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ABSTRACT

Dynamics is becoming an increasingly popular
method for producing realistic animation. While the
motion of simple objects such as blocks and spheres is
easily controlled using this technique, applying dynam-
ics to articulated figures such as humans presents two
major difficulties. The first is specifying the motion in a
language familiar to the animator. Animators want to
work with a natural motion language rather than directly
entering the forces and torques required to produce a
particular motion. The onus should be on the animation
system to translate these high-level motion commands
into the necessary series of forces and torques. The
second issue involves controlling the figure’s motion.
What magnitude and combination of force and torque is
required to execute a specific motion within a fixed time
interval?

A new animation system, designed to dynamically
control articulated figure motion by performing interpo-
lations along quaternion curves, is presented. The sys-
tem uses ballroom dancing as an example. Motion
sequences are entered using an easy to learn, high-level,
ballroom dance notation language. The system decom-
poses these motion sequences into series of primitive
movements and activates a motion control model to exe-
cute each movement within an animator-specified time
interval.

1. Introduction

One of the more challenging problems in com-
puter graphics is the realistic modeling and animation of
a human figure. The human body is an immensely com-
plex figure containing over 200 bones and several hun-
dred degrees of freedom. A human figure is capable in
moving in such a multitude of ways that scientists are
still learning how to define and measure movement.
Because human movement is a familiar activity, people
are well-trained to distinguish realistic from unnatural
movement. Computer-generated animation sequences

of human motion must therefore meet a very high stan-
dard to be acceptable.

The recent emergence of animation systems based
on dynamics has shown great promise for improving the
quality of human figure animation. Unlike previous
systems which produce motion purely as a function of
position or velocity, dynamics accounts for the forces
and torques producing the motion. Thus, an animated
figure can react to its environment in a natural manner
that requires minimal effort by the animator.

The animation of human figures produces
interesting problems often not found with animation
systems handling simpler classes of objects. How can a
complicated movement sequence be defined using
minimal effort and a language familiar to the animator?
How can the simultaneous movement of the various
limbs of the human figure be controlled to produce a
realistic motion sequence? In the case of dynamics,
motion at the lowest level must be specified in terms of
forces and torques. Most animators have little intuitive
feel for the magnitude and direction required for these
terms to produce a desired motion. Ideally, a
dynamically-based human figure animation system
should translate motion commands in a high level
description into a lower level form which produces the
forces and torques applied to the figure. The issues of
controlling and coordinating the movement of the
figure’s limbs should be handled by the animation sys-
tem rather than by the animator.

This paper presents a new dynamically-based
motion system designed to produce realistic and con-
trolled human motion using motion sequences found in
ballroom dancing. All movement sequences are derived
from movement commands specified using an easy to
learn ballroom dance notation language. These move-
ment commands are translated by the system and fed as
input into a motion control model responsible for apply-
ing the forces and torques necessary to produce the
specified motion.
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2. Articulated Figure Animation Systems

Most articulated figure animation systems pro-
duced within the past decade have been based on either
kinematics or dynamics. Kinematic systems produce
motion through the specification of velocities and
accelerations acting on the figure’s limbs. Position is
then calculated as a function of time.

In 1982, David Zeltzer produced a kinematic
description of a walking skeleton by breaking complex
motion sequences into a series of primitive movements
[Zeltzer82]. These movements were handled by a set of
Local Motor Programs (LMPs), each responsible for
manipulating a fixed collection of joints. The overall
control of the motion generated by the LMPs was han-
dled on a higher level. Zeltzer used a set of 8 LMPs to
produce a walking skeleton model.

Dynamic systems produce motion by applying
forces and torques to the figure. The equations of
motion are then solved to obtain the acceleration, velo-
city, and position of each joint.

One of the first major systems using dynamic
analysis of human motion was Deva, presented in 1985
by Jane Wilhelms [Wilhelms85] [Wilhelms86]
[Wilhelms87]. This system generated dynamic motion
based on a set of torque functions defined by the anima-
tor for each degree of freedom using the associated
motion editor Virya. The primary problem with Deva
was that the method used for solving the dynamic equa-
tions increased quadratically in complexity with respect
to the number of degrees of freedom in the human fig-
ure. By using a linear recursive formulation for the
equations [Armstrong85], Wilhelms and Forsey later
produced a dynamic system called Manikin which pro-
vided interactive manipulation of an articulated figure
[Forsey88].

In 1987, Armstrong et al. [Armstrong87]
presented a system producing near real time dynamic
motion by executing a set of motion processes on each
of the figure’s limbs. This system was useful for
exploring the effects of torques applied to the figure, but
could not be easily used for generating complicated ani-
mation sequences. Also in 1987, Isaacs and Cohen
described their system which produced dynamic motion
using behavior functions and kinematic constraints
[Isaacs87]. When necessary, this system imposed con-
straints on the dynamic equations to produce a desired
motion. Recently, a hybrid walking model which uses
dynamics to obtain the general motion and then applies
kinematic cosmetic improvements was discussed by
Bruderlin and Calvert [Bruderlin89].

The work presented here is a continuation of the
ground work laid by Armstrong et al. All motion gen-
erated by the new model is strictly dynamically

produced and no kinematic constraints are imposed on
the dynamics equations.

3. Quaternions

Most traditional three-dimensional animation sys-
tems express orientations in terms of combinations of
rotations about a frame’s X, Y, and Z axis. These three
rotational parameters are known as the Euler angles of
the rotation. While most people are familiar with Euler
angles, some orientations defined by Euler angles can
become undetermined. Occasionally a condition called
gimbal lock results - the loss of one rotational degree of
freedom when two rotation axes are superimposed on
each other.

A better and more general method for expressing
orientations and rotations is obtained by using a set of
four-dimensional numbers called quaternions. Quatern-
ions, discovered in 1843 by Sir William Rowan Hamil-
ton, are an extension to complex numbers and consist of
one scalar component and three vector components.
These numbers may be expressed in the form [λ , Λ]
with λ representing the scalar and Λ the vector com-
ponent.

Leonhard Euler proved in 1752 that any three
dimensional orientation can be expressed as a single
rotation by θ degrees about an axis defined by a unit
vector n from a reference position. Using spherical tri-
gonometry, a quaternion describing this rotation can be
derived with the scalar part, λ, equal to cos (θ/2 ) , and
the vector part, Λ = (λ x ,λ y ,λ z ), equal to the unit vec-
tor n multiplied by sin (θ/2 ) [Altmann86]. Note an
orientation defined by such a quaternion [λ , Λ] is ident-
ical to the one defined by [ − λ , − Λ].

Quaternions form a commutative group under
addition and a non-commutative group under multipli-
cation. Addition of quaternions is performed by adding
the corresponding scalar to scalar and vector to vector
components of the quaternions:

[λ 1 , Λ 1 ] + [λ 2 , Λ 2 ] = [λ 1 + λ 2 , Λ 1 + Λ 2 ] .

The rule for multiplying two quaternions requires
several operations involving scalar multiplications,
inner dot products, and outer cross products of the vec-
tor components:

[λ 1 , Λ 1 ] [λ 2 , Λ 2 ] = [λ 1 λ 2 − Λ 1
.Λ 2 , λ 1 Λ 2 + λ 2 Λ 1 + Λ 1 × Λ 2 ].

The conjugate of a quaternion [λ , Λ] is the
quaternion [λ , − Λ]. Multiplying a quaternion by its
conjugate gives:

[λ , Λ] [λ , − Λ] = [λ λ + Λ .Λ , 0] = λ2 +  Λ 2 .
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The square root of this value is the norm of the quatern-
ion [λ , Λ] and is denoted by  [λ , Λ] . The procedure
for calculating the norm of a quaternion can be applied
to determine the distance between two quaternions:

d( [λ 1 , Λ 1 ] , [λ 2 , Λ 2 ] ) =  [λ 1 − λ 2 , Λ 1 − Λ 2 ] .

A quaternion whose norm is equal to 1 is called a
normalized quaternion. The components of such
quaternions contain the previously described rotation
angle and rotation axis used to obtain an orientation
from an inertial frame. Normalized quaternions form a
sub-group of the quaternion group and provide a
homomorphic mapping to the group of real orthogonal
3×3 (rotation) matrices with determinant + 1. This
mapping can be made isomorphic by standardizing the
quaternions so either λ is greater than zero, or if λ is
equal to zero, Λ points in the direction of the positive
hemisphere of the unit sphere.

The inverse of a quaternion [λ , Λ] is the quatern-
ion:

[λ , Λ] − 1 =
 [λ , Λ] 2

[λ , − Λ]_ _________

provided, of course, [λ , Λ] is not the null quaternion.
Thus, any quaternion other than the null quaternion has
an inverse. Like rotation matrices, quaternions have left
and right inverses.

Shoemake [Shoemake85] gives simple algorithms
for converting between Euler angles and quaternions,
and between rotation matrices and quaternions.

4. The Structure of Ballroom Dances

Ballroom dancing provides an interesting chal-
lenge to human figure animation. The patterns and
dances that define ballroom dancing provide a rich
repertoire of human motion and include motion found in
normal activities (such as walking) as well as motion
suited for artistic purposes (such as swirls and body
dips). Unlike many other dances, ballroom dancing
requires close interaction with a partner. Every motion
sequence is decided by the male partner through a pro-
cess called leading. The female partner is responsible
for correctly interpreting the leads given by the male.
This can produce interesting synchronization problems
between the two partners.

All ballroom dance motions are classified into
general categories known as dances. The complete set
of ballroom dances constitute a wide range of human
figure movements and styles. All dances have individual
characteristics defined by factors such as the tempo and
timing of the music, the procedure used to step down on
a foot, and movement required among selected body

parts.

Each dance can be divided into a set of motion
sequences called patterns. A pattern consists of a well-
defined movement which usually requires between 2 to
10 seconds to execute. Commonly occurring patterns
are given names to aid with identification of the move-
ment sequence. A ballroom dance performance is usu-
ally composed of the sequential execution of patterns.

All ballroom dance patterns may be decomposed
into a sequence of positions. A position defines the
location and orientation of the body after a specified
time interval (commonly referred to as a step). Nearly
all patterns are composed of the transitions between five
fundamental positions. Although the orientation of one
or more limbs may vary slightly from pattern to pattern,
the general limb and body orientations defining each
position remain essentially invariant.

A divide and conquer approach is applied towards
developing a ballroom dance animation model. Rather
than generating animation starting at the dance and pat-
tern level, a set of motion processes are developed at the
lowest level to produce the transitions from one funda-
mental position to the next. Once these motion
processes have been developed and debugged, algo-
rithms can then be constructed to produce pattern and
dance animation by sequentially executing combinations
of these transitions. This can result in the generation of
a wide and interesting range of human motion.

5. The Ballroom Dance Animation System

The Ballroom Dance Animation System (BDAS)
is designed to produce dynamically controlled motion
from an easy to learn ballroom dance notation language.
The current implementation of BDAS consists of four
components divided into two levels (Figure 5.1). The
Top Level allows the animator to switch between three
modules composing the Lower Level. Modules in the
Lower Level define the components required to generate
ballroom dance animation.

Dances and patterns are created and modified
using the Dance Library and Pattern Editor. This editor
consists of a menu-driven, one-button mouse user inter-
face. The animator creates and modifies dance patterns
by selecting symbols representing a subset of a ballroom
dance notation language found in manuals published by
the National Council of Dance Teacher Organizations,
Inc. (NCDTO) [Thornhill-Geiger81]. These symbols
define various movements and timings which compose a
pattern.

A pattern is represented in a grid. The rows of the
grid correspond to body part descriptions, such as the
position of the head after each step, and step timings,
such as the number of beats required to execute the step.
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Gesture
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Dynamics
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Figure 5.1 Software Architecture

Each column defines a body orientation reached during
a specified time interval. The number of columns in the
grid correspond to the number of steps in the pattern and
all patterns are executed by performing the column-
defined steps in a left to right order.

The Gesture Editor is used to assign a positional
meaning for the dance notation symbols defined in the
Dance Library and Pattern Editor. The human figure
goal position associated with a body symbol is set by
having the animator interactively manipulate in three
dimensions the limbs of a human figure display model.
The model consists of 16 limbs (head, neck, upper and
lower torso, upper and lower arm, hand, upper and
lower leg, and foot) with all limbs covered by four or
six polygons. Each polygon is color-coded to aid iden-
tification of the side. A goal position for a step is con-
structed by merging the body orientations associated
with the symbols contained in the rows of the pattern
defining Head Position, Body Modifier, Foot Position,
and Footwork. These categories correspond to the posi-
tion of the head and arms, upper and lower body, legs,
and feet.

The figure is represented internally by a tree-like
structure with nodes and arcs corresponding to links and
joints. The root of the tree is attached to the upper
body. Each segment has its own local right-handed
coordinate system with the origin set to the proximal
hinge of the segment (the point where the segment con-
nects to its parent). A limb’s orientation is obtained by
first applying roll (a rotation about the frame’s Z axis),
then yaw (a rotation about the rotated Y axis), and
finally pitch (a rotation about the doubly rotated X axis).
All three rotational parameters may be interactively set
for each frame by the animator. In addition to the local
frames, an inertial frame is used to define the position of
the figure with respect to the environment.

Animation sequences are generated within the
Dynamics Module. This module reads and interprets an
animator selected dance pattern, executes the motion

processes governing the dancer’s motion, oversees the
dynamics computations generating the actual motion,
and updates the new figure positions within a large win-
dow on the screen. Parameters such as the downward
acceleration of gravity, floor elasticity, limb stiffness,
tempo of movement, and motion duration may be set by
the animator prior to starting the computations.
Throughout the pattern the current step is displayed in a
smaller window along with the elapsed time of the ani-
mation sequence. Updates to the screen occur every 0.1
seconds of simulated time. At the conclusion of the pat-
tern, all previously displayed frames may be played
back either in succession or one frame at a time.

The Dynamics Module uses the equations of
motion for articulated rigid bodies described by
Armstrong and Green [Armstrong85] and solves them
using their recursive linear method. Prior to starting the
dynamics computations, physical properties for each
segment composing the human figure model are set
using data from anthropometric studies of human fig-
ures [Hanavan64] and data derived mathematically
[Lien84]. These properties include scalar, vector, and
matrix quantities giving the length, mass, center of
mass, and moment of inertia for each segment.

The human figure moves in an environment con-
sisting of an infinitely long dance floor. No provision is
made for collision detection between two or more limbs.
Thus, under certain circumstances (such as when the
figure falls onto the floor or interpolates a step
incorrectly) limbs can freely pass through each other.

Throughout the dynamics computations, the
Dynamics Module makes two important procedure calls.
The first procedure models the dance floor and main-
tains the figure on the floor. This procedure generates
upward restorative forces to prevent the figure from fal-
ling through the floor and simulates ground-based hor-
izontal frictional forces. The second procedure activates
the motor control model, discussed in the next section.

6. Motor Control

Motor control is implemented in BDAS using the
multi-level structure shown in Figure 6.1. This
hierarchical structure is similar to the skeletal control
model used by Zeltzer [Zeltzer82] in his studies of
human gait. The upper levels, which function near the
animator level, transform a series of high-level task
descriptions (such as dance patterns) into a sequence of
low-level primitive movements. The lower levels con-
sist of biological motor programs responsible for exe-
cuting small, well-defined primitive movements. All
low-level motor programs operate under the control and
supervision of the upper levels.
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Figure 6.1 Motor Control Structure

The task manager oversees the execution of each
dance pattern and is called each time a new step is exe-
cuted. This virtual process receives a pattern specified
by the animator and decomposes it into a series of steps.
All steps are placed into a step queue for sequential exe-
cution by the lower levels of the model. At the comple-
tion of each step, the next step is removed from the
queue and information is extracted describing the time
required to complete the step and the final body position
and orientation. Next, the Euler angles defining each
segment’s goal orientation with respect to its parent are
converted into a goal quaternion. Finally, the link’s
motion state is determined by measuring the distance
between the goal quaternion and the quaternion giving
the link’s current orientation with respect to its parent.

A limb may be in one of three motion states.
Free swing is a null state where all internal torques are
set to zero. This state allows a limb to move freely
without motion constraints. Move results in the

application of torques to move the limb as smoothly as
possible from its current position to the new goal posi-
tion within the specified time limit. Maintain attempts
to hold a link at its current angular position with respect
to its parent. Links in this state have relatively strong
restorative torques applied whenever the link deviates
from its maintained position. Maintaining a link’s posi-
tion by implementing a firm clamp on the link is not the
best solution for two reasons. First, from a biological
point of view, this results in unnatural motion. Most
limbs react to sudden external forces by "giving" a bit
before moving back to their normal position. A limb
should move out of its maintained position if a strong
enough external force is applied. Second, a clamp adds
a constraint to the dynamics equations that would
require their reformulation.

Unless a link is explicitly set to free swing, links
whose quaternion distance exceeds a system-set ε have
their motion state set to move. Otherwise, all links
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whose quaternion distance is less than ε have their state
set to maintain.

Based on the number of beats per second and the
number of beats required to perform the step, the task
manager calculates the time necessary to complete the
step and initializes a timer for each link whose state has
been set to move. All timers contain information giving
the time the movement was initiated, the length of time
required to complete the movement, and the time an
interrupt alarm will go off. These interrupt alarms are
used by the body controller to synchronize the motion of
the moving limbs.

When the task manager has finished setting the
states, goal positions, and timers for each link, control is
passed to the body controller. The body controller
activates and supervises the execution of the motor pro-
grams required to perform each step. In contrast to the
task manager being executed once at the beginning of
each step, this module is executed many times during
the step.

During its execution cycle, the body controller
receives the rotation matrices describing the current
position of each link marked move. These matrices are
converted to normalized quaternions and the distance
between each link’s current position quaternion and its
goal position quaternion is computed. If the distance
between these two quaternions is less than ε, the body
controller changes the state of the limb to maintain.
This module then services all pending timer interrupts
for the limbs marked move. Each limb’s interrupt
handler compares the current position of the limb to its
goal position. Adjustments are made to the limb’s
torque generating function if the limb’s movement has
been lagging or leading relative to where it should be
since the movement began (the criteria for deciding
where a limb should be at a given time is described in
Section 8). The timer is then reset to produce an another
interrupt after the completion of a fixed time interval.
After servicing of all timer interrupts, the body con-
troller initiates human figure movement by executing a
series of low-level motor programs.

7. Low-Level Motor Programs

The human figure is driven by three types of
low-level motor control programs. General limb motor
programs act on the limb according to the state of the
limb. Position motor programs apply time-dependent
internal torques to assist moving the limbs to the goal
position defined for a specific dance position.
Autonomic motor programs simulate functions humans
perform either subconsciously or automatically.

7.1. General Limb Motor Programs

Every link is attached to a set of general limb
motor programs. This motor program set consists of
three motion processes - free swing, move limb, and
maintain limb. Every link has one motor program from
its set active at all times. The active program is deter-
mined from the current motion state of the limb.

7.1.1. Free Swing Motor Program

The free swing motor program is a null process
which removes all internal torques from the link, thus
allowing the limb to move freely without any motion
constraints.

7.1.2. Move Limb Motor Program

The move limb motor program attempts to move
the limb as smoothly as possible from its current posi-
tion to the goal position within the specified time limit
by applying a series of internal torques.

Prior to assigning an internal torque to the limb, a
transformation quaternion is calculated based on the
quaternions giving the limb’s current orientation and
goal orientation. Let [λ c , Λ c ], [λ g , Λ g ], and [λ t , Λ t ]
define quaternions representing the current orientation,
goal orientation, and transformation from the current to
goal orientation. The transformation quaternion is com-
puted by first calculating the minimum distance from
the current orientation to the goal orientation:

d( [λ c , Λ c ] , [λ g , Λ g ] ) =

min (d( [λ c , Λ c ] , [ + λ g , + Λ g ] ) , d( [λ c , Λ c ] , [ − λ g , − Λ g ] ) ) .

Both [ + λ g , + Λ g ] and [ − λ g , − Λ g ] must be con-
sidered because these two quaternions represent the
same orientation. [λ g , Λ g ] is then set to the closest
goal quaternion. [λ t , Λ t ] is computed from the follow-
ing equation:

[λ t , Λ t ] = [λ c , Λ c ] − 1 [λ g , Λ g ] .

[λ t , Λ t ] gives the least amount of rotation and the axis
of rotation required to reach the orientation defined by
the goal quaternion from the orientation defined by the
current quaternion. Let n t represent the normalized
vector pointing along the rotation axis specified by Λ t .

The internal torques applied to the link are com-
puted using functions obtained from biomechanical stu-
dies on muscle contraction. The functions are similar to
formulas used to express the force acting across parallel
elastic muscle elements [Hatze81]:

τ tot = τ s − τ d

where
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τ s = α (eβ δ − 1 )

and

τ d = γ ω .

τ s and τ d are non-linear springs and linear
dampers consisting of five parameters. α, β, and γ are
constants set by the animator or animation system. δ is
the quaternion distance between the current position and
the goal position. ω is the angular velocity of the link
(with respect to its parent). Assigning α and β from the
domain of non-negative real numbers produces a family
of exponential curves for τ s , all of which have value
zero when δ is equal to zero. α serves as a scalar multi-
plier and β controls the shape of the curve. These func-
tions are used empirically to obtain reasonable torque
values for a given motion; no effort is made to model
actual muscle contraction.

The principal axes for each frame are used when
evaluating the torque functions. For each axis i, α i is
determined by:

α i = I ii * n i * Movespring *
Movetime2

1_ _________ .

I ii is the moment of inertia value for the link along axis
i, n i is the component of the normalized vector n t point-
ing along axis i, Movespring is a constant set by the ani-
mator, and Movetime is the amount of time required to
perform the movement.

All three axes use the same value for β. γ i is cal-
culated from:

γ i = I ii * Movedamper

where Movedamper is a constant set by the animator.
This value is multiplied by ω i to obtain the retarding
frictional torque τ d acting along the principal axis. Both
γ and the previously computed value of α depend upon
the rotational inertia I of the link. This allows torque
values with similar constants to have similar effects on
each of the principal axes.

In addition to calculating τ s and τ d for each prin-
cipal axis, a gravitational torque term is applied to τ tot .
This term is determined by converting the vector giving
the downward acceleration due to gravity from the iner-
tial frame to the frame of the link. The vector com-
ponents resulting from the cross product of the link’s
center of mass vector with the converted gravitational
force vector are then subtracted from τ tot . This gravita-
tional term is necessary because the torque function
would otherwise be unable to move a limb against grav-
ity to its goal position. Movement would stop at the
point where the upward torque generated by τ tot

matched the downward torque applied by gravity.

A vector sum of the components of τ tot acting
along each of the principal axes produces a torque point-
ing in the direction of n t (the axis of rotation transform-
ing the current quaternion to the goal quaternion)
operating along an axis of rotation specified by λ t .
These internal torques perform a spherical interpolation
of the shortest great circle arc between the current
quaternion and the goal quaternion.

One problem with this interpolation method is
that some great circle arcs may contain orientations out-
side the rotation range of normal human limbs. How-
ever, if the shortest natural arc or series of arcs giving
the shortest natural path can be found, Bezier curves can
be constructed and spliced together to form a smooth
interpolation path [Shoemake85]. In this case, the inter-
polation method consists of reaching a series of inter-
mediate goal quaternions along these curves. The main
difficulty with this method is finding a satisfactory and
efficient means of detecting if a quaternion is outside
the limit of the limb’s rotational range. This problem is
ignored by BDAS since the shortest great circle arc
between two positions is nearly always within the range
of natural movement.

7.1.3. Maintain Limb Motor Program

The maintain limb motor program attempts to
maintain the limb at the angular position (with respect to
its parent) specified by its goal quaternion. This motor
program operates similarly to the move limb process,
except α and γ depend on the animator specified values
Mainspring and Maindamper, β is set to a value higher
than its move limb counterpart, and interrupt alarms are
not used.

7.2. Position Motor Programs

The second class of motor programs driving the
figure are position motion processes. These processes
help the general limb motor programs move the human
figure to a specific dance position. Position motor pro-
grams are attached to dance positions, and not all dance
positions have these motor programs. Unlike the gen-
eral limb motor programs, these processes are capable
of simultaneously acting on more than one body part.
Furthermore, the entire human figure has access to only
one set of position motor programs rather than one set
per limb.

Position motor programs operate by application of
internal torques on the body during specific time inter-
vals. Because the length of time required to perform a
step depends on the tempo of the music, time intervals
are expressed as percentage intervals of the step rather
than in seconds. These motor programs may change the
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state of one or more limbs during their execution.

Position motor programs apply torques to the
limbs by executing a set of limb specific motor pro-
grams. Limb specific processes form a pool of primi-
tive motion functions available to all position motor
programs. Each limb specific motor program applies a
specific internal torque to a particular body limb. These
motor programs are responsible for performing such
actions as making the human figure move in a particular
direction or temporarily raising a leg off the ground.

7.3. Autonomic Motor Programs

Autonomic motor programs simulate functions
humans perform either subconsciously or automatically.
These processes generally operate independently of the
dance related motion sequence. Although autonomic
motor programs operate at all times while dance patterns
are being processed, they can be temporarily deactivated
by position motor programs. Currently the only auto-
nomic motor program implemented is balance.

Balance is based on a comparison between the
vertical orientation of the upper body to a general
upright orientation. A restorative torque, whose magni-
tude is dependent upon the vector distance between
these two orientations, is applied to the upper body
whenever the distance is non-zero. Setting an upper
limit on the magnitude of this restorative torque allows
for gravitational torques to cause the body to fall over
whenever the displacement exceeds a certain limit (typi-
cally a distance representing about 20 degrees from an
upright position). The figure is made to stand upright
by applying stiffness to the lower body, legs, and feet.
Most of this stiffness occurs in the form of the internal
torques generated from setting the motion state of these
limbs to maintain.

While this procedure has generally been satisfac-
tory for ballroom dancing (since most patterns require
an upright upper body orientation), it is not satisfactory
for motion in general. Different types of motions (such
as diving or bending over) require different types of bal-
ance. A more realistic model of balance should account
for the limbs which contact the ground and the distribu-
tion of mass over those limbs.

8. Low-Level Motor Control

Low-level motion control is performed during
each step by assigning a simple feedback system to each
limb marked move. These feedback systems perform
spherical interpolations along the shortest great circle
arc connecting the quaternion defining the starting
orientation and the quaternion defining the goal orienta-
tion. All feedback systems are activated simultaneously
and at least 10 times (at equal intervals) while a goal

position is approached.

Let [λ s , Λ s ] and [λ g , Λ g ] denote these two
quaternions and let [λ t , Λ t ] denote an interpolation
quaternion located at position u along the
( [λ s , Λ s ] , [λ g , Λ g ] ) shortest great circle arc. The
domain of u includes all real numbers between 0 and 1
and u = f (t) for an arbitrary function f. The following
formula from four dimensional geometry provides a
spherical linear interpolation along the
( [λ s , Λ s ] , [λ g , Λ g ] ) arc [Pletinckx89]:

[λ t , Λ t ] =
sinθ

sin ( 1 − u) θ_ _________ [λ s , Λ s ] +
sinθ

sinuθ_ _____ [λ g , Λ g ]

where [λ s , Λ s ] .[λ g , Λ g ] = cosθ. Combining the
relationship u = f (t) (where t is the elapsed time
expressed as a percentage interval of the step) with this
formula allows intermediate orientations to be expressed
as a function of time.

f is any increasing function satisfying the restric-
tions f ( 0 ) = 0, f (allocated_time) = 1, and
0 ≤ f (t) ≤ 1. Since time versus position plots of many
simple motion sequences, such as raising an arm, pro-
duce curves resembling the distribution curve of the
standard normal function, BDAS uses the latter as the
curve expressing the desired intermediate orientations as
a function of time. A more general method for approxi-
mating these and other motion curve shapes requires the
construction of spline curves.

Each limb’s feedback system monitors the
amount of torque applied to the limb based on the
limb’s current position. At the start of execution, a
feedback system’s error detector is fed two input signals
in the form of the current quaternion [λ c , Λ c ] and an
interpolation quaternion [λ t , Λ t ] (representing the
desired orientation at time t). An error signal β e is gen-
erated by measuring the current quaternion distance
from the goal against the interpolated quaternion dis-
tance from the goal:

β e = d( [λ c , Λ c ] , [λ g , Λ g ] ) − d( [λ t , Λ t ] , [λ g , Λ g ] ) .

The error signal is calculated using the above
expression instead of measuring the distance between
[λ c , Λ c ] and [λ t , Λ t ] because external disturbances
may cause the limb to deviate from the
( [λ s , Λ s ] , [λ g , Λ g ] ) great circle arc.

This error signal is then used by the limb’s torque
controller to regulate the amount of internal torque
applied to the limb by adjusting the β parameter of the
limb torque generating function:

β = max (β + β e , 0 ) .
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A positive value for β e produces an increase in
the magnitude of the generated torques and a negative
value results in either a decrease in the torque magni-
tude, or the magnitude remaining at zero. At the begin-
ning of each step, all limbs whose state is set to move
are assigned a β value of nearly zero to allow the
torques to increase in a natural manner, thereby reduc-
ing the likelihood of a large displacement occurring
between [λ c , Λ c ] and [λ t , Λ t ].

The Dynamics Module receives the new internal
torques and disturbances in the form of external torques
and forces acting on the limb. At the conclusion of the
dynamics computations the limb’s new orientation is fed
back to the error detector.

Interpolations along the ( [λ s , Λ s ] , [λ g , Λ g ] )
great circle arc are used primarily for regulating the
application of internal torques required to move
[λ c , Λ c ] to [λ g , Λ g ]. This arc is also used for deter-
mining the magnitude and direction of the initial inter-
nal torques applied at the beginning of each step.
Because external forces and torques may displace
[λ c , Λ c ] from the ( [λ s , Λ s ] , [λ g , Λ g ] ) arc during
the progression of the step, all subsequent internal
torques are applied to move [λ c , Λ c ] along the
( [λ c , Λ c ] , [λ g , Λ g ] ) arc.

9. Experimental Results

One of the major difficulties encountered with
BDAS has been finding stable values for the spring and
damper constants governing the motion of the limbs.
Most values result in limb oscillations which cause the
numerical instabilities in the integration routines to des-
troy the simulation. This problem was addressed by
using trial and error to find a reasonably stable set of
values, and by increasing the moments of inertia for
each link by a factor of 300.

The first experiment tested the general limb motor
programs by having the figure perform a simple arm
reach to dance position. Figure 9.1 shows the animation
sequence generated when the figure is given two
seconds to reach this position. All limbs with the excep-
tion of the upper arms, lower arms, and hands are set to
maintain. The remaining limbs are initially marked
move and allowed to change to maintain once they reach
their goal position. During the motion sequence, the
balance process operates to maintain an upright position
for the figure. The motion to reach the final position
progresses smoothly and appears quite natural. Similar
results are obtained when the figure is given 1, 3, and 4
seconds to reach this position.

The next experiment tested a position motion pro-
cess by having the figure take a single step forward in
one second. As much as possible, this motion process

applies torques based on biomechanical studies of
human gait [McMahon84].

At the beginning of the gait cycle, the motion pro-
cess temporarily disactivates the figure’s balance and
applies a small internal torque to the upper body to
make the figure fall slightly forward. While the figure
is falling forward, added torque is applied to the foot of
the support leg to release weight from the swing leg.
This torque is applied to make the support foot press
into the ground, thereby raising the ankle of the leg and
freeing the swing leg. Pressing the foot into the ground
also helps anchor the support leg, thus reducing slip-
page. The swing leg is then swung forward with aid of
the move motion process. Once the leg is swinging for-
ward, the balance process is reactivated to prevent the
figure from falling over. The forward step motor pro-
gram is then deactivated and the general limb motor
programs complete the gait cycle.

The animation sequence generated by this motion
process is shown in Figure 9.2. The motion appears
fairly natural, although a slight unnatural bend occurs in
the support leg while the figure is falling forward. This
can be rectified by increasing the stiffness assigned to
the figure’s joints. Near the end of the cycle, the torque
functions draw the legs in slightly faster than is desired.
Some horizontal slippage also occurs during the step.

This experiment was extended by having the fig-
ure take 12 consecutive forward steps. Throughout the
walk, the figure managed to maintain a relatively good
position although some steps showed more slippage
than others.

The time limit was later increased to 2 seconds
per step. Although the figure was capable of taking a
step forward within this time interval, more horizontal
foot slippage occurred with this slower rate. Attempts
to make the figure take 12 steps forward met with only
partial success because the figure’s increasing momen-
tum tended to make control of its motion more difficult.

Motion processes producing a functional back
step and side step have also been developed for the one
step per second frequency. These processes, however,
are not yet as well debugged as the process for the for-
ward step. Results from limited experiments involving
combinations of these steps suggest more control needs
to be applied to the figure’s motion (directed especially
towards its momentum). A better ground model also
needs to be implemented because of the large amount of
horizontal slippage that occurs during these sequences.
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0.0 0.2 0.4 0.6 0.8 1.0

1.2 1.4 1.6 1.8 2.0

Figure 9.1 Reaching Dance Position in 2 Seconds

0.0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1.0

Figure 9.2 Forward Step in 1 Second
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10. Conclusions

This paper has presented an animation system
designed to dynamically control the motion of an articu-
lated figure by performing interpolations along quatern-
ion curves. All motion sequences are entered using an
easy to use, high-level ballroom dance notation
language. These motion commands are subsequently
translated into forces and torques which are applied to
the limbs using by a set of motor programs organized in
a hierarchical structure.

Initial results, while encouraging, suggest further
control of the figure’s motion is required. Improvement
in the motion can likely be obtained by applying more
biomechanical knowledge as well as additional control
theory. While the current implementation uses the same
spring and damper constants for each link, this is likely
not a realistic configuration. Methods need to be
explored for automatically determining acceptable
values for each link. A better integration technique
needs to be developed for solving the equations so as to
reduce the constant by which the moments of inertia for
each segment are artificially enlarged.
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