made to remedy these problems through the

construction of movement notation editors and interpreters.

2.4.2. Labanotation Editors and Interpreters

In 1974, Zella Wolofsky at Simon Fraser University developed an editor which converted an

alphanumeric description of Labanotation into a numerical language describing body position and orienta-

tion [Wolofsky74]. This body description could then be converted into the graphical representation of a

stick figure. Successive body descriptions were separated by time intervals and an interpolation algorithm

was constructed to supply the motion between key positions. The research group at SFU continued this

work and by 1977 they had designed a graphical editor capable of reading a score and converting it into

alphanumeric code. In 1978, Calvert and Chapman built a macro processor which translated various higher

level movement descriptions into Labanotation scores [Calvert78].

22

Research efforts at the University of Pennsylvania occurred in the opposite order. A Labanotation

editor was developed first in 1976 by Maxine Brown [Brown76]. By observing that a movement descrip-

tion consists of the concurrent movement of body parts, in 1978 Badler et al. designed an interpreter based

on a set of parallel processors [Badler78]. Each processor operated on one or more limbs.

In 1977, G.J. Savage and J.M. Officer of the University of Waterloo developed a Labanotation sys-

tem named CHOREO-L [Savage78]. The original version, CHOREO, used Massine notation and resem-

bled a key-frame animation system. CHOREO-L accepted scores entered with an acoustic pen acting on a

graphical menu overlaid on an acoustic tablet. The resulting Labanotation score was displayed on the

screen for verification. A data base of record information about the symbols was constructed during the

movement description. Each record contained the start and end time for a particular body motion. A time-

ordered sequential interpolation of the records produced animation.

Another Labanotation-based editor, NOTATE, was completed by Sealey at the University of Iowa in

1979 [Sealey80]. The design of this editor focused predominantly on user interface and portability issues.

Further expansion to this editor resulted in the completion of NOTATE II in 1983 [Politis87]. In conjunc-

tion with a computer assisted instruction system CLIP (Computerized Labanotation Instructional Program),

NOTATE II has been primarily used in teaching Labanotation.

These Labanotation systems are generally more suited for introducing students to Labanotation than

for studying movement simulation. An algorithmic approach is difficult to implement because Labanota-

tion leaves too much for interpretation with common motion commands (such as walking and jumping).

Much extra work is required to produce a system capable of being used for serious movement studies.

2.4.3. Benesh Notation Editors and Interpreters

Following this active research on movement with Labanotation editors and interpreters, similar inves-

tigations were made with editors and interpreters handling Benesh movement notation. Most notable were

efforts at the University of Waterloo and the University of Sydney.

23

An interactive graphics editor for preparing and editing Benesh notated dance scores was published

in 1982 by Baldev Singh at the University of Waterloo [Singh83]. This editor was designed to provide a

powerful and convenient user interface for use by people not familiar with computers. The system was

later extended and named ChoreoScribe [Dransch86]. An interpreter was developed for ChoreoScribe by

Don Herbison-Evans while on leave at the University of Waterloo in 1986 [Herbison-Evans86].

Possibly the first commercial application of a dance score notation system was the microcomputer-

based program MacBenesh at the University of Waterloo in 1984a. The interpolation of dance scores

within MacBenesh was more difficult than with ChoreoScribe because semantic information retained in

ChoreoScribe had to be omitted in MacBenesh.

Research into computer applications of Benesh movement notation at the University of Sydney began

in 1979 with the development of the NUDES (Numerical Utility Displaying Ellipsoid Solids) language for

displaying the motion of ellipsoid-shaped solids [Herbison-Evans87]. NUDES was a low-level animation

system which took a detailed description of the body and displayed the figure as a series of ellipsoids. This

system was used by a professional choreographer in 1980 to produce animation of the first six bars of the

solo female waltz from the 1836 ballet Les Sylphides [Herbison-Evans84a]. In 1986, a Benesh Interpreter

BI was developed by George Politis. BI took, as input, a score generated by a Benesh graphical editor

designed on a SUN workstation [Politis82] [Politis85] [Politis86]. The interpreter processed each score,

calculated all necessary explicit and implicit information, interpolated motion between adjacent frames, and

produced output suitable as input to the NUDES animation system.

2.5. Other Systems

In 1987, Badler et al. introduced POSIT - a system for positioning articulated figures by constraining

limb locations [Badler87]. An articulated figure’s position was defined by assigning one or more limbs a

goal position and weight value measuring the importance of reaching the goal. POSIT then constructed a

reach tree based on the configuration of limbs assigned to a goal position. Each tree node contained the dis-

placement of the node from its goal (scaled by goal weight), and the sum of the weighted displacements for

24

all nodes in the subtree defined from the node. A constraint-satisfaction algorithm balanced these displace-

ments and the resulting position of the figure was updated on the display device.

Several recent animation models have been based on expert system technology. These systems plan

and execute goal-directed motion by deducing motion sequences from definitions and relationships stored

in object and motion knowledge bases. Expert-based animation systems have included the Director’s

Apprentice [Ridsdale86] at Simon Fraser University and GEMS [Drewery86] at the University of Toronto.

During the past decade, several models have modeled facial expressions and speech. Frederic Parke

developed a facial animation model which used a parameter set based on both the underlying structure and

anatomy of a face, and on observations of facial characteristics [Parke82]. This model produced good

facial images from relatively simple parameter sets. A similar facial expression animation model was

developed by Stephen Platt and Norman Badler of the University of Pennsylvania [Platt81]. This model

emphasized the underlying muscle structure of a face and used a movement notation language based on the

Facial Action Coding System (FACS). A model for animating both speech and expression appeared in

1986 [Pearce86]. The face was based on Parke’s model and input was specified textually. Another model

which produced facial expression based on muscle structure and a limited parameter set appeared in 1987

[Waters87]. This model could handle a wide variety of facial topologies.

Other systems in recent years have attempted to model the grasping motion of hands [Magnenat-

Thalmann88] and muscle contraction in arms [Chadwick89].

2.6. Thesis Goals

The dynamically based articulated figure animation systems discussed in this literature review have

yet to solve several important issues. How can dynamically based motion be specified using minimal effort

and a vocabulary familiar to the animator? Previous systems (for example, DEVA) have the animator enter-

ing motion sequences in terms of dynamic and kinematic motion generating functions. These functions

then act on each limb or degree of freedom. While this approach can be used to study and modify the

25

resulting motion, the motion vocabulary consists of forces, torques, velocities, and accelerations - quantities

unfamiliar to most animators. This approach also becomes tedious and unmanageable for complicated

movements requiring the coordination of many limbs, especially when the movement must be performed

within a specified time limit.

A method needs to be developed to allow a system to accept both simple and complex movement

commands from an easy to use, high-level motion vocabulary. The system should translate these com-

mands into the necessary lower-level dynamic components. All forces and torques should have reasonable

magnitudes and produce natural appearing movement within animator-specified time limits. Control of the

figure’s movement should be performed automatically by the system rather than by having the animator

guessing the required forces and torques.

This thesis presents a new animation system which addresses these issues. The system has been

designed to dynamically control the motion of an articulated figure and allow motion sequences to be

entered using an easy to learn, high-level motion vocabulary. This motion vocabulary consists of the

movements defined in ballroom dancing. Each movement is entered using a ballroom dance notation

language. In addition to specifying both simple and complex movements, this language can be used to

assign each motion a time limit for completion.

The system controls the figure’s movement by activating an internal motion control model. This

control model breaks complex movements into smaller components and activates a set of low-level motion

processes to move or maintain the limbs as required. All torques are generated automatically and are based

on muscle torque functions derived from biomechanics. The movement of each limb is controlled by per-

forming interpolations along a quaternion curve defined for the limb. These interpolations are used to

adjust the magnitude and direction of the applied torque. As a result, interesting and complex motions may

be performed at different rates of speed.

Chapter 3

Background Material

_ __

Construction of dynamically-based articulated figure animation systems relies on concepts and theory

developed in other scientific fields. This chapter provides a background of the relevant theory from rota-

tional algebra, mechanical engineering, and physics.

3.1. Coordinate Systems and Rotation Matrices

Articulated figures are normally represented using a tree-like structure. The tree consists of links,

with arcs connecting each link. Each body segment has a parent link and possibly one or more child links.

One segment (usually the upper or lower torso for human figures) is mapped as the root of the tree.

To represent the figure analytically, a coordinate system is required. When dealing with articulated

figures, a useful technique is to define a coordinate system for each link and one for the world space. The

inertial (world) coordinate system remains constant relative to all links, while each link’s coordinate system

moves with the corresponding link. The primary advantage with this approach is that several vector quanti-

ties (such as the vector representing limb length) remain constant as the limb rotates.

Each coordinate system is composed of three mutually orthogonal unit vectors which define a frame.

The components of each of these vectors are arranged as one-column matrices. Frames are commonly

represented using a right-handed coordinate system. A limb is rotated by rotating the frame defined by

these orthogonal unit vectors. The rotation axis is either one of these unit vectors, or an axis defined by the

vector sum of two or more of these vectors. The new coordinate system is obtained by multiplying these

unit vectors by a 3×3 orthogonal rotation matrix.

Rotations by φ, θ, and ψ degrees about the X, Y, and Z axes are defined by the following standard

orthogonal rotation matrices:

26

27

R x (φ) =



0

0

1

− sin φ
cos φ

0

cos φ
sin φ

0 




R y (θ) =



sin θ

0

cos θ

0

1

0

cos θ
0

− sin θ 




R z (ψ) =



 0

− sin ψ
cos ψ

0

cos ψ
sin ψ

1

0

0




.

Any orientation may be achieved through the multiplication of these rotation matrices. Because

matrix multiplication, generally, does not commute, the order these rotations are applied is important. A

common method (and the one adopted in BDAS) is to define orientations by first rotating about the Z (roll)

axis, then rotating about the rotated Y (yaw) axis, and finally rotating about the doubly rotated X (pitch)

axis. The rotation matrix which describes this new orientation is the matrix product

R = (R z (ψ) R y (θ) R x (φ)) and it has the following form:

R =



 − sin θ

cos θ sin ψ
cos θ cos ψ

sin φ cos θ
sin φ sin θ sin ψ + cos φ cos ψ
sin φ sin θ cos ψ − cos φ sin ψ

cos φ cos θ
cos φ sin θ sin ψ − sin φ cos ψ
cos φ sin θ cos ψ + sin φ sin ψ 





.

R represents the transformation of a column vector from the frame of the link (represented by this

rotation matrix) to the frame representing the parent of this link. The angles ψ, θ, and φ are known as the

Euler angles of the transformation. Since R is the product of three orthogonal matrices, R is also orthogo-

nal since the set of all real orthogonal 3×3 matrices form a group called the Orthogonal group O(3). There-

fore, the inverse of R is its transpose. This transpose represents the transformation of column vectors from

the parent frame of the link (represented by R) to the frame of the link represented by R.

By ascending the tree from the link to the root, a rotation matrix can be obtained giving the transfor-

mation of vectors from the frame of the link (represented by R) to vectors in the inertial frame. The

transformation matrices for all visited nodes are multiplied together from left to right to produce the desired

matrix.

A transformation matrix can be decomposed into its Euler angle components by first noting R 31 is

equal to − sinθ. The absolute value of cosθ can be calculated using the trigonometric identity

sin2 θ + cos2 θ = 1. If cosθ is not equal to zero then the values of ψ and φ can be determined by:

cosψ = R 11 /cosθ cosφ = R 33 /cosθ

sinψ = R 21 /cosθ sinφ = R 32 /cosθ .

28

When cosθ is zero, roll cannot be distinguished from pitch. In this case, the roll angle ψ is set to zero

and the value of φ is determined by:

cosφ = R 22 /cosθ sinφ = − R 23 /cosθ .

Thus, the process of converting a rotation matrix to a set of Euler angles is very ill-defined because it

involves uncertainties with taking the sign of square roots and inverse trigonometric functions, as well as an

assumption when the cosine of the yaw angle is zero.

3.2. Quaternions

A better and more general method for expressing orientations and rotations is obtained by using a set

of four-dimensional numbers called quaternions. Quaternions, discovered in 1843 by Sir William Rowan

Hamilton, are an extension to complex numbers and consist of one real component and three imaginary

components. Every quaternion can be expressed in the form:

λ + λ x i + λ y j + λ z k

where λ, λ x , λ y , and λ z are scalars and i, j, and k are imaginary units with the properties:

i2 = j2 = k2 = − 1 , ij = k , ji = − k ,

and a cyclic permutation of i → j → k → i.

A more convenient method for expressing quaternions is the form λ + (λ x , λ y , λ z), where λ is a

scalar and λ x , λ y , λ z are the components of a three dimensional vector. This may be rewritten as [λ , Λ]

with λ representing the scalar and Λ the vector component of the quaternion.

3.2.1. The Algebra of Quaternions

Quaternions form a commutative group under addition and a non-commutative group under multipli-

cation. Quaternion addition is performed by adding the corresponding scalar to scalar and vector to vector

components:

[λ 1 , Λ 1] + [λ 2 , Λ 2] = [λ 1 + λ 2 , Λ 1 + Λ 2] .

The rule for multiplying quaternions requires several operations involving scalar multiplications, inner dot

29

products, and outer cross products of the vector components:

[λ 1 , Λ 1] [λ 2 , Λ 2] = [λ 1 λ 2 − Λ 1
.Λ 2 , λ 1 Λ 2 + λ 2 Λ 1 + Λ 1 × Λ 2].

Quaternions with a zero vector component are called real quaternions. Real quaternions multiply

like real numbers and can consequently be mapped to the real numbers. By defining the mapping

[λ , 0] ≡ λ, the product of two real quaternions can be expressed as:

[λ 1 , 0] [λ 2 , 0] = [λ 1 λ 2 , 0] ≡ λ 1 λ 2 .

Therefore, the product of a real number and a quaternion is:

λ 1 [λ 2 , Λ 2] = [λ 1 , 0] [λ 2 , Λ 2] = [λ 1 λ 2 , λ 1 Λ 2] .

Quaternions with a zero scalar component are called pure quaternions. A unit quaternion is a pure

quaternion in which  Λ  = 1.

The conjugate of a quaternion [λ , Λ] is the quaternion [λ , − Λ]. Multiplying a quaternion by its

conjugate gives:

[λ , Λ] [λ , − Λ] = [λ λ + Λ .Λ , 0] = λ2 +  Λ 2 .

The square root of this value is the norm of the quaternion [λ , Λ] and is denoted by  [λ , Λ] . A quatern-

ion whose norm is equal to 1 is called a normalized quaternion.

The inverse of a quaternion is a quaternion which satisfies the condition:

[λ , Λ] [λ , Λ] − 1 = [1 , 0] ≡ 1 .

Since

[λ , Λ] [λ , − Λ] =  [λ , Λ] 2 ,

the inverse of [λ , Λ] is the quaternion

[λ , Λ] − 1 =
 [λ , Λ] 2

[λ , − Λ]_ _________

provided, of course, [λ , Λ] is not the null quaternion. Thus, any quaternion other than the null quaternion

has an inverse. Like rotation matrices, quaternions have left and right inverses.

The distance between two quaternions is measured by taking the norm of the difference of the

30

quaternions:

d([λ 1 , Λ 1] , [λ 2 , Λ 2]) =  [λ 1 − λ 2 , Λ 1 − Λ 2] .

3.2.2. Relationship between Rotations and Quaternions

Leonhard Euler proved in 1752 that any three dimensional orientation can be expressed as a single

rotation around an axis from a reference position. Let n = (x , y , z) define a unit vector pointing along the

rotation axis and let θ represent the amount of counterclockwise rotation about n. Using spherical tri-

gonometry, a normalized quaternion describing this rotation can be derived with the scalar part, λ, equal to

cos (θ/2) , and the vector part, Λ (= λ x ,λ y ,λ z), equal to n multiplied by sin (θ/2) [Altmann86]. The com-

ponents λ and Λ of this normalized quaternion are called the Euler-Rodrigues rotational parameters.

Normalized quaternions and quaternions consisting of Euler-Rodrigues parameters (Rodrigues

quaternions) can be viewed as the same. An orientation defined by the normalized quaternion [λ , Λ] is

identical to the one defined by [− λ , − Λ] because adding 2π radians to the rotation angle θ changes the

signs of λ and Λ. Alternatively, this negative quaternion expresses a rotation of 360 − θ degrees along the

same axis with the rotation axis pointing in the opposite direction.

Normalized quaternions form a sub-group of the quaternion group. A homomorphic mapping exists

between the sub-group of normalized quaternions and the set of all real orthogonal 3×3 matrices with deter-

minant + 1, known as the Special Orthogonal group SO(3). This mapping can be made isomorphic by stan-

dardizing the quaternions so either λ is greater than zero, or if λ is equal to zero, Λ points in the direction of

the positive hemisphere of the unit sphere.

The orientation defined by a normalized quaternion can be converted into a three dimensional non-

homogeneous rotation matrix by performing 15 additions and 9 multiplications:

R[λ , Λ] =





 2λ x λ z + 2λ λ y

2λ x λ y − 2λ λ z

1 − 2λ y
2 − 2λ z

2

2λ y λ z − 2λ λ x

1 − 2λ x
2 − 2λ z

2

2λ x λ y + 2λ λ z

1 − 2λ x
2 − 2λ y

2

2λ y λ z + 2λ λ x

2λ x λ z − 2λ λ y






.

This rotation matrix can be converted back into a normalized quaternion by noting that the sum of the

31

diagonal entries equals 4λ2 − 1. If this value is equal to − 1 then λ equals zero; otherwise set λ equal to the

positive square root. Similar operations can be applied to the other matrix entries to obtain the values for

λ x , λ y , and λ z . The most efficient matrix to quaternion conversion algorithm requires only one square root,

three divisions, and a few addition and binary shifting operations [Shoemake85].

Euler angles may be converted to quaternion form by noting rotations by ψ, θ, and φ degrees about

the roll, yaw, and pitch axes can be described by the following normalized quaternions [Shoemake85]:

Λ roll = (cos (ψ /2) , 0 , 0 , sin (ψ /2))

Λ yaw = (cos (θ/2) , 0 , sin (θ/2) , 0)

Λ pitch = (cos (φ/2) , sin (φ/2) , 0 , 0) .

The normalized quaternion corresponding to the rotation matrix R z (ψ) R y (θ) R x (φ) is obtained by the

quaternion product Λ roll Λ yaw Λ pitch . The quaternion product has components:

λ = cos (ψ /2) cos (θ/2) cos (φ/2) + sin (ψ /2) sin (θ/2) sin (φ/2)

λ x = sin (ψ /2) cos (θ/2) cos (φ/2) − cos (ψ /2) sin (θ/2) sin (φ/2)

λ y = cos (ψ /2) sin (θ/2) cos (φ/2) + sin (ψ /2) cos (θ/2) sin (φ/2)

λ z = cos (ψ /2) cos (θ/2) sin (φ/2) − sin (ψ /2) sin (θ/2) cos (φ/2) .

An orientation defined by a normalized quaternion can be decomposed into its Euler angle represen-

tation by converting the quaternion to a 3×3 non-homogeneous rotation matrix and then applying the rota-

tion matrix to Euler angle conversion algorithm described earlier.

Although using normalized quaternions to describe rotations is slightly redundant when compared to

using Euler angles (quaternions consist of four components while three dimensional rotations require only

three parameters), there are significant advantages to working with quaternions. Quaternions uniquely

specify all orientations and are continuous for all orientations. Some orientations defined by Euler angles

are not uniquely determined (for example, when the yaw angle is zero). Quaternions are free from gimbal

lock - the loss of one rotational degree of freedom when two rotation axes are superimposed on each other.

32

Finally, unlike Euler angles, quaternions can uniquely determine rotation axes.

3.3. Dynamic Analysis

Dynamics deals with the physical laws governing the motion of objects. A fundamental application

of dynamics is to predict the motion of a particular system given a series of forces and constraints acting

upon it. Dynamics is based on three laws of motion formulated by Sir Isaac Newton [Fowles86]:

1. Every body continues in its state of rest or of uniform motion in a straight line, unless com-

pelled by a force to change that state.

2. Change of motion is proportional to the applied force and occurs in the direction of the force.

3. To every action there is always an equal and opposite reaction.

The simplest application of these laws is to a system consisting of a single particle. Such a system

may be viewed as having a body consisting of a mass and an infinitesimal size so all motion may be

regarded as translational. The relationship between the force acting on the particle and its change of

motion, as described by Newton’s second law, is expressed as:

F = ma

where F is the vector sum of all forces acting on the particle, m is the mass of the particle, and a is the

particle’s resulting acceleration. Throughout this thesis, vector and scalar quantities are denoted by bold

and italic type respectively.

3.3.1. Dynamically Moving Reference Frames

Force, acceleration, velocity, and other physical quantities used in dynamics are vectors which are

represented by a system of coordinates within a reference frame defined from three mutually orthogonal

unit vectors. As previously mentioned, reference frames may either be inertial (fixed relative to the earth)

or non-inertial (move with the system).

The equation describing particle motion in a moving reference frame differs from that of an inertial

33

frame. Consider a particle at position r i in an inertial frame (where r is the offset from the origin of the

frame), and at position rm in a moving frame. The origin r o of the moving frame is given by:

r i = rm + r o

Taking the first and second derivatives of this equation with respect to time, the velocity and acceleration

vectors are:

v i = v m + v o

and

a i = a m + a o .

v o and a o represent the velocity and acceleration of the origin of the moving frame and v m and a m

represent the velocity and acceleration of the particle in the moving frame. Since, according to Newton’s

second law, the relationship between the acceleration and the force acting on the particle in the inertial

frame is:

F i = ma i ,

the equation of motion for this particle in the moving frame is:

F i − ma o = ma m ,

or

F m = ma m

where F m = F i − ma o .

Inertial terms such as − ma o are called fictitious forces because they are only present within moving

frames and are not real forces acting on the system. Fictitious forces must be considered when constructing

dynamics formulations based on moving frames.

Now consider the motion of a particle in a frame undergoing both a translation and a rotation with

respect to the inertial system. If ω is the angular velocity of the moving frame, the velocity of the particle

caused by its rotation about an axis is given by the cross product:

v rot = ω × rm

34

and the velocity of the particle with respect to the inertial frame can therefore be generalized as:

v i = v m + ω × rm + v o .

Thus, the velocity of a particle in an inertial frame can be described by three components - the velocity of

the particle in the moving frame, the rotational velocity of the particle as a result of being in a rotating

frame, and the velocity of the origin of the moving frame.

The time derivative for any vector q i in an inertial frame can be generalized as a sum of the time

derivative of the vector in a moving frame added to the term ω × q m [Goldstein59]:

q
.

i = q
.

m + ω × q m .

The relationships for higher time derivatives are obtained from differentiating the above equation. For

example, the second derivative of r i gives:

a i = a m + 2 (ω × v m) + ω
.

× rm + ω × (ω × rm) + a o .

The resulting equation of motion is:

F i = ma m + 2m(ω × v m) + mω
.

× rm + mω × (ω × rm) + ma o

or

F m = ma m

for F m = F i − 2m(ω × v m) − mω
.

× rm − mω × (ω × rm) − ma o .

The above is a generalized equation of motion for a particle in a frame undergoing both a rotation and

a translation. Several fictitious forces are present in this equation. The term 2m(ω × v m) is the Coriolis

force, mω
.

× rm a transverse force, mω × (ω × rm) a centripetal force, and the last term is a force result-

ing from the acceleration of the moving frame.

3.3.2. Rigid Bodies

Describing the motion of a rigid body is slightly more complicated than that of a particle. Unlike a

particle, the mass of a rigid body is not concentrated at one point. A further complication is introduced by

the motion resulting from the rotation of the body.

35

When studying the translational motion of a rigid body, the total force acting on the body is equal to

the total force acting on all particles composing the body. The point on the body where the motion result-

ing from the sum of the forces applied to this point is the same as the motion resulting from the forces

applied to all points on the body is called the center of mass for the body. This point allows Newton’s

second law for the motion of a rigid body to be expressed as:

F = ma cm

where F is the sum of all forces acting on the body, m is the total mass of the body, and a cm is the accelera-

tion of the center of mass.

Rotational motion for a body about a fixed axis is more complicated because the motion depends

upon the point at which the force is applied and the distribution of mass in the body. The rotational analog

of force is called torque and is defined as:

τ = r × F

where r is a vector from the center of the rotation to the point of application of the force.

The rotational counterpart to Newton’s second law describing the relationship between the torque

acting on a body and its change of motion is expressed as:

τ = Iα

where I is the moment of inertia and α is the angular acceleration of the body. Unlike its translational

counterpart, rotational motion depends upon the shape and distribution of mass in the body. A torque

applied to a long, slender rod produces a different rotational speed for an axis of rotation parallel to the long

axis of the rod and passing through the center than for an axis perpendicular to one end of the rod. The dis-

tribution of mass is represented in a 3×3 matrix called the inertia tensor matrix of the body. This matrix

consists of nine integrations performed over the body and has the following form:

I =






 − ∫xzdm

− ∫xydm

∫(y 2 + z 2) dm

− ∫yzdm

∫(x 2 + z 2) dm

− ∫xydm

∫(x 2 + y 2) dm

− ∫yzdm

− ∫xzdm 






.

36

The diagonal entries are called the moments of inertia about the x, y, and z axes and the off-diagonal entries

are the xy, xz, and yz products of inertia.

The equations for a rigid body can be simplified by choosing a set of axes so the off-diagonal pro-

ducts of inertia vanish. The set of axes for which this happens are called the principal axes of the body and

the three diagonal moments are referred to as the principal moments of the body. It can be proven that

every rigid body has a set of principal axes for any given point [Fowles86]. This set can be found by

diagonalizing the inertia tensor matrix. The equations describing rigid body motion are often formulated in

a non-inertial frame defined by the principal axes.

3.3.3. Articulated Figures

Formulating and solving the equations of motion for articulated figures is much more difficult than

for particles and rigid bodies because of interactions between different parts of the figure. The equations

are usually quite complicated and consist of terms involving external influences, control techniques, and

internal interactions from adjacent limbs. All dynamic formulations for articulated figures produce a large

set of second order differential equations, with an equation representing each degree of freedom in the sys-

tem. Solving these equations can be computationally expensive because even a simple articulated human

figure has approximately 50 degrees of freedom. In many instances, the equations cannot be integrated and

must be solved numerically.

3.3.4. Dynamics Equations for Articulated Figures

Articulated figure motion can be obtained dynamically using equations described by Armstrong and

Green [Armstrong85a] [Armstrong85b]. These equations assume the figure is represented by a tree-like

structure, with the root of the tree connected to one of the body segments (usually the upper body). Neigh-

boring links are connected by revolute joints with three degrees of freedom. A joint consisting of three

translational and three revolute degrees of freedom connects the upper body to the inertial (world) frame.

Each link is represented within a moving frame whose axes consist of the principal axes for the body

37

part represented by the link. Four transformation matrices are associated with each link. Two matrices

convert vector representations from the link’s frame to the frame of the parent, and from the link’s frame to

the inertial frame. The other two matrices perform the inverse transformations.

In the equations to follow, superscripts denote a vector belonging to the appropriate link number.

Vectors are denoted in bold type, scalars in italics with the link number subscripted, and rotation matrices

by upper-case letters. All vectors are represented either in the frame of link r or in the inertial frame.

The following vectors and matrices are represented in the frame of link r: ar , ωr , and ω
. r

are the

acceleration, angular velocity and angular acceleration of link r. cr is a vector from the proximal hinge of

link r (the point at which link r connects to its parent) to the center of mass of link r. ls is a vector from the

proximal hinge of link r to the proximal hinge of child link s. fr and gr are the force and torque exerted by

link r on its parent at the proximal hinge. pE
r is a vector from the proximal hinge of link r to the point

where an external force is applied. I r is the moment of inertia matrix for link r, formulated about the proxi-

mal hinge.

Three vectors are represented in the inertial frame. fE
r is an external force acting on the point pE

r

(represented in the frame of link r), gE
r is an external torque acting on link r, and a G is the acceleration of

gravity.

m r is a scalar quantity denoting the mass of link r. The rotation matrix RI
r converts vectors from the

frame of link r to the inertial frame, and RI
r T performs the inverse transformation. R r converts vectors

from the frame of link r to the frame of the parent of link r. R r T performs the inverse transformation.

The first equation of motion relates the angular acceleration of the link in terms of the torques applied

to the link:

I r ω
. r

= gΣ
r − m r cr × ar +

s ε S r

Σ ls × R s fs (1)

where

gΣ
r = − ωr × (I r ωr) − gr +

s ε S r

Σ R s gs + RI
r T gE

r (2)

38

+ m r cr × RI
r T a G + pE

r × RI
r T fE

r .

The second term in (1) is a fictitious torque caused by the acceleration of the moving frame. The

rightmost term is the sum of the torques at the proximal hinge of link r resulting from the forces applied to

the child links. In equation (2), the leftmost term is a fictitious torque caused by the rotation of the moving

frame. The second term is the negative of the torque exerted by link r on its parent at the proximal hinge,

as per Newton’s third law. The next two terms are torques from the child links and an external torque.

Finally, the bottom terms of (2) represent the torques caused by gravity and an external force applied to the

point pE
r .

The next equation of motion relates the force acting on a link in terms of the acceleration of the link:

fr = fΣ
r − m r ar + m r cr × ω

. r
+

s ε S r

Σ R s fs (3)

where

fΣ
r = − m r ωr × (ωr × cr) + RI

r T (fE
r + m r a G) . (4)

In equation (3), − m r ar is a fictitious force coming from the acceleration of frame r. The next term

is a force resulting from the frame rotating with an angular acceleration and the last term represents the

forces from all child links. The first term of equation (4) is the centripetal force caused by the rotation of

the frame. The last term consists of the components of the external force and gravity acting on the link.

The last equation of motion relates the acceleration of the proximal hinge of a child s of link r to the

acceleration of the proximal hinge of link r:

R s as = ar + ω
. r

× ls + ωr × (ωr × ls) . (5)

3.3.5. Solving the Dynamics Equations

Several methods exist for solving these and similar equations. Wilhelms [Wilhelms85]

[Wilhelms86] [Wilhelms87] animates human figure motion using the Gibbs-Appell formulation. Although

this technique provides for simulation of both revolute and sliding joints, the computational complexity of

this method is quadratic in the number of links since the inversion of a large, usually sparse matrix is

39

required during each step of the simulation.

A much faster, although more restrictive, solution technique was formulated by Armstrong and Green

[Armstrong85a] [Armstrong85b]. This method solves the equations using a recursive formulation based on

the following two linear relationships:

ω
. r

= K r ar + d r

f r = M r ar + f ′
r .

The first relationship is between the acceleration of a link and the magnitude of its angular acceleration, and

the second is between the acceleration of a link and the reactive forces present on its parent.

By recursively considering these relationships between adjacent links, the equations are solved by

computing the "recursive" coefficients of the above linear relationships in an inward pass from the leaves of

the tree to the root. Once the root is reached, its acceleration is determined since there is no force present

on the parent of this link (because there is no parent). The angular acceleration of all the child links are

then calculated in an outward pass from the root to the leaves. Each link’s angular acceleration is then mul-

tiplied by the time step to obtain its angular velocity. A second time step multiplication produces the incre-

mental rotation vector.

Because many quantities in the above equations vary slowly over each time step, the authors recom-

mend dividing the computations into two bands: a fastband where certain computations are performed at

every time step, and a slowband where other computations occur once for every n iterations of the fastband.

The primary advantage with the Armstrong-Green solution method is that computational complexity

increases linearly with respect to the number of links. This has allowed for some dynamic simulations to be

performed in near real-time [Armstrong86b] [Armstrong87]. However, this method has been developed for

articulated figures having only revolute joints with three degree of freedom. Joints with limited or no

movement along certain degrees of freedom (for example, the knee) must be simulated using tools such as

springs and dampers. Articulated figures with sliding joints cannot be modeled, and non-spherical joints on

other figures must be constrained. The benefits resulting from reduced computational costs and the ability

40

to perform near real-time dynamics, however, greatly outweigh these restrictions.

3.3.6. Springs and Dampers

Springs and dampers are used in BDAS to provide upward restorative ground forces and internal link

torques. Consider a force whose magnitude is dependent upon the displacement from an equilibrium posi-

tion, and whose direction opposes the direction of this displacement. Such forces are exerted by springs

obeying Hooke’s Law:

F = − kx

where x is the displacement from the equilibrium position and k is a proportionality constant referred to as

the stiffness of the spring. Springs whose force can be expressed in terms of a proportionality constant are

called linear springs.

Since frictional forces are always present in mechanical systems, there is a viscous retarding force

which opposes the motion produced by the spring force. This force (for example, air resistance) can be

assumed to vary linearly with the speed of the object. This retarding force can be expressed as:

F = − cx
.

where x
.

is the speed of the object and c is a proportionality constant called the friction of the spring.

The behavior of the spring is determined by the stiffness and friction values and whether or not grav-

ity influences the mass attached to the spring. When gravity is present, the resulting motion is either non-

oscillatory with the displacement from equilibrium decaying exponentially to zero, or oscillatory with the

amplitude decaying exponentially over time.

3.3.7. Frictional Ground Forces

Frictional ground forces oppose forces applied to move stationary objects and cause deceleration of

objects already in motion. Two types of frictional ground forces act on bodies. Frictional forces acting

between objects at rest (with respect to each other) are called forces of static friction. The maximum force

of static friction is the minimum force required to move the object. Frictional forces acting between objects

41

in motion (with respect to each other) are called forces of kinetic friction. The force required to initiate

movement is usually greater than the force required to sustain uniform motion.

Each type of force is approximately independent of the surface contact area and is proportional to the

magnitude of the normal force. The ratio of the magnitude of the maximum force of static friction to the

magnitude of the normal force is called the coefficient of static friction. The corresponding ratio of the

magnitude of the force of kinetic friction to the magnitude of the normal force is called the coefficient of

kinetic friction. These coefficients are abbreviated by µ s and µ k and may be expressed mathematically as:

µ s = F s / N and µ k = F k / N .

In general, µ s is greater than µ k . Because calculating the forces of static friction for each contact

point involves calculating the reaction forces at each contact point of the figure model, BDAS makes the

simplifying assumption that these two coefficients of friction have the same value.

Chapter 4

Motion Control

_ __

One of the major problems with human figure animation is describing and controlling the figure’s

motion. Most human figure movement is obtained from simultaneous coordination of the motion of many

limbs. Simple key frame systems are inappropriate for this type of animation since animators are seldom

able to control the motion of more than three limbs at a time.

Animators also want to work with natural units of control. A figure’s motion should not be con-

trolled by the animator directly specifying the force and torque, or velocity and acceleration. Nor should

motion be controlled by the animator directly entering the coordinate position of each segment. Instead,

motion commands should be entered using a vocabulary familiar to the animator. The animation system

should then translate these motion commands into a lower level description suitable for kinematic or

dynamic analysis.

Most articulated figure animation systems within the past decade have approached these issues by

implementing models which organize motion specification and control in a hierarchical manner. In all

cases, the higher levels of the model define motion in a vocabulary known to the animator, and the lower

levels parse the motion description into the components required to generate animation. The high-level

motion descriptions supported by these systems have ranged from the symbolic form found in movement

notation languages, to English commands found in knowledge based systems. All these systems parse

high-level motion descriptions into suitable low-level key frame, kinematic, or dynamic specifications.

BDAS addresses the motion description and control issue by implementing a recently proposed

hierarchical motion control model formulated by Mark Green [Green90]. This motion control model pro-

poses that movement be generated from the execution of low-level motion verbs. Movement commands

entered by the animator use a high-level description language and are parsed by the system into these

42

43

motion verbs. In addition to this motion specification structure, the model also proposes how the environ-

ment should interact with the figure, how a figure should behave, and how personality characteristics

should influence the figure’s motion.

4.1. Green’s Hierarchical Motion Control Model

Green’s hierarchical motion control model, shown in Figure 4.1, is composed of six levels. Each

level consists of one or more separate processes which execute in parallel and communicate with processes

Character
Model

Behavior
Model

Motion
Verbs

control mechanism

Physical
Model

mechanical simulation

3D Kinematic
Primitives

2D Modeling
Primitives

Environment

Figure 4.1 Green’s Hierarchical Motion Control Model

in other levels. The two lowest levels produce the graphical primitives generated by the graphics system

and the three dimensional modeling primitives used to represent the shapes of the objects. These are com-

mon to most modeling systems and are not described further.

The physical model represents the anatomy of the object and the physics required to produce motion.

The anatomy component contains information such as the number of limbs and body parts, their mass,

44

inertia, length, how they are connected to each other, and what (if any) constraints limit their motion. The

physical component is responsible for producing object motion. This component consists of reach algo-

rithms, dynamic solutions of the equations of motion, kinematic solutions based on the velocities and

accelerations of each limb, or key frames and inbetweening algorithms.

The motion verb level defines the motion vocabulary of the object. This level is responsible for gen-

erating input necessary for the physical model to produce the desired motion. An object’s motion vocabu-

lary consists of a library of motion verbs. Each motion verb corresponds to a particular motion the object

can perform. For example, a motion verb of an articulated two or four-legged animal may consist of a sin-

gle forward step.

Different objects may have similar or very different motion vocabularies. For instance, one would

expect the motion vocabulary of a man to be very different from that of a fish. In all cases, however, a

motion verb consists of a set of virtual processes which drive the physical model. Whenever these virtual

processes are active, the verb is marked as active. Otherwise, the verb is marked inactive.

The behavior level controls the status of the motion verbs and is responsible for setting the short term

goals of the object. As with motion verbs, this level may also consist of one or more processes executing in

parallel. Each behavior level process is either executed in an arbitrary manner or according to a priority

determined from examining the state of the environment. The environmental approach is often preferred

since this allows for greater control of the object’s motion.

Each behavior process is assigned a series of triggers that determine when it should start execution.

An internal priority is also set to resolve conflicts arising when triggers for two behavior processes are con-

currently satisfied. These triggers are related to the current state of the environment and to the current state

of the figure.

The character level is responsible for setting the long term goals, personality, and characteristics of

the object. Without this level, all objects containing similar behavior functions and motion vocabularies

would execute in an identical fashion. This level gives each object a "personality" by influencing the firing

45

of the triggers and the setting of the priorities in the behavior level.

4.2. The Hierarchical Structure of Ballroom Dances

Green’s hierarchical motion control model can be applied to a wide variety of motion studies. The

example used in this thesis is the motion produced by human subjects performing ballroom dancing. This

area of movement was selected for a number of reasons.

Ballroom dancing provides an interesting challenge to human figure animation. The patterns and

dances that define ballroom dancing provide a rich repertoire of human motion and include motion found in

normal activities (such as walking) as well as motion suited for artistic purposes (such as swirls and body

dips). Unlike many other dances, ballroom dancing requires close interaction with a partner. Every motion

sequence is decided by the male partner through a process called leading. The female partner is responsible

for correctly interpreting the leads given by the male. This can produce interesting synchronization prob-

lems between the two partners.

Ballroom dancing also has a well-defined notation language [Thornhill-Geiger81]. The symbols

composing this language represent common ballroom dance movements such as forward, sideward, and

backward steps. A detailed description of this notation language is provided in Chapter 5. Unlike the

Labanotation and Benesh notation languages, the ballroom dance language is designed for recording move-

ment specific to ballroom dances rather than movement in general.

All ballroom dance motions are classified into general categories known as dances. The complete set

of ballroom dances constitutes a wide range of human figure movements and styles. All dances have indivi-

dual characteristics defined by factors such as the tempo and timing of the music, the procedure used to step

down on a foot, and movement required among selected body parts. For example, the waltz consists of a

smooth progression of long, slow steps danced to 3/4 time music. The cha cha, on the other hand, consists

of the rapid execution of many small, quick steps while rocking the hips and is danced in 4/4 time.

Each dance can be divided into a set of motion sequences called patterns. A pattern consists of a

46

well-defined movement which usually requires between 2 to 10 seconds to execute. Commonly occurring

patterns are given names to aid identification of the movement sequence. For example, the forward basic

pattern in the foxtrot is defined by two forward steps (starting with the left foot) followed by one left side

step. A ballroom dance performance is usually composed of the sequential execution of these patterns.

All ballroom dance patterns may be decomposed into a sequence of positions. A position defines the

location and orientation of the body after a specified time interval. The movement to a position during this

time period is called a step. Nearly all patterns are composed of the transitions between five fundamental

positions. These are known as first, second, third, fourth, and fifth position (see Chapter 5 for more

details). Although the orientation of one or more limbs may vary slightly from pattern to pattern, the gen-

eral limb and body orientations defining each position remain essentially invariant.

In summary then, the movement sequences defining ballroom dancing may be hierarchically decom-

posed into sets of dances, patterns, and positions. Each dance has a set of well-defined patterns and each

pattern consists of a set of fundamental positions.

4.3. Mapping the Structure of Ballroom Dancing to the Motion Control Model

A divide and conquer approach is applied toward developing a ballroom dance animation model.

Rather than generating animation starting at the dance level, the ideas outlined in Green’s hierarchical

motion control model are applied to the development of motion verbs producing the dance patterns and

position transitions. A wide and interesting range of human motion can result from the construction of

higher controlling levels (consisting of the combination of patterns and dances) on top of the motion verbs.

All the fundamental components of ballroom dancing outlined in the previous section can be mapped

onto Green’s hierarchical motion control model between the physical model and the character model.

Dance patterns are mapped to the motion verb level, with each motion verb defining a pattern. Because a

pattern consists of a series of transitions between fundamental positions, it is useful to introduce an extra

level into the model by having each pattern motion verb initiate sequential execution of low-level position

47

verbs responsible for performing single position transitions. These low-level verbs then interact directly

with the physical model.

Adding this extra level removes the redundancy that would be present if each pattern motion process

tried to execute an entire pattern without the aid of a structured position level. The added level also simpli-

fies the structure of each motion verb and facilitates debugging of the low-level verbs since each position

verb handles a more specific type of movement.

The behavior level controls the short-term motion of the human figure through the sequential selec-

tion of dance patterns. A pattern is selected based on a set of parameters and priorities associated with each

pattern. Parameters are based on factors such as the location of the dancer, the difficulty of the pattern, the

friction of the floor, and the number of dancers on the floor. A pattern’s priority is set by conditions such

as the last time the pattern was executed.

Virtual processes at this level are most frequently triggered by the completion of the previous dance

pattern. Environmental factors such as external interrupts (for example, collision with the wall) and inter-

nal interrupts (for example, loss of synchronization with the step) also trigger these processes.

The character level is responsible for ensuring that no two dancers behave identically. In addition to

influencing parameters used by the behavior level for selecting patterns, this level customizes each dancer’s

movement by assigning each dancer motion characteristics such as the size of a normal step and how well

the dancer keeps to the beat.

A minimum of five components are required to implement a ballroom dance animation model based

on Green’s hierarchical motion control model. These components are a Dance Library and Pattern Editor

for creating and editing dances and patterns, a Gesture Editor for defining dance positions, a Vocabulary

Editor for assigning a dance vocabulary to each dancer, an Environment Editor for setting and changing

environmental parameters, and a Dance Interpreter for overseeing the execution of the character, behavior,

motion verb, and lower levels of the model.

Chapter 5

The Ballroom Dance Animation System

_ __

The Ballroom Dance Animation System (BDAS) is a computer animation project whose goal is to

produce dynamically controlled motion from an easy to learn ballroom dance notation language. Although

this system is currently used as a tool for studying the dynamic motion of a human model, potential appli-

cations for this system include use as a teaching device for ballroom dance students and as a choreography

tool for professional ballroom choreographers.

5.1. Overview

BDAS consists of six major components divided into two levels (Figure 5.1). The Top Level allows

the user to switch between the five modules composing the Lower Level. Modules in the Lower Level

define the components required to implement the ballroom dance motion model. The modules are accessed

from the Top Level by a series of pull-down menus. The design of the Lower Level modules have been

influenced by Green’s hierarchical motion control model, presented in Chapter 4.

Dances and patterns are created and modified using the Dance Library and Pattern Editor. This edi-

tor consists of an easy to learn, menu-driven interface. The animator creates and modifies dance patterns by

selecting symbols representing movements and timings defined by a subset of a ballroom dance notation

language. This editor defines the motion verb vocabulary available to the human figures.

Dance positions are defined with the Gesture Editor. This editor enables the animator to define

human figure goal positions by interactively manipulating, in three dimensions, the limbs of a model

displayed on the screen.

The Vocabulary Editor assigns a dance vocabulary to each dancer. This vocabulary is represented by

dance names and dance patterns previously defined by the Dance Library and Pattern Editor.

48

49

Dance Library and
Pattern Editor

Gesture
Editor

Vocabulary
Editor

Environment
Editor

Dynamics
Module

Top Level

Figure 5.1 Software Architecture

Conditions in the dance environment are set by the Environment Editor. These conditions influence

both the nature of the dance and the behavior of the dancers in terms of pattern selection. Environmental

variables include the friction and size of the floor, and the number of dancers per square meter.

All motion generated in BDAS is dynamically produced by the Dynamics Module. This module

gives each dancer a pattern to perform and executes the motion processes governing the dancer’s motion.

The Dynamics Module also simulates the environment defined by the Environment Editor.

Currently, only the Dance Library and Pattern Editor, Gesture Editor, and Dynamics Module have

been installed. A subset of the Environment Editor has been implemented under the Dynamics Module to

allow for animation tests under varying environmental conditions. The Vocabulary and Environment Edi-

tors have not yet been incorporated within the system because of difficulties encountered with debugging

the critical low-level dynamic motion motor processes. The system is also limited to animating only one

dancer.

50

5.2. Ballroom Dance Notation Language

All ballroom dance patterns in BDAS are entered and displayed using a notation language found in

manuals published by the National Council of Dance Teacher Organizations, Inc. (N.C.D.T.O.) [Thornhill-

Geiger81]. This notation language defines patterns using a grid. The rows of the grid correspond to body

part descriptions and step timings. For example, a row may be used to describe the position of the head

after each step or the number of beats required to execute the step. Each column defines a goal position (in

terms of limb and body orientation) and the length of time required to reach this position. Although the

time required to reach a goal position for a step may differ from step to step, the overall flow of time is

from left to right.

F O X T R O T

Pattern: Forward Basic

Commence Facing Line of Dance

Step Number

Foot Positions

Alignment

Amount of Turn

Arms

Rise and Fall

Footwork

Beats

Beats and Bars

Timing

Musical Counts

Dance Position

CBM and Sway

Lead and Follow

Head Position

1

LF FWD

F LOD

NT

NP

H

2

1-2

S

1-2

CP

SCBM

NP

2

RF FWD

H-T

2

3-4

S

3-4

SCBM

3

LF SWD

T

1

2

Q

1

SWR

4

RF CL/LF

T-H

1

2

Q

2

SWR

5

LF FWD

H

2

3-4

S

3-4

SCBM

6

RF FWD

H-T

2

3-2

S

1-2

SCBM

7

LF SWD

T

1

3

Q

3

SWR

8

RF CL/LF

T-H

1

4

Q

4

SWR

Figure 5.2 Forward Basic in Foxtrot

51

Figure 5.2 shows a sample description of a pattern called the Forward Basic in the foxtrot. The first

step begins with the body facing line of dance (FLOD). This term refers to a counterclockwise direction of

movement. The head looks forward and the arms are extended to a normal ballroom dance position (NP).

The shoulders are parallel to the partner’s, thereby forming a closed position (CP). This configuration is

maintained throughout the pattern.

Step 1 is a forward step with the left foot (LF FWD). The step is executed by stepping down on the

heel of the foot (H) and requires two beats to complete (the timing for each step may also be marked by

indicating S for slow steps and Q for quick steps). Step 2 is a forward step with the right foot (RF FWD).

This step is performed by stepping down on the heel and then gently rising to the toe (H-T). Like its prede-

cessor, step 2 also requires two beats to complete. During both of these steps, the body undergoes slight

contra-body movement (SCBM). This term refers to a small rotation of the upper body and arms towards

the partner.

Step 3 is a side step with the left foot (LF SWD) executed entirely on the toe of the foot (T). Step 4

closes the right foot to the left foot (RF CL/LF) with the dancer first stepping down on the toe and then

gently falling onto the heel of the foot (T-H). Each of the last two steps requires one beat to complete.

During each interval, the body undergoes a gentle sway to the right (SWR).

All four steps are performed very smoothly with very little rise and fall (a term referring to a pro-

nounced lift onto the toes followed by a descent back to a flat foot position). Throughout the motion, the

body faces the same direction and undergoes no turning (NT). Steps 5 to 8 repeat the movement sequence

defined by steps 1 to 4.

This example shows how interesting and complex movement can be defined using a limited and

abbreviated notation language. A complete description of the notation language (which consists of 143

symbols) may be found in the N.C.D.T.O. manual. Descriptions of other terms used in ballroom dancing

may be found in ballroom textbooks [Romain79]. Although this extensive use of abbreviations may be

intimidating to novices, with experience these descriptions can be quickly translated into their associated

52

movement sequences.

BDAS supports a subset of the N.C.D.T.O. ballroom dance notation language. Since elementary ball-

room movement consists of positioning the head, arms, body, legs, and feet along a particular direction

over a specific time period, BDAS has implemented the rows corresponding to Head Position, Foot Posi-

tion, Footwork, Amount of Turn, and Number of Beats. Arms are assumed to always be in a normal ball-

room dance position. The upper body, unless otherwise specified, is assumed to be positioned in the direc-

tion of the movement. Symbols indicating subtle upper body movements, such as sway, are not imple-

mented at this time.

Steps requiring limbs to deviate from a normal position are indicated by extra symbols in the row

marking the position of the feet. For example, if a right forward step requires the toe to point outwards, the

Foot Position entry describing this step would contain symbols for right foot forward and toe out.

BDAS has made one modification to the N.C.D.T.O. notation language. Instead of referring to

N.C.D.T.O. terms such as SWD to describe a side step outwards and CL/{R,L}F to represent a side step to

close the feet back together, BDAS bases most of its foot descriptions in terms of the five fundamental ball-

room dance foot positions. These are known as 1st, 2nd, 3rd, 4th, and 5th position and are described in

detail in the forthcoming symbol tables. This modification helps make the patterns easier to read since

most ballroom dancers use these foot positions to describe dance steps. Nearly every elementary ballroom

dance pattern is composed of transitions between these foot positions.

The following tables describe the subset of the N.C.D.T.O. notation symbols supported by BDAS.

Each entry contains the symbol’s abbreviated name, full name, and description of the movement, position,

or timing involved. All of these symbols may be accessed using the Dance Library and Pattern Editor.

Head (and Arm) Positions:

LL Look Left Rotate head 45 degrees to the left.
NP Normal Position Look straight ahead.
LR Look Right Rotate head 45 degrees to the right.

As previously mentioned, BDAS assumes the arms are always in a normal ballroom dance position.

53

Foot (or Leg) Selectors:

LF Left Foot Select left foot and leg for movement.
RF Right Foot Select right foot and leg for movement
HOLD Hold Hold current position for the entire step.

Fundamental ballroom dance positions:

Select one of these symbols when either LF or RF is chosen:

Both feet are parallel directly beside each other and point for-
ward.

1ST 1st Position

Both feet are parallel approximately shoulder width apart and
point forward.

2ND 2nd Position

Rotate the left leg approximately 45 degrees counterclockwise or
the right leg 45 degrees clockwise and rest the heel of the rotated
foot against the inside middle edge of the other foot. Body
rotates to allow both feet to be slightly turned out.

3RD 3rd Position

Extend one leg forward approximately 6 to 12 inches to assume
a forward walk position. Feet are parallel and move in parallel
tracks.

FWD 4th Position

Extend one leg backward approximately 6 to 12 inches to
assume a backward walk position. Feet are parallel and move in
parallel tracks.

BWD 4th Position

Rotate the left foot approximately 45 degrees counterclockwise
or the right foot 45 degrees clockwise and place the toe of the
rotated foot at the heel of the other foot. Body rotates to allow
both feet to be slightly turned out.

5TH 5th Position

Other foot positions not representable by the above but which occasionally occur in elementary ball-
room dancing:

Shift weight but do not change location of the feet.SIP Step in Place

Cross the specified foot in front of the other foot.XIF Cross Front

Cross the specified foot behind the other foot.XIB Cross Behind

Rotate the body approximately 180 degrees to have the feet
uncross to the first position.

UNX Uncross

54

Ballroom dance position modifiers:

Select one or more of the following modifiers to the above dance positions:

An abbreviation for contra-body movement position. Rotate the
upper body approximately 45 degrees towards the traveling foot.

CBMP CBMP

DIAG Diagonally Move diagonally forward or backward.
LWD Leftward Move leftward (to the side).
RWD Rightward Move rightward (to the side).

Move to the required position but do not change weight.NW No Weight

Move to the required position, but cover about half the normal
distance.

SS Small Step

Rotate the foot corresponding to moving leg so the toe points
outward.

TO Toe Out

Hold current position for a fraction of a beat.PAUSE Pause

Foot Positions:

Select one of the following symbols to indicate the footwork applied to the step:

H Heel Step down on the heel and end on a flat foot.
T Toe Step down on the toe and remain on the toe.
H-T Heel-Toe Step down on the heel and rise on the toe.
T-H Toe-Heel Step down on the toe and end on a flat foot.

Turns:

Turns may be specified as 1/8, 1/4, 3/8, 1/2, 5/8, or 3/4 of a full revolution. The body may either turn
L (counterclockwise from the dancer’s point of view) or R (clockwise from the dancer’s point of
view).

Timing:

Either 1, 2, 3, or 4 beats may be selected as the time required to reach the new position. The number
of beats per second is set by the animator prior to running animation sequences.

5.3. Dance Library and Pattern Editor

All dances and patterns associated with ballroom dancing are created and entered using the Dance

Library and Pattern Editor. This editor consists of six top-level commands for creating and deleting dances,

creating, modifying, and deleting patterns, and viewing a selected dance pattern. When the animator first

enters the editor, a pull-down menu appears listing these commands.

Dances are organized by directory name. A dance is created by selecting the Create Dance entry

from the pull-down command menu. BDAS prompts for a dance name and creates a dance directory reflect-

55

ing the entered name. All patterns belonging to the dance are subsequently assigned to this directory.

A dance is deleted by selecting the Delete Dance entry from the pull-down command menu. BDAS

provides a list of dances to delete and requests confirmation of the action. The selected dance directory and

all patterns within this directory are removed following an affirmative confirmation.

Dance patterns are created and modified by the Add Pattern and Modify Pattern pull-down menu

commands. Add Pattern requests the name of the new pattern while Modify Pattern requests the name of a

pattern to modify from a set of existing patterns. In either case, BDAS moves into the Pattern Editor,

shown in Figure 5.3.

Foxtrot

PATTERN: Forward Basic

Step Number

Foot Position

Head Position

Footwork

Amt. of Turn

Beats

1 2 3 4 5 6 7 8 9 10 11 12

Head Positions

NP LL LR

Footwork

H H-T

T T-H

Amount of Turn

1/4 1/2

3/4 1/8

3/8 5/8

L R

Beats

1 3

2 4

Foot Positions

Foot: LF RF HOLD

Position: 1ST 2ND 3RD FWD BWD 5TH SIP XIF XIB UNX

Modifier: CBMP DIAG LWD RWD NW SS TO PAUSE

HELP CLEAR TOKEN CLEAR PATTERN SAVE PATTERN EXIT

Figure 5.3 Pattern Editor Screen Layout

The Pattern Editor is used to add new patterns or edit existing patterns. Each pattern consists of at

most 12 steps arranged in a grid-like fashion. If a previous pattern is being modified, the grid columns are

filled with the symbols defining the pattern.

56

Patterns are defined by filling the grid columns with one or more symbol names. All symbol boxes

are organized by row name and color-coded to aid category identification. A symbol is selected by using

the mouse to point at the box corresponding to the symbol name and pressing the mouse button. The active

symbol is marked by changing its symbol box background color to white. No more than one symbol from

each category may be active for each step.

Once all symbols corresponding to a step have been selected, they are entered into the step column by

pointing at any row belonging to the step column and pressing the mouse button. All active symbols are

then inserted into these column boxes. In the case of a pattern undergoing modification, a previously

defined column box is replaced by the new symbol (or cleared if the corresponding category has no active

symbol). This process continues until the entire pattern is entered. The conclusion of a pattern is marked

by the end of Step 12, or by a step with a blank column.

Commands at the bottom of the screen access on-line help, clear all active symbols, clear the grid

entries defining the pattern, save the defined pattern, and return control to the Top Level. Each command is

accessed by pointing at the command box and clicking the right button.

Patterns may be viewed on a step-by-step basis by selecting the View Pattern command from the

pull-down command menu. After obtaining the dance and pattern name from two pop-up menus, BDAS

transfers control to the Pattern Analyzer, shown in Figure 5.4.

The large window, shown in this figure, displays the human figure model. This model consists of

sixteen body segments defining the head, neck, upper and lower torso, upper and lower arms, upper and

lower legs, hands, and feet. Each of these body segments is covered with either four or six polygons. The

polygons are shaded with different colors to facilitate identification of sides.

A step sheet listing the dance and pattern name, current step number, and symbol names composing

the step appears to the right of the large window. Steps are displayed in a forward progression by continu-

ally clicking the right mouse button. Each step shows the current list of symbols in the step sheet and the

position of the human figure model at the conclusion of the step. Previous steps are accessed by clicking

57

HELP VIEW ANGLE VIEW POINT EXIT

Fox Trot

Box Step

Step No. 1

Foot Position LF FWD

Head Position NP

Footwork H

Amt. of Turn

Beats 2

Angle X: 0
Angle Y: 0
Angle Z: 0

Figure 5.4 Pattern Analyzer Screen Layout

the left mouse button.

The human figure model is positioned by combining the body and limb orientation angles defined for

each symbol name composing the step. Each orientation angle is set using the Gesture Editor. Since the

limbs affected by Foot Position, Footwork, and Head Position form independent sets, a simple merge of

these sets defines the position of all segments of the figure with the exception of the upper and lower torso.

Applying the rotation specified by Amount of Turn to the upper and lower torso produces the final orienta-

tion of the figure model. This entire procedure is outlined in more detail in Section 5.4.

Commands at the bottom of the screen access on-line help, set the view angle and view point, and

return control to the Top Level. As before, each of these commands is accessed by moving the pointer into

the command box and clicking the right button.

58

The figure is displayed from one of six view points - front (default), rear, left, right, top, and bottom.

The active view point is changed in a cyclical manner by continually invoking the View Point command.

View points not on the above list are set using the View Angle command. First, the pointer is positioned

over one of the three angle identifiers located under the step sheet. Clicking the right mouse button while

pointing at an angle selects the direction to modify (which is displayed with a highlighted color). Dragging

the mouse across the pad while holding down the left button sets the angle. While the angle is set, the

human figure is displayed from the latest view angle. Repositioning the pointer over the angle identifier

and repressing the right button terminates the operation.

The final command in the Dance Library and Pattern Editor pull-down command menu is Delete Pat-

tern. This command deletes a single pattern from a dance. Upon invocation, BDAS provides a list of pat-

terns to delete and requests confirmation of the action. The selected pattern is removed following an affir-

mative confirmation.

5.4. Gesture Editor

The second major component of the animation model is the Gesture Editor. This module is used to

assign a positional meaning to the dance notation symbols supported by BDAS. Prior to entering this edi-

tor, a pop-up menu appears requesting the symbol category to edit. Entries in this menu represent the sym-

bol categories defined in the Pattern Editor that directly affect the position of specific body segments.

These categories include Head Position, Foot Position, Body Modifier, and Footwork. Once a category is

selected, control is transferred to the Gesture Editor.

5.4.1. Overview

Figure 5.5 shows the screen layout for the Gesture Editor. The large window contains a graphical

representation of a human figure similar to the one shown in the Pattern Analyzer. Directly below this win-

dow is a row of symbol names belonging to the symbol category selected prior to entering the editor, and a

row of general purpose commands. A menu consisting of 16 boxes is located to the right of this window.

59

HELP CLEAR SAVE EYE LOCATION JOINT ANGLE VIEW EXIT

1ST 2ND 3RD FWD BWD 5TH SIP XIF XIB UNX

RIGHT LEFT

Head

Neck

Upper
Arm

Lower
Arm

Hand

Upper
Arm

Lower
Arm

Hand

Upper
Body

Lower
Body

Upper
Leg

Lower
Leg

Foot

Upper
Leg

Lower
Leg

Foot

Eye X: 0 X: 0 (0)
Eye Y: 0 Y: 0 (0)
Eye Z: -105 Z: 0 (0)

Origin: 0.00 1.48 0.00
Endpoint: 0.00 1.08 0.00

Figure 5.5 Gesture Editor Screen Layout

Each box in this menu corresponds to a body segment. The boxes are arranged to form a skeletal outline of

the human figure with each box titled with a body segment name. This allows easier mapping between

boxes and body segments. In addition to the current inertial frame eye angles, a listing of the current pitch

(X), yaw (Y), roll (Z) angles and the location of the origin and endpoint for the active limb is found in a

table below the limb menu.

A position is defined by first pointing at a box corresponding to a notation symbol and pressing the

mouse button. This symbol becomes active and is marked active by having the symbol box displayed with

a background color. If a position is already associated with the symbol, the display figure is updated to

reflect the position; otherwise the figure is displayed with all internal limb angles set to zero. Only one

60

symbol is allowed to be active at any time.

A similar procedure is performed to activate a limb from the limb menu. Once a limb becomes

active, its orientation is set by modifying the X, Y, and Z rotation angles. These angles are set by pointing

at one of the angles listed in the angle table and clicking the right mouse button. The affected angle is

displayed with a highlighted color. Its value is changed by dragging the mouse across the pad. Angle

values increase for left to right movements, and decrease for movements in the opposite direction. As the

mouse moves, the rotation angle values are continually updated. The angles outside the brackets display

the current orientation of the limb with respect to the frame of its parent. Angles inside the brackets display

the current orientation of the limb with respect to the inertial (world) frame. In both cases, the limb’s orien-

tation is obtained by first applying roll (a rotation about the frame’s Z axis), then yaw (a rotation about the

rotated Y axis), and finally, pitch (a rotation about the doubly rotated X axis).

Changing the orientation angles of a segment affects the orientation angles with respect to the inertial

frame of all dependent (or child) segments. For example, rotating the left upper leg of the figure results in

rotation of the left lower leg and left foot. The parent/child relationships between the body segments are

explained further in the next section.

While the angle is set, both the location of the limb’s origin and endpoint and the orientation of the

human figure model are continuously updated and displayed on the screen. Realigning the pointer over the

angle identifier and pressing the right mouse button terminates the angle setting operation. Similar angle

setting operations are performed until the figure reaches the desired position for the active symbol.

When defining the symbol position, the animator must carefully select the limbs affected by the sym-

bol. In particular, the sets of affected limbs for each symbol category should be disjoint. Otherwise, unex-

pected results may occur when the symbols are combined to form a step. A step consists of the addition of

the orientation angles given by the symbols representing the Foot Position, Footwork, Body Modifier, and

Head Position categories of the step. Because these additions are performed for each limb, the sets must be

disjoint for the assigned orientations to be maintained.

61

Commands at the bottom of the screen access on-line help, zero all internal joint angles, save the

current configuration, set the eye location, set the joint angle of the active segment, set the view point, and

return control to the Top Level. The eye location refers to the imaginary distance from the viewer’s eye to

the display figure. This distance is set by positioning the pointer over the eye distance settings under the

limb menu and using the dragging operation to change the X, Y, and Z values. As with the previous

screens, all bottom commands are accessed by moving the pointer into the command box and clicking the

right mouse button.

5.4.2. Internal Structure

Throughout the Gesture Editor and BDAS, the human figure is represented by the tree-like structure

shown in Figure 5.6.

This tree consists of a series of nodes connected by arcs. Nodes represent body segments while arcs

represent links connecting segments. Each body segment, with the exception of the upper body, has a

parent segment and possibly one or more child segments. All arrows point from child segments to parent

segments.

Each segment is represented using a local coordinate system. These coordinate systems have their

origin set to the proximal hinge of the segment (the point where the segment connects to its parent).

Although quantities such as mass and inertia are not used within the Gesture Editor, the set of axes used by

each frame are the segment’s principal axes. The inertial frame is defined using a separate coordinate sys-

tem.

Each segment is associated with an internal structure containing the length of the segment and the

three Euler angles defining the segment’s orientation with respect to its parent. The three Euler angles for

the upper body represent the orientation of the upper body with respect to the inertial frame.

The Euler angles defining segment orientation with respect to the inertial frame are calculated in an

inward pass towards the root of the tree. Let ψ r , θ r , and φ r define the Euler angles used in the rotations

62

Head

RIGHT LEFT

Neck

Upper
Arm

Lower
Arm

Hand

Upper
Arm

Lower
Arm

Hand

Upper
Body

Lower
Body

Upper
Leg

Lower
Leg

Foot

Upper
Leg

Lower
Leg

Foot

Figure 5.6 Tree Structure of the Human Figure Model

about the Z, rotated Y, and doubly rotated X axis to obtain the orientation of segment r with respect to its

parent segment r − 1. The matrix representing the transformation of column vectors from the frame of seg-

ment r to the frame of segment r − 1 is given by the matrix product:

R r = R z (ψ r) R y (θ r) R x (φ r) ,

where R r has the form of the matrix R defined in Section 3.1 and the three matrices on the right hand side

of the equation are the standard orthogonal rotation matrices, also defined in Section 3.1.

The transformation matrix giving the orientation of segment r with respect to the inertial frame is

obtained from the matrix product:

RI
r = R 1 R 2 . . . R r − 1 R r ,

where R 1 transforms vectors from the frame of the root segment to the inertial frame. Once the

63

transformation matrix RI
r is known, the Euler angles defining the orientation of link r with respect to the

inertial frame are found by applying the rotation matrix to Euler angle decomposition algorithm outlined in

Section 3.1.

Calculating the inertial frame representation of the origin and endpoint of a segment (these points

refer to the endpoints on the principal axis passing through the length of the segment) requires noting a

point pr in segment r can be expressed in the frame of the segment r − 1 by:

pr − 1 = R r pr + Or
r − 1 ,

where Or
r − 1 is the location of the proximal hinge of segment r expressed in the frame of segment r − 1.

The inertial frame coordinates of the origin and endpoint of the segment are obtained by repeating this pro-

cedure until the inertial frame is reached.

5.5. Dynamics Module

All ballroom dance animation is performed within the Dynamics Module. The primary purpose of

this module is to read and interpret the patterns performed by the dancer, oversee the dynamics computa-

tions, and update the figure display. The human figure control model, described in the next chapter, is a

subcomponent of this module.

5.5.1. Overview

Figure 5.7 shows the screen layout for the Dynamics Module. As with the Gesture Editor and Pattern

Analyzer, the large window contains a graphical representation of a human figure. Directly below this win-

dow is a collection of commands used to access on-line help, play back the last animation sequence either

as a collection of frames or one frame at a time, set the view point, read a dance pattern, execute a dance

pattern, and return control to the Top Level.

A parameter table is located immediately to the right of the figure display window. This table

displays the values of several variables which affect the dynamics computations. All these parameters, with

the exception of Elapsed Time, may be set by pointing at the parameter name, pressing the right mouse

64

HELP PLAYBACK SINGLE STEP VIEW PATTERN MOVE EXIT

Fox Trot

Box Step

Step No. 1

Foot Position LF FWD

Head Position NP

Footwork H

Amt. of Turn

Beats 2

Gravity: 9.81
Normal Force: 1.0
Floorspring: 40
Floordamper: 5
Mu: 0.6

Mainspring: 50000
Maindamper: 80
Movespring: 10000
Movedamper: 80

Slowfreq: 2
Deltat: 0.0010
Nbps: 1.0
Time Limit: 2.0
Elapsed Time: 0.0

Figure 5.7 Dynamics Module Screen Layout

button, and using the dragging operation to change the parameter value. The function of each of these vari-

ables is explained in the remaining sections of this chapter.

A small window above the parameter table displays the current dance pattern and step number. This

window only appears while the dynamics computations are in progress.

An animation sequence is generated by using the Pattern command to select a dance and pattern to

execute. This, in effect, simulates the behavior level of the motion control model. Eventually, when the

Vocabulary Editor and Environment Editor are complete, all dances and patterns will be selected automati-

cally by the behavior module of the system. At this time, however, all patterns must be specified by the

animator and only one pattern is executed per animation sequence.

65

Prior to starting the animation sequence, a time limit may be set by modifying the parameter table

Time Limit variable. The step execution speed may be varied by setting Nbps, the number of beats per

second.

After modifying the parameter table values, the pattern is executed by invoking the Move command.

This starts the dynamics computations and activates the motion control model described in Chapter 6.

Throughout the execution of the pattern, the dance pattern and step window provides feedback showing

progress made in the execution of the steps. While this is happening, updates are made to the figure display

at regular intervals. The elapsed time is regularly updated in the Elapsed Time parameter table entry. Once

the time limit is reached, all previously displayed frames may be played back either in succession or one

frame at a time.

5.5.2. Internal Structure

The Dynamics Module solves the equations of motion presented in Chapter 3 using the Armstrong-

Green solution method [Armstrong85a] [Armstrong85b]. Fastband computations are executed every Deltat

seconds and slowband computations occur once every Slowfreq executions of the fastband computations.

Before beginning an animation sequence, several variables and constants are initialized. Physical proper-

ties of each body segment are set using data from anthropometric studies of human figures [Hanavan64] or

data derived mathematically [Lien84]. These properties include scalar, vector, and matrix quantities giving

the length, mass, center of mass, and moment of inertia for each segment.

The human figure moves in an environment consisting of an infinitely long dance floor. No provi-

sion is made for collision detection between two or more limbs. This implies that under certain cir-

cumstances (such as when the figure falls onto the floor or interpolates a step incorrectly) limbs can freely

pass through each other.

Prior to starting the dynamics calculations, the motor control model reads the selected dance pattern.

At the beginning of every dance step, the model assigns a goal position to each limb and activates a set of

66

low-level motor processes. Two of these processes use a spring and damper combination to maintain a

limb at its current position or move a limb to a new position. The strengths of these low-level springs and

dampers are determined by the parameter table values Mainspring, Maindamper, Movespring, and

Movedamper. These and other motor processes are discussed in the next chapter.

Once the dynamic computations are underway, the figure display window is updated every 0.1

seconds of simulated time. Each time this window is updated, all segment joint angles are saved for future

playback purposes. After updating the figure’s position and rotation matrices during each slowband cycle,

the Dynamics Module makes two important procedure calls. The first call is to a procedure which models a

dance floor and is responsible for maintaining the figure on the floor. This procedure, discussed in Section

5.5.3, generates upward restorative forces on the figure and simulates horizontal frictional forces. The

second procedure referenced is the motion control model, discussed in Chapter 6.

5.5.3. Ground Model

Gravity continuously exerts a downward force on the human figure. Unless a restraining floor is

implemented in the model, the human figure soon disappears from view below the screen. The animation

system requires a ground model to restrain the downward velocity of the figure and make the simulated

environment more realistic. However, designing a reasonable floor model which simulates reaction forces

such as horizontal friction is a non-trivial problem.

Several difficulties arise when trying to simulate ground reaction forces. Ensuring that each limb of

the human figure is always above or on the floor is impossible when the time sampling is discrete. A limb

positioned 1 millimeter above the floor may suddenly be several centimeters below the floor at the next

time sampling. Ground reaction forces must stop the descent of a body before it descends too noticeably

below floor level. The magnitude of the restorative upward force must be set so that, for small ground dis-

placements, the body is not shot far upwards into space. Because the body is constantly oscillating between

this upward and downward motion, the time sampling interval and restorative upward force must ensure

that this bouncing of the body is not visible while the body is in a stationary position.

67

The implementation of horizontal frictional forces also presents difficulties. Friction is applied only

when an object contacts the ground. Considerable excess tangential slippage can occur for sliding motions

if the frictional model is not applied when the ground reaction forces have temporarily pushed the object off

the ground.

Other problems with implementing a ground model involve calculating the normal force and how it

should be distributed throughout the body. A body pressed into the floor, or hitting the floor with a high

velocity, has a greater normal force than one resting on the floor. Although it is relatively simple to deter-

mine the contact points for a body, assigning a distribution of force to these points depends upon the posi-

tion of the body and where the gravitational forces are being directed. For example, forces assigned to the

contact points differ when a human is crouched on all four limbs versus when the human has most of the

weight on the legs and is lightly touching the floor with the hands.

The floor model implemented in BDAS is based on the spring and damper ground model and floor

contact algorithm used by Wilhelms in Deva [Wilhelms85]. At the beginning of each iteration, floor con-

tact is checked for the eight points defining the corners of each limb by comparing their inertial frame coor-

dinates with that of the floor level. It is especially important to check all corners of the feet for floor con-

tact because many ballroom dance steps are performed by stepping down either heel first or toe first.

If the figure contacts with the floor, the normal force is estimated by first computing the mass of the

figure times the acceleration due to gravity. The vertical momentum of the body divided by a time constant

is then added to this product, and the entire result is negated. Mathematically, this is expressed as:

W body = − m body * a G −
time_constant

m body * v down_ ____________ .

Each point is marked indicating contact or no contact with the floor. The current depth of all marked

points are summed to determine the total depth. Once the total depth is known, each point marked in con-

tact with the ground is allocated a percentage of the normal force according to the following formula:

N% = W body * depth% .

68

This amount is only an estimate of the force required to stop the downward motion. If the point con-

tinues to descend below its original contact point, a restorative spring force is applied:

∆y = Contact_Point − Current_Position

F spring = N% * Floorspring * ∆y .

A damping term is also included:

F damper = m body * v down * depth% * Floordamper ,

where v down is the contact point’s inertial frame velocity and Floordamper is the frictional damping com-

ponent of the spring and damper representing the floor (this is not to be confused with horizontal friction).

The total normal force applied to the contact point is the vector sum of these forces:

N total = N% + F spring − F damper .

Two mutually perpendicular horizontal frictional forces are applied to each contact point by multiply-

ing the total normal force for the point by the coefficient of friction (often about 0.6 [Halliday74]). This

gives:

F hor = µ * N total .

The sign of each horizontal frictional force is set to oppose the direction of both horizontal velocity vector

components.

The Dynamics Module allows the animator to adjust several parameter table variables used in the

ground model. Gravity sets the downward acceleration of gravity acting on the human figure. This value

may be changed to model conditions on other worlds. Normal Force sets the time constant determining if

the normal force is strengthened or weakened for each contact point. Floorspring sets the stiffness of the

floor and Floordamper determines the amount of friction applied to the floor spring. Each setting, in turn,

affects the magnitude of horizontal friction applied to all contact points. Mu, the coefficient of friction,

determines the amount of friction associated with the floor surface.

Chapter 6

Motor Control

_ __

Studies of biological motor systems suggest control programs should be organized in a hierarchical

manner where the high levels constitute some form of a task description, and the low levels consist of a

series of control modules capable of activating a sequence of muscles and joints to perform a particular

motion. Many scientists have argued that such a control structure may be the only efficient means of con-

trolling complicated systems such as those represented by articulated, three dimensional human figures

[Zeltzer82a].

Figure 6.1 shows the multi-level approach used to define the motor control structure implemented in

the model. This hierarchical structure is similar to the skeletal control model used by Zeltzer [Zeltzer82a]

in his studies of human gait. The upper levels, which function near the animator level, transform a series of

high-level task descriptions (such as dance patterns) into a sequence of low-level primitive movements.

The lower levels consist of biological motor programs responsible for executing small, well-defined primi-

tive movements. All low-level motor programs operate under the control and supervision of the upper lev-

els.

6.1. Upper Levels

The task manager constitutes the top level of the motor control structure. Its function is to oversee

dance pattern execution and to periodically report motion difficulties to the behavior level. The task

manager receives a pattern from the behavior level and decomposes it into a series of steps. Each step

defines a new body position and orientation. All steps are placed into a step queue for sequential execution

by the lower levels of the model.

The task manager is called each a time a new step is executed. If the step queue is empty, the task

69

70

Task
Manager

Body
Controller

Move
Limb

. . .

General Limb Motor Programs

Maintain
Limb

1st
Position

. . .

Position Motor Programs

5th
Position

Balance

Autonomic Motor Programs

Move
Forward

. . .

Limb Specific Motor Programs

Move
Sideward

Figure 6.1 Motor Control Structure

manager notifies the behavior level of pattern completion and awaits arrival of the next pattern. When the

step queue is not empty, the next step is removed and information is extracted describing the time required

to complete the step and the final body position and orientation. Each link is then assigned a quaternion-

defined goal position. This quaternion is obtained by converting the Euler angles defining the limb’s orien-

tation at the end of the step into a normalized quaternion. The normalized quaternion represents the orien-

tation of the link with respect to its parent (or the inertial frame in the case of the upper body). The rotation

matrix giving the link’s current orientation with respect to its parent is also converted into a normalized

quaternion and the link’s motion state is determined by measuring the distance between these two quatern-

71

ions.

A limb may be in one of three motion states. Free swing is a null state where all internal torques are

set to zero. This state allows a limb to move freely without motion constraints. Move results in the applica-

tion of torques to move the limb as smoothly as possible from its current position to the new goal position

within the specified time limit. Maintain attempts to hold a link at its current angular position with respect

to its parent. Relatively strong restorative torques are applied to the link whenever it deviates from this

position. Maintaining a link’s position by implementing a firm clamp on the link is not the best solution for

two reasons. First, from a biological point of view, this results in unnatural motion. Most limbs react to

sudden external forces by "giving" a bit before moving back to their normal position. A limb should move

out of its maintained position if a strong enough external force is applied. Second, a clamp adds a con-

straint to the dynamics equations that would require their reformulation.

Unless a link is explicitly set to free swing, links whose quaternion distance exceeds a system-set ε

have their motion state set to move. Otherwise, all links whose quaternion distance is less than ε have their

state set to maintain.

Based on the number of beats per second and the number of beats required to perform the step, the

task manager calculates the time necessary to complete the step and initializes a timer for each link whose

state has been set to move. All timers contain information giving the time the movement was initiated, the

length of time required to complete the movement, and the time an interrupt alarm will go off. These inter-

rupt alarms are used by the body controller to synchronize the motion of the moving limbs.

When the task manager has set the states, goal positions, and timers for each link, control is passed to

the body controller. The body controller is responsible for activating and supervising the execution of the

motor programs required to perform each step. In contrast to the task manager being executed at the begin-

ning of each step, this module is executed many times during the step.

During its execution cycle, the body controller receives the rotation matrices describing the current

position of each link marked move. These matrices are converted to normalized quaternions and the

72

distance between each link’s current position quaternion and its goal position quaternion is computed. If

the distance between these two quaternions is less than ε, the body controller changes the state of the limb

to maintain. This module then services all pending timer interrupts for the limbs marked move. Each

limb’s interrupt handler compares the current position of the limb to its goal position. Adjustments are

made to the limb’s torque generating function if the limb’s movement has been lagging or proceeding too

quickly relative to where it should be since the movement began (the criteria for deciding where a limb

should be at a given time are described in Section 6.4). The timer is then reset to produce another interrupt

after a fixed time interval. After servicing all timer interrupts, the body controller initiates human figure

movement by executing a series of low-level motor programs.

6.2. Low-Level Motor Programs

The human figure is driven by three types of low-level motor control programs. General limb motor

programs act on the limb according to the state of the limb. Position motor programs apply internal torques

to assist moving the limbs to the goal position defined for a specific dance position. Autonomic motor pro-

grams simulate functions humans perform either subconsciously or automatically.

6.2.1. General Limb Motor Programs

Every link is attached to a set of general limb motor programs. This motor program set consists of

three motion processes - free swing, move limb, and maintain limb. Every link has one motor program from

its set active at all times. The active program is determined from the current motion state of the limb.

6.2.1.1. Free Swing Motor Program

The free swing motor program is a null process which removes all internal torques from the link, thus

allowing the limb to move freely without constraints.

6.2.1.2. Move Limb Motor Program

The move limb motor program attempts to move the limb as smoothly as possible from its current

73

position to the goal position within the specified time limit by applying a series of internal torques.

Prior to assigning an internal torque to the limb, a transformation quaternion is calculated based on

the quaternions giving the limb’s current orientation and goal orientation. Let [λ c , Λ c], [λ g , Λ g], and

[λ t , Λ t] define quaternions representing the current orientation, goal orientation, and transformation from

the current to goal orientation. The transformation quaternion is computed by first calculating the

minimum distance from the current orientation to the goal orientation:

d([λ c , Λ c] , [λ g , Λ g]) = min (d([λ c , Λ c] , [+ λ g , + Λ g]) , d([λ c , Λ c] , [− λ g , − Λ g])) .

Both [+ λ g , + Λ g] and [− λ g , − Λ g] must be considered because these two quaternions represent the same

orientation. [λ g , Λ g] is then set to the closest goal quaternion. [λ t , Λ t] is computed by multiplying each

side of the equation:

[λ c , Λ c] [λ t , Λ t] = [λ g , Λ g]

by the left inverse of [λ c , Λ c] to produce:

[λ t , Λ t] = [λ c , Λ c] − 1 [λ g , Λ g] .

[λ t , Λ t] gives the least amount of rotation and the axis of rotation required to reach the orientation defined

by the goal quaternion from the orientation defined by the current quaternion. Let n t represent the normal-

ized vector pointing along the rotation axis specified by Λ t .

The internal torques applied to the link are computed using functions obtained from biomechanical

studies on muscle contraction. The functions are similar to formulas used to express the force acting across

parallel elastic muscle elements [Hatze81]:

τ tot = τ s − τ d

where

τ s = α (eβ δ − 1)

and

τ d = γ ω .

τ s and τ d are non-linear springs and linear dampers consisting of five parameters. α, β, and γ are

74

constants set by the animator or animation system. δ is the quaternion distance between the current posi-

tion and the goal position. ω is the angular velocity of the link (with respect to its parent). Assigning α and

β from the domain of non-negative real numbers produces a family of exponential curves for τ s , all having

value zero when δ is equal to zero. α serves as a scalar multiplier and β controls the shape of the curve.

These functions are used empirically to obtain reasonable torque values for a given motion; no effort

is made to model actual muscle contraction. Since different muscles can be modeled using different force

and torque generating functions [Hatze81], a more complete motion control model should activate the

appropriate set of torque generating functions for the muscles involved with the movement being per-

formed.

The principal axes for each frame are used when evaluating the torque functions. For each axis i, α i

is determined by:

α i = I ii * n i * Movespring *
Movetime2

1_ _________ .

I ii is the moment of inertia value for the link along axis i, n i is the component of the normalized vector n t

pointing along axis i, Movespring is a constant set by the animator, and Movetime is the amount of time

required to perform the movement.

The initial amount of torque required to rotate a limb is based on the square of the inverse of Move-

time. Since many limb movements start from a stationary position, the rotational distance θ i about each

principal axis (assuming a constant angular acceleration ω
.

i) can be expressed as a function of time by:

θ i =
2
1_ _ ω

.
i t 2 .

For limb movements with an initial angular velocity of zero, ω
.

i is inversely proportional to t 2 . Since

τ i = I ii ω
.

i , a similar relationship exists between τ i and t 2 . Move limb uses this inverse square relationship

to obtain reasonable torque approximations for identical movements performed at differing time rates.

All three axes use the same value for β. γ i is calculated from:

γ i = I ii * Movedamper ,

75

where Movedamper is a constant set by the animator. This value is multiplied by ω i to obtain the retarding

frictional torque τ d acting along the principal axis. Both γ and the previously computed value of α depend

upon the rotational inertia I of the link. This allows torque values with similar constants to have similar

effects on each of the principal axes.

In addition to calculating τ s and τ d for each principal axis, a gravitational torque term is applied to

τ tot . This term is determined by converting the vector giving the downward acceleration due to gravity

from the inertial frame to the frame of the link. The vector components resulting from the cross product of

the link’s center of mass vector with the converted gravitational force vector are then subtracted from τ tot .

This gravitational term is necessary because the torque function would otherwise be unable to move a limb

against gravity to its goal position. Movement would stop at the point where the upward torque generated

by τ tot matched the downward torque applied by gravity.

A vector sum of the components of τ tot acting along each of the principal axes produces a torque

pointing in the direction of n t (the axis of rotation transforming the current quaternion to the goal quatern-

ion) operating along an axis of rotation specified by λ t . These internal torques perform a spherical interpo-

lation of the shortest great circle arc between the current quaternion and the goal quaternion.

One problem with this interpolation method is that some great circle arcs contain orientations outside

the rotation range of normal human limbs. However, if the shortest natural arc or series of arcs giving the

shortest natural path can be found, Bezier curves can be constructed and spliced together to form a smooth

interpolation path [Shoemake85]. In this case, the interpolation method consists of reaching a series of

sub-goal quaternions along these curves. The main difficulty with this method is finding a satisfactory and

efficient means of detecting if a quaternion is outside the limit of the limb’s rotational range. This problem

is ignored by BDAS since the shortest great circle arc between two positions is nearly always within the

range of natural movement.

76

6.2.1.3. Maintain Limb Motor Program

The maintain limb motor program attempts to maintain the limb at the angular position (with respect

to its parent) specified by its goal quaternion. This motor program operates similarly to the move limb pro-

cess, except α and γ depend on the animator specified values Mainspring and Maindamper, β is set to a

value higher than its move limb counterpart, and interrupt alarms are not used.

6.2.2. Position Motor Programs

The second class of motor programs driving the figure are position motion processes. These

processes help the general limb motor programs move the human figure to a specific dance position. Posi-

tion motor programs are attached to dance positions, and not all dance positions have these motor pro-

grams. Unlike the general limb motor programs, these processes are capable of simultaneously acting on

more than one body part. Furthermore, the entire human figure has access to only one set of position motor

programs rather than one set per limb.

Position motor programs operate by application of internal torques on the body during specific time

intervals. Because the length of time required to perform a step depends on the tempo of the music, time

intervals are expressed as percentage intervals of the step rather than in seconds. For example, a time inter-

val for the application of a particular torque to raise a leg may be specified as the interval defining 40 to 60

percent completion of the step as illustrated below:

step_elapsed_time = (elapsed_time − step_start_time) / step_move_time;
if (step_elapsed_time >= 40% && step_elapsed_time <= 60%)

raiseleg(left_or_right_leg, torque_magnitude);

During their execution, position motor programs may change the state of various limbs. For exam-

ple, an implementation of the ballistic walking model described by McMahon [McMahon84a]

[McMahon84b] may require a leg marked move be temporarily changed to free swing during the gait cycle

executed by the 4th position forward motion process.

Position motor programs apply torques to the limbs by executing a set of limb specific motor pro-

77

grams. Limb specific processes form a pool of primitive motion functions available to all position motor

programs. Each limb specific motor program applies a specific internal torque to a particular body limb.

These motor programs are responsible for performing such actions as making the human figure move in a

particular direction or temporarily raising a leg off the ground.

Nearly all limb specific motor programs are invoked with the magnitude of the applied force or

torque given as a parameter from the position motor program. Other execution parameters may include the

force or torque direction and the limb the vector acts on. Most position specific motor programs require the

active leg (left or right) be given as an execution parameter. All execution time intervals are built into these

processes.

At this time, all force and torque magnitudes used by these motor programs are derived empirically

and are totally frozen within these processes. Although these values generally give realistic motion only for

the more common dance tempos, more sophisticated algorithms need to be developed and incorporated into

these programs to allow proper handling of a wider range of tempos.

6.2.3. Autonomic Motor Programs

Autonomic motor programs simulate functions humans perform either subconsciously or automati-

cally. These processes generally operate independently of the dance related motion sequence. Currently

the only autonomic motor program implemented is balance.

Balance is based on a comparison between the vertical orientation of the upper body to a general

upright orientation. A restorative torque, whose magnitude is dependent upon the vector distance between

these two orientations, is applied to the upper body whenever the distance is non-zero. Setting an upper

limit on the magnitude of this restorative torque allows for gravitational torques to cause the body to fall

over whenever the displacement exceeds a certain limit (typically a distance representing about 20 degrees

from an upright position).

The figure can be made to stand upright by applying stiffness to the lower body, legs, and feet. Most

78

of this stiffness occurs in the form of the internal torques generated from setting the motion state of these

limbs to maintain.

While this procedure has generally been satisfactory for ballroom dancing (since most patterns

require an upright upper body orientation), it is not satisfactory for motion in general. Different types of

motions (such as diving or bending over) require different types of balance. A more realistic model of bal-

ance should account for the limbs which contact the ground and the distribution of mass over those limbs.

Although autonomic motor programs generally operate at all times while dance patterns are pro-

cessed, they can be temporarily deactivated by position motor programs. For example, since walking is

based on falling forward [Alexander84a], the 4th position motor process, at the beginning of its execution,

temporarily disables the balance autonomic motor process. At a slightly later time, balance is restored to

allow the figure to catch itself from falling over.

6.3. Intermediate Goal Positions

So far the lowest level of the dynamics component of the animation system has consisted of a series

of motor programs responsible for reaching goal frames. The general limb motor programs move the limbs

to the desired orientation and the position motor programs handle the special forces and torques required to

assist the general limb processes.

Transitions to some goal positions may require an extensive set of procedures in the corresponding

motor programs because of the complicated nature of the movement. For example, consider the transition

from 1st position into 4th position in the forward left step. Depending on the dance, the final position may

resemble either the midpoint of the gait cycle (as in the waltz) or a position similar to 1st with a slight bend

in the right knee causing the right foot to be suspended approximately half an inch off the ground (as in the

foxtrot). The 4th position motor program must be capable of handling different dances in different manners

and, in the case of the foxtrot, have sufficient knowledge to prevent the general limb motor programs from

reaching the goal position by simply bending the right knee.

79

This problem can be solved by allowing complicated transitions to consist of a series of smaller tran-

sitions to one or more intermediate goal positions. These intermediate positions help eliminate any ambi-

guity that exists in the transition from the initial to final position. The problem outlined in the preceding

example is handled by defining 4th position to consist of an intermediate and final goal position. These

two positions represent the position at the midpoint of the gait cycle and the position defined by the bend-

ing of the right knee. The 1st to 4th position transition for the foxtrot then consists of sequentially reaching

the intermediate and final goal position. The waltz transition, on the other hand, is performed by setting the

intermediate position as its final position.

Intermediate goal positions are defined with the Gesture Editor in the same manner as a regular dance

position. To simplify their implementation during the dynamics calculations, transitions to all intermediate

goal positions are allocated equal time slices. If n represents the number of intermediate and final goal

positions and t denotes the time required to reach the final goal position, all motor programs are allocated a

time slice of t / n seconds to reach every intermediate and final goal position.

Since a dance step consists of combining the goal positions defined by the associated Head position,

Foot Position, Footwork, Body Modifier, and Amount of Turn symbols, limbs associated with different

symbols may reach their goal positions at different times. For example, suppose the dancer begins a step in

1st position looking straight ahead and is to move forward into 4th position while rotating the head 45

degrees to the left. If the entire step requires t seconds and the 4th position has one intermediate goal posi-

tion, the legs and feet will have t /2 seconds to reach each goal position while the head will have t seconds

to rotate its required amount.

Providing the animator with more control of movement and having the motor processes handle

smaller movement sequences are two important factors favoring the use of intermediate goal positions.

However, treating intermediate goal positions the same as final goal positions in terms of the magnitude of

torques applied can lead to unnatural motion. Once again, consider the forward transition from 1st position

to 4th position in the foxtrot. Since this sequence uses one intermediate goal position (the position resem-

80

bling the midpoint of the gait cycle), the torque functions apply little torque to the legs when the legs are

near their intermediate goal. Thus, upon reaching their intermediate goal position at the completion of the

allocated time interval, the legs are likely moving with little velocity. When the final goal position is read,

the torques generated by the torque functions are once again large because of the increase in distance

between the current position of the legs and their new goal position. This produces an acceleration of the

limbs. The overall effect is a slow down followed by an acceleration of movement during the gait cycle.

The solution to this problem (which is not implemented in BDAS) lies with adding look ahead

knowledge to the task manager and body controller so the torques used by the motor programs are based on

the distance and time to the final position in the movement sequence. Further knowledge should also be

incorporated as to what the motion is, so smooth transitions may occur between motion sequences.

6.4. Low-Level Motor Control

One of the major difficulties with using dynamics for human figure animation is correctly specifying

the magnitude of the forces and torques required to produce a desired motion. Ballroom dancing introduces

a further complication to this problem because not only should the motion appear smooth and natural, but it

should be performed in a time frame governed by the tempo of the music. For example, motion at a rate of

one beat per second should be performed half as fast as motion at a rate of two beats per second. In both

cases, limbs should initiate movement at the beginning of the sequence and reach their goal position at the

end of the allocated time period.

Low-level motion control is performed for each step by assigning a simple feedback system to each

limb marked move [Grodins63] [Milhorn66] [DiStefano76]. These feedback systems perform spherical

interpolations along the shortest great circle arc connecting the quaternion defining the starting orientation

and the quaternion defining the goal orientation. All feedback systems are activated simultaneously and at

least 10 times (at equal intervals) while an intermediate or final goal position is approached.

Let [λ s , Λ s] and [λ g , Λ g] denote the starting and goal quaternions, and [λ t , Λ t] denote an interpo-

81

lation quaternion located at position u along the ([λ s , Λ s] , [λ g , Λ g]) shortest great circle arc. The

domain of u includes all real numbers between 0 and 1 and u = f (t) for an arbitrary function f. The follow-

ing formula from four dimensional geometry provides a spherical linear interpolation along the

([λ s , Λ s] , [λ g , Λ g]) arc [Pletinckx89]:

[λ t , Λ t] =
sinθ

sin (1 − u) θ_ _________ [λ s , Λ s] +
sinθ

sinuθ_ _____ [λ g , Λ g]

where [λ s , Λ s] .[λ g , Λ g] = cosθ. Combining the relationship u = f (t) (where t is the elapsed time

expressed as a percentage interval of the step) with this formula allows intermediate orientations to be

expressed as a function of time.

f is any increasing function satisfying the restrictions f (0) = 0, f (allocated_time) = 1, and

0 ≤ f (t) ≤ 1. Since time versus position plots of many simple motion sequences such as raising an arm

produce curves resembling the distribution curve of the standard normal function, BDAS uses the latter as

the curve expressing the desired intermediate orientations as a function of time. A more general method for

approximating these and other motion curve shapes requires the construction of spline curves.

Each limb’s feedback system monitors the amount of torque applied to the limb based on the limb’s

current position. Figure 6.2 displays the structure of a limb motor feedback system.

Dynamics Componentτ tot
+

-

[λ t , Λ t] Torque
Controller

Error
Signal

F ext ,τ ext

Error
Detector

[λ c , Λ c]

Figure 6.2 Limb Motor Feedback System

This system consists of two main components. On the left, the controller is responsible for control-

ling the torques applied to the component on the right, the controlled system.

82

The controller contains two subcomponents - the error detector and the torque controller. The

current quaternion [λ c , Λ c] and interpolation quaternion [λ t , Λ t] (representing the desired orientation at

time t) are fed as input signals to the error detector. An error signal β e is generated by measuring the

current quaternion distance from the goal against the interpolated quaternion distance from the goal:

β e = d([λ c , Λ c] , [λ g , Λ g]) − d([λ t , Λ t] , [λ g , Λ g]) .

The error signal is calculated using the above expression instead of measuring the distance between

[λ c , Λ c] and [λ t , Λ t] because external disturbances may cause the limb to deviate from the

([λ s , Λ s] , [λ g , Λ g]) great circle arc.

This error signal is then used by the limb’s torque controller to regulate the amount of internal torque

applied to the limb by adjusting the β parameter of the limb torque generating function:

β = max (β + β e , 0) .

A positive value for β e produces an increase in the magnitude of the generated torques and a negative

value results in either a decrease in the torque magnitude, or the magnitude remaining at zero. At the

beginning of each step, all limbs whose state is set to move are assigned a β value of nearly zero to allow

the torques to increase in a natural manner, thereby reducing the likelihood of a large displacement occur-

ring between [λ c , Λ c] and [λ t , Λ t].

The controlled system is represented by the Dynamics Module. This component receives input from

the torque controller and disturbances in the form of external torques and forces acting on the limb. At the

conclusion of the dynamics computations the limb’s new orientation is fed back to the error detector.

Interpolations along the ([λ s , Λ s] , [λ g , Λ g]) great circle arc are used primarily for regulating the

application of internal torques required to move [λ c , Λ c] to [λ g , Λ g]. This arc is also used for determin-

ing the magnitude and direction of the initial internal torques applied at the beginning of each step.

Because external forces and torques may displace [λ c , Λ c] from the ([λ s , Λ s] , [λ g , Λ g]) arc during the

progression of the step, all subsequent internal torques are applied to move [λ c , Λ c] along the

([λ c , Λ c] , [λ g , Λ g]) arc.

Chapter 7

Experimental Results

_ __

This chapter discusses the experiments performed and the problems encountered with the Ballroom

Dance Animation System. All experiments were performed on an IRIS 3130 with a floating point accelera-

tor. Unless otherwise stated, time samplings were performed every 0.01 seconds and all rotation matrices

and limb positions were updated every 0.02 seconds of simulated time. Output to the screen appeared

every 0.1 seconds of simulated time.

One of the major difficulties encountered with BDAS prior to conducting these experiments has been

finding stable values for the spring and damper constants governing the motion of the limbs. Most values

result in limb oscillations which cause the numerical instabilities introduced in the integration routines to

destroy the simulation. This problem was addressed by using trial and error to find a reasonably stable set

of values, and by increasing the moments of inertia for each link by a factor of 300.

7.1. Arm Reaches to Dance Position

The first set of experiments tested the general limb motor programs by having the figure perform an

arm reach to dance position. Figures 7.1 to 7.4 show the animation sequences generated when the figure

was given one, two, three, and four seconds to reach this position. Motion in all cases started with the fig-

ure standing in 1st position with the hands resting at the side. All limbs, with the exception of the upper

arms, lower arms, and hands, were set to maintain. The remaining limbs were initially marked move and

allowed to change to maintain once they reached their goal position. During each motion sequence, the

balance process maintained the figure in an upright position.

In all sequences, the movement of the arms to reach the final position progressed smoothly and

appeared very natural. All limbs either obtained or nearly reached their goal position by the end of the

83

84

0.0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0

Figure 7.1 Reaching Dance Position in 1 Second

0.0 0.2 0.4 0.6 0.8 1.0

1.2 1.4 1.6 1.8 2.0

Figure 7.2 Reaching Dance Position in 2 Seconds

85

0.0 0.3 0.6 0.9 1.2 1.5

1.8 2.1 2.4 2.7 3.0

Figure 7.3 Reaching Dance Position in 3 Seconds

0.0 0.4 0.8 1.2 1.6 2.0

2.4 2.8 3.2 3.6 4.0

Figure 7.4 Reaching Dance Position in 4 Seconds

86

allotted time. The only unnatural movement appearing in some sequences was a slight jerk by some limbs

resulting from the move to maintain state transfers. This jerking motion can be eliminated by reducing the

difference between the Movespring and Mainspring constants. These sequences show that the torques

applied to the limbs by the torque functions are strong enough to counteract the influence of gravity and to

allow the limbs to maintain either an upright or a horizontal position with respect to the floor. A com-

parison of the four motion sequences show the figures at the corresponding time percentage intervals to

have many similarities with the orientations of the arms.

These experiments show that, in the absence of interaction with other figures or the floor, realistic

motion can be achieved in different time frames using the implemented motion control model.

7.2. Forward Step into 4th Position

The next set of experiments tested the fundamental position motor programs responsible for making

the figure take a forward, backward, and side step. All experiments for these fundamental position transi-

tions were conducted for motion frequencies of 1 and 2 seconds per step. Since most of the effort spent

developing and debugging the position motion processes focused on the faster step rate, all the animation

displayed in the next three sections show better movement for this speed. The motion processes operated at

the slower step rate by setting all torques generated within these motor processes to be inversely propor-

tional to the square of the time required to complete the motion.

The first of these experiments tested the motor program responsible for making the figure take a sin-

gle step forward into 4th position. This movement was composed of one intermediate goal position

representing the midpoint of the gait cycle (the point where the legs reach their maximum distance apart

from each other), and a final goal position representing the end of the cycle (the point where the legs are

back together again). The final goal position had one leg in a support stance and the other leg resting

slightly above ground. This leg configuration at the end of the 4th position movement is common to many

ballroom dances. In all experiments performed, the figure started in 1st position with the arms in a normal

ballroom dance position.

87

The forward step was executed with the assistance of the 4th position forward motor program. As

much as possible, this motion process applied torques based on biomechanical studies of human gait

[Alexander84b] [Alexander84a] [McMahon84a]. At the beginning of each gait cycle, the 4th position for-

ward motion process temporarily deactivated the figure’s balance and applied a small internal torque to the

upper body to make the figure fall slightly forward. While the figure was falling forward, additional torque

was applied to the foot of the support leg to release weight from the swing leg. This torque made the sup-

port foot press into the ground, thereby raising the ankle of the leg and freeing the swing leg. Pressing the

foot into the ground also helped anchor the support leg, thus reducing slippage. The swing leg was then

swung forward with the assistance of the move motion process. Once the leg commenced its forward

swing, the balance process was reactivated to prevent the figure from falling over. The 4th position motor

program was then deactivated and the general limb motor programs completed the gait cycle.

Figures 7.5 and 7.6 show the animation sequences generated by this motion process. The motion

appeared fairly natural despite a slight unnatural bend in the support leg while the figure was falling for-

ward. This can be rectified by increasing the stiffness applied to the figure’s leg joints. Although these fig-

ures do not show slippage, both forward steps had the initial support leg slip backwards about one and a

half times the length of the foot. The figure was also pulled slightly backwards by the balance process dur-

ing the last half second of the 2 steps per second animation rate. The net forward movement was about one

and a half foot lengths for the faster rate, and about one foot length for the slower rate. Both the torque

functions and gravity rotated the swing leg to the support leg slightly faster than desired for the faster gait.

This experiment was extended for both cycles by having the figure take 12 consecutive forward steps.

Throughout the 1 second per step rate, the figure managed to maintain a relatively good position, although

some steps showed more slippage than others. The results were quite different, however, for the 2 second

per step rate. The figure started to slide about after the third step and was never able to completely recover

despite efforts to continue the gait. The motion appeared very unnatural because the balance process con-

88

0.0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0

Figure 7.5 Forward Step in 1 Second

0.0 0.2 0.4 0.6 0.8 1.0

1.2 1.4 1.6 1.8 2.0

Figure 7.6 Forward Step in 2 Seconds

89

tinued to upright the figure from positions where it should have fallen over. The sliding problems are

caused by the accumulation within the figure of kinetic energy and angular momentum and can be reduced

by increasing the figure’s stiffness.

7.3. Backward Step into 4th Position

The next position transition experiment tested the motor program responsible for making the figure

take a single step backward into 4th position. As with the forward step, this movement was composed of

one intermediate goal position representing the midpoint of the backward gait cycle and a final goal posi-

tion representing the end of the cycle. The final goal position also had one leg in a support stance and the

other leg resting slightly above the ground.

Considerable more difficulty was encountered trying to develop the 4th position backward motor pro-

gram. Most of the human gait discussions found in the available biomechanical literature focused on for-

ward walking steps. As a result, this motor program is not yet as stable as the 4th position forward program.

At the beginning of the backward step cycle, the toe of the support foot was pressed into the ground to help

anchor the support leg. This helped the upper support leg’s move limb process push the figure backward.

Further anchoring of the leg’s position was obtained by countering the torques propagating from the upper

leg’s move process with an extra torque applied to the lower leg. The combination of these two torques

enabled the move processes to reach the intermediate position while at the same time reducing the amount

of horizontal foot slippage.

During the second half of the backward gait cycle, a torque was applied to the foot of the rear leg to

anchor the foot to the ground. A second torque was applied to the upper body to assist the balance process

in maintaining the figure in an upright position. This torque also helped counteract the backward momen-

tum created by the first half of the gait cycle. If this torque was not applied, the figure would complete the

gait cycle with its upper body leaning backward. Under this circumstance, a natural transition to the next

step using the torque functions became very difficult to perform. All torques applied by the 4th position

90

0.0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0

Figure 7.7 Backward Step in 1 Second

0.0 0.2 0.4 0.6 0.8 1.0

1.2 1.4 1.6 1.8 2.0

Figure 7.8 Backward Step in 2 Seconds

91

backward motion process attempted to have the figure complete the step in a vertical position while simul-

taneously trying to minimize the amount of excess kinetic energy and angular momentum remaining in the

figure.

Experimental results for the backward gait cycle are shown in Figures 7.7 and 7.8. During both step

rates, the initial support foot slipped forward approximately half a foot length and the overall backward

movement was about two foot lengths. The rear foot slipped forward approximately a quarter of a foot

length during the last half of the faster gait cycle.

The experiments for the slower rate revealed the torques applied to the swing leg caused the figure to

become unstable. During the first half of the gait cycle, excessive sideward foot slippage was caused by the

support leg rotating inwards. The body swayed to the outside and was eventually uprighted by the balance

process. As a result of this foot slide, the entire backward step appeared very unnatural. These problems

can be reduced by increasing the spring constants Mainspring and Movespring. This added stiffness would

help prevent the support leg from sliding out from under the figure.

The appearance of the backward gait for both time rates can be improved by rotating the foot of the

swing leg so the figure lands on the toe of the foot before coming to rest on the entire foot. The motion

process kept this foot off the ground as much as possible to ensure the figure’s weight was completely on

the support leg before shifting the weight to the swing leg.

As with the forward walk, the backward walk experiment was extended for both cycles by having the

figure take 12 consecutive backward steps. The experiment worked reasonably well for the 1 second per

step rate, although control of the figure began to slip around the 8th step. The entire long walk for the

backward step was characterized mostly by unnatural movement. This result was expected since the motor

program was unable to make the figure move a single realistic step backward.

7.4. Side Step into 2nd Position

The final position transition experiment tested the motor program responsible for making the figure

92

move one step sideward into 2nd position. In all experiments, the side step was completed by activating a

(null) process to move the figure to 1st position following termination of the 2nd position motion process.

Both the 2nd position and the 1st position movement transitions were composed of one goal position.

The 2nd position goal had one leg extended to the side and the other leg extended in a near vertical position

with the knee slightly bent. The 1st position goal was a vertical position with the legs straight and the feet

together.

Developing a realistic motor program for a transition into 2nd position was found to be even more

challenging than for the other transitions. The final result was a motor program which is still not very

stable (nor realistic). However, the process operated as follows.

During the first half of the step, a torque was applied to rotate the upper body in the direction of the

support foot. This resulted in a change of weight towards the support foot and released the opposite leg and

hip. At the same time, the move limb motion process applied torques to rotate the upper support leg, thus

causing the weight of the upper body to begin shifting towards the opposite leg. To help prevent slippage, a

torque was applied to press the support foot into the ground. At approximately the midpoint of the step, the

torque applied to the upper body was released and the balance process was temporarily disabled. This

allowed the accumulated torques in the support leg to transfer the weight of the upper body to the other leg

without interference from the balance process. After the elapse of a short interval to allow for the weight

transfer, balance was restored to the upper body. During the weight transfer, the goal position for the swing

leg was changed to remove the bend from the leg. This enabled the figure to land on a firm, straight leg.

Following this, the 2nd position process completed execution.

Figures 7.9 and 7.10 display the experimental results for a side step. For side steps executed at the

faster step rate, the support foot slipped sideward about one head width. While the legs were being rotated

back together, the figure slid about one head width in the direction of the side step. This resulted in a net

body movement of about three head widths to the side. The slower step rate also experienced a side slip-

page of approximately one head width. Near the beginning of the step, the build-up of torques within the

93

0.0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0

Figure 7.9 Side Step in 1 Second

0.0 0.2 0.4 0.6 0.8 1.0

1.2 1.4 1.6 1.8 2.0

Figure 7.10 Side Step in 2 Seconds

94

body caused the lower swing leg to rotate out of its natural range. While the feet were being drawn back

together, the figure slid along the floor first in the direction of the movement, and then in the opposite

direction. This reversal of direction was caused by the foot of swing leg making contact with the ground.

During this time, the figure was also sliding forward along the floor. This is likely caused by the combina-

tion of excessive kinetic energy within the figure and a faulty ground model. The net movement resulting

from this side step was approximately one head width to the side.

The main difficulty with the attempts to make the figure step sidewards was shifting the weight of the

body while preventing horizontal slippage with the support leg and foot. Ideally, the movement should be

accomplished by minimizing the rotation of the upper body and having the foot of the swing leg lifted

slightly off the ground as the rotation of the support leg moves the upper body smoothly to the side.

Instead, both Figures 7.9 and 7.10 give the effect of the sudden release of a spring at about the midpoint of

the step. This causes the previous support leg to swing into the air while the weight of the body falls onto

the other foot.

The second experiment had the figure perform six consecutive side steps. At the faster rate, a reason-

able step occurred only for the first step. The remaining steps were characterized by the support foot

swinging out to the side and then being drawn back in. More control of the figure’s momentum and a better

understanding of how humans execute a side step is required before the figure will be able to take more

than one reasonably realistic side step.

The results were more discouraging for the slower step rate. Again, only the first step bore any

resemblance to a normal step. Unlike the faster rate, the figure fell over while attempting to perform the

third step. The duration for which the balance process is disactivated needs to be readjusted along with the

magnitude of the torques causing the upper body to tilt to the side if a more realistic sequence is to be

achieved.

95

7.5. Forward and Back Basic in the Foxtrot

With the development of motion processes capable of making the figure take a step forward, back-

ward, and to the side, the final experiment tested the ability of the figure to perform an elementary ballroom

pattern. The sequence of moves selected was the Forward and Back Basic in the foxtrot. This pattern con-

sists of the Forward Basic (explained in detail in Chapter 5) followed by a Backward Basic (a pattern simi-

lar to the Forward Basic except the steps are taken backwards). Thus, the overall pattern contains two steps

forward, one step to the side, two steps backward, and one final side step. The figure started with the feet

in 1st position and the arms resting at the side of the body. Prior to taking the first forward step, the arms

were moved to dance position. Following the last side step, the arms were lowered to the side of the body.

Since the position motor processes operate more consistently at the faster step rate, the pattern was

danced with each forward, back, and side step executed in one second. The arms were given two seconds

to reach dance position and two seconds to be lowered to the side of the body. The pattern contained none

of the symbols indicating if each step should be executed by stepping down on either the heel or the toe of

the moving foot.

The results of this dance sequence, while far from perfect, were encouraging. The raising of the arms

and the forward steps appeared very similar to the results obtained from the previous experiments. While

the figure managed to progress backwards during the two steps backward, more foot slippage occurred than

the amount that was present during the step backward experiment. The side steps, however, were a near

total failure. During both steps, the support leg swung out and was then drawn back towards the other leg.

The net result was very little sideward movement. The pattern concluded with the arms being lowered in a

natural manner. While the arms were being lowered, however, the previously accumulated energy and

momentum caused the figure to slide along the floor. Overall, the movement, while not graceful, bore

some resemblance to a beginner dancer stumbling through this pattern. Again, better results can be

obtained if more effort is focused on controlling the kinetic energy and momentum of the figure, as well as

increasing the stiffness in the leg joints.

Chapter 8

Summary and Conclusions

_ __

This thesis has examined the issues involved with specifying and controlling dynamically produced

motion of an articulated figure. An animation system, structured according to a recently proposed hierarch-

ical motion control model, has been introduced to explore methods for efficiently entering complicated

movement commands and controlling the generated motion.

The system uses ballroom dancing as an example. Motion commands are specified using a subset of

an easy to use, high-level ballroom dance notation language. This notation language enables the animator

to specify both simple and complex movements, as well as assign each movement a time limit for comple-

tion. The system translates these motion commands into torques which are then applied to the figure’s

limbs by a set of motor programs organized in a hierarchical manner. These motor programs either move a

limb to a new position or maintain a limb at its current position. All torques are generated automatically,

thereby relieving the animator from guessing the magnitude and direction of the torques required for each

motion. Most torques are produced using muscle torque functions derived from biomechanics. Each

limb’s movement is controlled by performing interpolations along a quaternion curve defined for the limb.

These interpolations allow for the magnitude and direction of the torques to be adjusted while a motion is in

progress.

Unlike previous articulated figure animation systems, this new system interpolates limb orientations

using quaternion coordinates. Because the system uses dynamics, all limbs are rotated by applying torques

along the axis specified by the quaternion transforming the limb’s current orientation to its goal orientation.

Distance measurements between quaternions allow for the muscle torque function parameters to be adjusted

while motion is in progress.

Because quaternions are continuous for all orientations and do not suffer from gimbal lock,

96

97

quaternions have been found to be far superior for representing orientation and performing interpolations

than Euler angles. However, no efficient and easy method using quaternions is known for determining if a

limb’s orientation is within its natural range of movement.

Experimental results with simple and complex movements suggest this model is capable of produc-

ing realistic time-dependent dynamic motion sequences. Although many of the motion sequences fail to

appear very natural, in most cases the limbs either reach or nearly reach their goal position at the end of the

allotted time. However, many problems remain with the system.

First, the experimental results indicate further control of the figure’s motion is required. Additional

biomechanical knowledge needs to be incorporated within the low-level position motor programs to make

the generated movement appear more natural. Presently, one set of biomechanical torque functions is being

used for all movements. Additional functions need to be implemented to handle different types of move-

ment.

A more sophisticated feedback system needs to be implemented for the limbs whose active state is

move. These feedback systems should control not only the figure’s position, but also the amount of kinetic

energy and momentum present in each link. Long range planning algorithms should also be developed so

the system can obtain better estimates of the torques required for motion sequences requiring more than one

intermediate or final goal position.

Although the current implementation uses the same spring and damper constants for all links, this is

likely not a realistic configuration. Methods other than the trial and error technique now employed need to

be developed for automatically determining acceptable spring and damper constants for each link, as well

as for the floor. Further experiments should also be done with the balance process and floor model to

reduce the amount of sliding, especially at the conclusion of long animation sequences. A better integration

technique for solving the equations of motion should also be developed so the constant by which the

moments of inertia for each segment are artificially enlarged may be either reduced or completely elim-

inated. This artificial enlargement of each segment’s moments of inertia prevents the torque functions from

98

applying normal torque values to most movements.

While many of the above problems provide challenging topics for future research, other fertile

research areas include exploring the dynamic interaction between the figure and a dance partner, and

developing behavior models for animation sequences containing several dancers. Despite the problems

encountered with BDAS, animation systems based on dynamics continue to show great promise for improv-

ing the quality of articulated figure animation.

References

__

Alexander84a.R. M. Alexander, Walking and Running, American Scientist 72, (July-August 1984), 348-

354.

Alexander84b.R. M. Alexander, The Gaits of Bipedal and Quadrupedal Animals, The International Journal

of Robotics Research 3, 2 (Summer 1984), 49-59.

Altmann86.S. L. Altmann, Rotations, Quaternions, and Double Groups, Oxford University Press, New

York City, New York, 1986.

Armstrong85a.W. W. Armstrong and M. W. Green, The Dynamics of Articulated Rigid Bodies for Pur-

poses of Animation, Proceedings Graphics Interface ’85, May 1985, 407-415.

Armstrong85b.W. W. Armstrong and M. W. Green, The Dynamics of Articulated Rigid Bodies for Pur-

poses of Animation, The Visual Computer, December 1985, 231-240.

Armstrong86a.W. W. Armstrong, T. A. Marsland, M. Olafsson and J. Schaeffer, Solving Equations of

Motion on a Virtual Tree Machine, Technical Report TR86-11, Department of Computing Science

The University of Alberta, June 1986.

Armstrong86b.W. W. Armstrong, M. Green and R. Lake, Near-Real-Time Control of Human Figure

Models, Proceedings Graphics Interface ’86, May 1986, 147-151.

Armstrong87.W. W. Armstrong, M. Green and R. Lake, Near-Real-Time Control of Human Figure Models,

IEEE Computer Graphics and Applications, June 1987, 52-61.

Badler78.N. I. Badler, J. O’Rourke, S. W. Smoliar and L. Weber, The Simulation of Human Movement by

Computer, Movement Project Report No. 14, Department of Computer and Information Science

University of Pennsylvania, September 1978.

Badler87.N. I. Badler, K. H. Manoochehri and G. Walters, Articulated Figure Positioning by Multiple Con-

99

100

straints, IEEE Computer Graphics and Applications, June 1987, 28-38.

Baecker69.R. M. Baecker, Interactive Computer-Mediated Animation, Ph.D Thesis, Massachusetts Institute

of Technology, April 1969.

Bapu80.P. Bapu, S. Evans, P. Kitka, M. Korna and J. McDaniel, User’s Guide to Combiman Programs,

University of Dayton Research Institute, Dayton, Ohio, February, 1980.

Benesh56.R. Benesh and J. Benesh, An Introduction to Benesh Dance Notation, A. & C. Black Ltd., Lon-

don, England, 1956.

Blakeley80.F. M. Blakeley, CYBERMAN, Chrysler Corporation, Detroit, Michigan, June, 1980.

Brown76.M. Brown and S. Smoliar, A Graphics Editor for Labanotation, Computer Graphics 10, 2 (Sum-

mer 1976), 60-65.

Bruderlin89.A. Bruderlin and T. W. Calvert, Goal-Directed, Dynamic Animation of Human Walking, Com-

puter Graphics 23, 3 (July 1989), 233-242.

Cachola86.D. G. Cachola and G. F. Schrack, Modeling and Animating Three-Dimensional Articulated Fig-

ures, Proceedings Graphics Interface ’86, May 1986, 152-157.

Calvert78.T. W. Calvert and J. Chapman, Notation of Movement with Computer Assistance, ACM 78:

Proceedings, 1978 ACM Annual Conference 2, (December 1978), 731-736.

Calvert82.T. W. Calvert and A. Patla, Aspects of the Kinematic Simulation of Human Movement, IEEE

Computer Graphics and Applications, November 1982, 41-50.

Catmull78.E. Catmull, The Problems of Computer-Assisted Animation, Computer Graphics 12, 3 (August

1978), 348-353.

Chadwick89.J. Chadwick, D. Haumann and R. Parent, Layered Construction for Deformable Animated

Characters, Computer Graphics 23, 3 (July 1989), 243-252.

DiStefano76.J. J. DiStefano, A. R. Stubberud and I. J. Williams, Feedback and Control Systems, McGraw-

Hill, Inc., 1976.

101

Dooley82.M. Dooley, Anthropometric Modeling Programs - A Survey, IEEE Computer Graphics and

Applications, November 1982, 17-25.

Dransch86.D. O. K. Dransch, J. C. Beatty and R. S. Ryman, ChoreoScribe: A Graphics Editor to Describe

Body Position and Movement Using Benesh Movement Notation, Technical Report CS-86-48,

University of Waterloo Computer Science Department, October 1986.

Drewery86.K. Drewery and J. Tsotsos, Goal Directed Animation using English Motion Commands,

Proceedings Graphics Interface ’86, May 1986, 131-135.

Fetter82.W. A. Fetter, A Progression of Human Figures Simulated by Computer Graphics, IEEE Computer

Graphics and Applications, November 1982, 9-13.

Forsey88.D. R. Forsey and J. Wilhelms, Techniques for Interactive Manipulation of Articulated Bodies

Using Dynamic Analysis, Proceedings Graphics Interface ’88, June 1988, 8-15.

Fowles86.G. R. Fowles, Analytical Mechanics, Fourth Edition, Holt, Rinehart, and Winston, Inc., New

York City, New York, 1986.

Girard85.M. Girard and A. A. Maciejewski, Computational Modeling for the Computer Animation of

Legged Figures, Computer Graphics 19, 3 (July 1985), 263-270.

Girard87.M. Girard, Interactive Design of 3D Computer-Animated Legged Animal Motion, IEEE Com-

puter Graphics and Applications, June 1987, 39-51.

Goldstein59.H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Inc., Reading,

Massachusetts, 1959.

Green90.M. Green, Using Dynamics in Computer Animation: Control and Solution Issues, in Making Them

Move: Mechanics, Control and Animation of Articulated Figures, Morgan Kaufmann Publishers,

1990.

Grodins63.F. S. Grodins, Control Theory and Biological Systems, Columbia University Press, New York

City, New York, 1963.

102

Halliday74.D. Halliday and R. Resnick, Fundamentals of Physics, John Wiley and Sons, Inc., New York

City, New York, 1974.

Hanavan64.E. P. Hanavan, A Mathematical Model of the Human Body, Behavioral Sciences Laboratory,

Wright-Paterson Air Force Base, Ohio, 1964.

Hatze81.H. Hatze, Myocybernetic Control Models of Skeletal Muscle, University of South Africa, Pretoria,

South Africa, 1981.

Herbison-Evans82.D. Herbison-Evans, Computers and the Arts, Technical Report 191, Basser Department

of Computer Science, The University of Sydney, October 1982.

Herbison-Evans84a.D. Herbison-Evans, A Dancer Among Us, Technical Report 238, Basser Department of

Computer Science, The University of Sydney, May 1984.

Herbison-Evans84b.D. Herbison-Evans, Robots and Dancing, Technical Report 237, Basser Department of

Computer Science, The University of Sydney, May 1984.

Herbison-Evans85.D. Herbison-Evans, Dance and Computers, Technical Report CS-85-51, University of

Waterloo Computer Science Department, October 1985.

Herbison-Evans86.D. Herbison-Evans, Animation of the Human Figure, Technical Report CS-86-50,

University of Waterloo Computer Science Department, November 1986.

Herbison-Evans87.D. Herbison-Evans, Some Poly-Ellipsoid Figures, Technical Report 317, Basser Depart-

ment of Computer Science, The University of Sydney, December 1987.

Isaacs87.P. M. Isaacs and M. F. Cohen, Controlling Dynamic Simulation with Kinematic Constraints,

Behavior Functions, and Inverse Dynamics, Computer Graphics 21, 4 (July 1987), 215-224.

Kingsley81.E. C. Kingsley, N. A. Schofield and K. Case, SAMMIE - A Computer Aid for Man-Machine

Modeling, Computer Graphics 15, 3 (August 1981), 163-169.

Laban75.R. Laban, Principles of Dance and Movement Notation, MacDonald & Evans, London, England,

1975.

103

Lasseter87.J. Lasseter, Principles of Traditional Animation Applied to 3D Computer Animation, Computer

Graphics 21, 4 (July 1987), 35-43.

Lien84.S. Lien and J. T. Kajiya, A Symbolic Method for Calculating the Integral Properties of Arbitrary

Nonconvex Polyhedra, IEEE Computer Graphics and Applications, November 1984, 35-41.

Magnenat-Thalmann88.N. Magnenat-Thalmann, R. Laperriere and D. Thalmann, Joint-Dependent Local

Deformations for Hand Animation and Object Grasping, Proceedings Graphics Interface ’88, June

1988, 26-33.

McMahon84a.T. A. McMahon, Mechanics of Locomotion, The International Journal of Robotics Research

3, 2 (Summer 1984), 4-28.

McMahon84b.T. A. McMahon, Muscles, Reflexes, and Locomotion, Princeton University Press, Princeton,

New Jersey, 1984.

McNair82.B. G. McNair, D. Herbison-Evans and N. Neilands, Computer Assisted Choreography Teaching,

Technical Report 157, Basser Department of Computer Science, The University of Sydney, April

1982.

Milhorn66.H. T. Milhorn, The Application of Control Theory to Physiological Systems, W.B. Saunders

Company, Philadelphia, Pennsylvania, 1966.

Miura84.H. Miura and I. Shimoyama, Dynamic Walk of a Biped, The International Journal of Robotics

Research 3, 2 (Summer 1984), 60-74.

Muybridge55.E. Muybridge, The Human Figure in Motion, Dover Publications, New York City, New

York, 1955.

Parke82.F. I. Parke, Parameterized Models for Facial Animation, IEEE Computer Graphics and Applica-

tions, November 1982, 61-68.

Pearce86.A. Pearce, B. Wyvill, G. Wyvill and D. Hill, Speech and Expression: A Computer Solution to

Face Animation, Proceedings Graphics Interface ’86, May 1986, 136-140.

104

Platt81.S. Platt and N. Badler, Animating Facial Expressions, Computer Graphics 15, 3 (August 1981),

245-252.

Pletinckx89.D. Pletinckx, Quaternion Calculus as a Basic Tool in Computer Graphics, The Visual Com-

puter, January 1989, 2-13.

Politis82.G. Politis and D. Herbison-Evans, Computer Choreology Project at the University of Sydney,

Technical Report 204, Basser Department of Computer Science, The University of Sydney, April

1982.

Politis85.G. Politis and D. Herbison-Evans, A Computer Graphics Interpreter for Benesh Movement Nota-

tion, Technical Report 267, Basser Department of Computer Science, The University of Sydney, July

1985.

Politis86.G. Politis and D. Herbison-Evans, Computer Animation by Choreography, Technical Report 292,

Basser Department of Computer Science, The University of Sydney, September 1986.

Politis87.G. Politis, A Survey of Computers in Dance, Technical Report 311, Basser Department of Com-

puter Science, The University of Sydney, October 1987.

Reeves81.W. T. Reeves, Inbetweening for Computer Animation Utilizing Moving Point Constraints, Com-

puter Graphics 15, 3 (August 1981), 263-269.

Reynolds82.C. W. Reynolds, Computer Animation with Scripts and Actors, Computer Graphics 16, 3 (July

1982), 289-296.

Ridsdale86.G. Ridsdale, S. Hewitt and T. W. Calvert, The Interactive Specification of Human Animation,

Proceedings Graphics Interface ’86, May 1986, 121-130.

Romain79.E. Romain and F. Colby, Let’s Go Dancing, Octopus Books Limited, London, England, 1979.

Royce77.A. P. Royce, The Anthropology of Dance, Indiana University Press, Bloomington, Indiana, 1977.

Savage78.G. J. Savage and J. M. Officer, CHOREO: An Interactive Computer Model for Dance, Interna-

tional Journal of Man-Machine Studies 10, (1978), 1-18.

105

Sealey80.D. Sealey, NOTATE: Computerized Programs for Labanotation, Journal for the Anthropological

Study of Human Movement 1, 2 (Autumn 1980), 70-74.

Shoemake85.K. Shoemake, Animating Rotation with Quaternion Curves, Computer Graphics 19, 3 (July

1985), 245-254.

Singh83.B. Singh, J. Beatty, K. Booth and R. Ryman, A Graphics Editor for Benesh Movement Notation,

Computer Graphics 17, 3 (July 1983), 51-62.

Sturman84.D. Sturman, Interactive Keyframe Animation of 3-D Articulated Models, Proceedings Graphics

Interface ’84, May 1984, 35-40.

Thornhill-Geiger81.R. Thornhill-Geiger, Thirteen Ballroom Dances, National Council of Dance Teacher

Organizations, Inc., Richmond Hill, New York, 1981.

Waters87.K. Waters, A Muscle Model for Animating Three-Dimensional Facial Expression, Computer

Graphics 21, 4 (July 1987), 17-24.

Wilhelms85.J. Wilhelms, Graphical Simulation of the Motion of Articulated Bodies Such as Human and

Robots with Particular Emphasis on the Use of Dynamic Analysis, Ph.D Thesis, University of Cali-

fornia, Berkeley, July, 1985.

Wilhelms86.J. Wilhelms, Virya - A Motion Control Editor for Kinematic and Dynamic Animation,

Proceedings Graphics Interface ’86, May 1986, 141-146.

Wilhelms87.J. Wilhelms, Using Dynamic Analysis for Realistic Animation of Articulated Bodies, IEEE

Computer Graphics and Applications, June 1987, 12-27.

Willmert82.K. D. Willmert, Visualizing Human Body Motion Simulations, IEEE Computer Graphics and

Applications, November 1982, 35-38.

Wolofsky74.Z. Wolofsky, Computer Interpretation of Selected Labanotation Commands, M.Sc. Thesis,

Simon Fraser University, 1974.

Zeltzer82a.D. Zeltzer, Motor Control Techniques for Figure Animation, IEEE Computer Graphics and

106

Applications, November 1982, 53-59.

Zeltzer82b.D. Zeltzer, Representation of Complex Animated Figures, Proceedings Graphics Interface ’82,

May 1982, 205-211.

