
GARD: A UNIFORM INTERFACE TO SYSTEM RESOURCES

Rob Lake
Allan Christie
Gord Urquhart
Dale Hagglund

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada

ABSTRACT

Conventional operating systems have several types of resources (e.g. files, devices,
processes, memory, etc.) which the user accesses. The set of operations performed on a
resource usually differs for each type and, consequently, the user must know the type of
resource being used. Ideally, it is desirable to have all these resources handled in a uni-
form manner.

This paper introduces a capability-based system called GARD which attempts to
remove this user level distinction of resources. We present a uniform user interface
which allows the user to have minimal knowledge of system resources. This is followed
by a description of how the kernel handles the wide variety of resources present within
the system.

KEYWORDS: capability, object, primitive operation, uniform interface.

1. Introduction

What is the difference between a file and
virtual memory? Conventional operating systems
emphasize the distinctions between these and
other resources, and make little attempt to hide
these differences from the user. Conceptually,
files and virtual memory may be regarded at the
user level as being identical resources, since both
are used for storing data. We believe these differ-
ences should be minimized at the user level so
that users need not be aware of the idiosyncrasies
of the various resources. Furthermore, users
should be equipped with only one set of opera-
tions to handle all resources.

While some attempt has been made by
newer systems to provide a uniform interface to
resources, most do not carry this concept far
enough. Users are still required to have some
knowledge about the resource (and consequently,
the set of operations) being used. A different
interface is needed to allow the user to have

minimum knowledge about the resource type,
know only about one set of operations, and have
the operating system handle the various distinc-
tions between resources.

This paper presents an interface to an
operating system which hides from the user the
distinction between system resources, and pro-
vides a single set of resource operations.

2. Capability-Based Systems

Capability-based systems [2, 5, 6, 10] pro-
vide an approach to defining a uniform user inter-
face. These systems provide a single mechanism
for addressing both primary and secondary
memory, and for accessing both hardware and
software resources. Each user is equipped with a
set of capabilities which govern the degree of
access the user has to all objects on the system.

A capability is a key or token which gives
the user some form of permission to a particular
object. Capabilities are represented as data



- 2 -

structures and consist of two parts: a unique
object identifier, and a set of access rights. The
object identifier represents a single logical or phy-
sical entity in the system. An entity may be a file,
memory segment, array, process, or device. The
access rights describe the set of operations which
may be performed on the object.

Capability-based systems differ from con-
ventional systems in the method by which objects
are referenced. In conventional operating sys-
tems, the list of permissions users have to an
object is stored with the object. Capability sys-
tems, on the other hand, have protection informa-
tion stored in the capabilities to the object. This
implies users may only name or reference objects
to which a capability is held.

One of the problems with a capability-
based system is that once access to an object is
given, it is very difficult to remove that access
without creating a duplicate of the original object,
and then destroying the original. This solution is
impractical, since it requires knowledge at all
times of who has been given permission to the
original object. In this paper, we introduce a
derivative of pure capability-based systems which
removes this problem.

Capability systems support what is known
as the object-based approach to computing. This
approach starts by defining all entities as objects.
Next, the set of objects is subdivided into various
classes, with each class composed of a set of
objects containing similar properties. Each
member of a class is referred to as an instance of
the class. Each class can have a set of operations
defined which may be performed upon the
instances.

The object-based approach has several
advantages. First, by defining a set of fundamen-
tal objects and operations which may be per-
formed on them, a set of procedures can be con-
structed to perform these operations for each
object type. More importantly, this approach
serves to raise the abstraction level of the system.
All operations and references may now be made
on a higher-level class of data types.

The primary reason for deciding to use a
capability system in our attempt to achieve a uni-
form system interface is the extra level of indirec-
tion provided by capabilities. Instead of access-
ing an object directly, the object is accessed
through its capability. This allows for all user-
level operations to appear uniform, regardless of
the object the capability refers to.

3. User Overview of GARD

Key concepts in GARD are those of an
object and a capability. All system and user
resources are objects, which are accessible only
through capabilities. Users interact with these
resources through a set of common primitives,
each of which can be used on any object.

In GARD, as in most capability-based sys-
tems, operations are performed on objects through
capabilities. Without a capability to an object
(i.e. resource), there is no way to access that
object. This implies that the arguments to the
primitives described below are actually capabili-
ties to the objects in question. Each resource in
the system, whether active or passive, has access
to a set of capabilities which define what other
resources it may access. If the capability set for a
resource does not contain a given capability for
another resource, it is impossible for the first
resource to reference the second in any manner.

It should be noted that this, if followed log-
ically to its extreme, encompasses many of the
current structures common in operating systems.
For instance, a hierarchical file system becomes
nothing more than a set of resources where those
resources corresponding to directories have capa-
bilities for several other resources which may
themselves be ‘‘directories.’’

3.1. Primitive Operations on Objects

If one examines the different types of
resources available in conventional computer sys-
tems, one finds that the operations performed on
these resources fall into a few basic categories.
For each type of resource, it is necessary to be
able to create, delete, read data from, and write
data to that resource.

These represent four basic operations on
objects. Since all operations on objects are per-
formed through capabilities, from a user’s point
of view, destroying an object is equivalent to sim-
ply invalidating a capability to it. For this reason,
deleting an object is regarded as an operation on a
capability, and is described in more detail in the
following section.

GARD views a read operation as obtaining
data from a source object and placing it in a
__________________
G. Urquhart, A. Christie, R. Lake, and D. Hagglund.
Although we refer to GARD as an operating system, we
make no attempt in this paper to fully define all parts of
such an operating system. What we describe here is the
interface of the system to resources.



- 3 -

destination object. A write operation is seen as
taking data from a source and putting it into a des-
tination. It is clear from these definitions that
read and write operations are essentially identical.
These operations may be considered as identical
in GARD because the system handles the details
of the transfer, rather than having the user deal
with buffers, etc. Thus, we may replace distinct
read and write operations with a single copy
operation.

This leaves us with the following primi-
tives: create and copy.

Create takes as its single parameter the
capability id of an object to act as a template.
Returned is a capability to a new object which has
the same behavior as the template under the prim-
itive operations. This requires some objects exist
a priori at system start-up time to act as initial
templates. The behaviors of these initial tem-
plates implicitly define different types of objects.

Copy obtains data from a source object and
places it into a destination object. Each copy
requires capability ids for the source and destina-
tion objects. In addition, several other parameters
may be specified. These give the starting offset
within the source and destination, and the amount
of data to be transferred.

In addition to these, GARD defines two
other primitive operations on objects that extend
the versatility of the primitive operations men-
tioned above. Duplicate makes an exact duplicate
of an object, including its capability and access
information. A capability id to the duplicated
object is returned. Start places an object on the
CPU queue. When the object terminates, it is
deleted from the system.

Thus, the primitive operations on objects
defined in GARD are: create, copy, duplicate,
and start.

3.2. Primitive Operations on Capabilities

Like objects, capabilities have a certain set
of primitive operations defined upon them. These
operations define how objects in GARD make use
of these capabilities. The primitive operations for
capabilities are: delete, pass, and permit.

Delete removes the capability identifier
from the invoker’s capability list. If no other
capabilities for the object remain, the object itself
is deleted.

Pass takes a capability from one object and
copies it into the capability list of another object.

Passing is the means by which capabilities spread
through the system.

The permit operation on capabilities allows
the holder of the capability to modify any of the
permissions to the object. The holder of the origi-
nal capability to an object returned by create is
always allowed to change the permissions to the
object, regardless of the current permissions. A
capability owner not having permit access to an
object can never change his or any other permis-
sions to the object.

3.3. Access Rights

Holding a capability to an object does not
necessarily imply unlimited freedom to manipu-
late either the object or the capability. GARD
defines a set of access rights that control the
scope of operations which may be performed
upon the objects and capabilities. Such permis-
sions allow more refined control over objects and
capabilities.

Access rights fall into two categories:
those that control operations which change the
contents of an object, and those that control how
the capabilities to that object may be manipulated.
The presence or absence of an access right deter-
mines whether the corresponding operation can be
performed through that capability.

Access rights on objects are:

• create — the object may be used as a
template for create.

• copy from — the object may be used
as the source of a copy operation.

• copy to — the object may be used as
the destination of a copy operation.

• duplicate — the object may be dupli-
cated.

• start — the object may be placed on
the CPU queue.

Access rights on capabilities are:

• pass — the holder is allowed to pass
the capability to another object.

• permit — the holder is allowed to
change the permissions on the object
referred to by the capability.

These access rights allow users to control
the spread of capabilities through the system, as
well as to protect themselves from malicious or
careless users.



- 4 -

4. The GARD Kernel

So far, a user level description of the funda-
mental operations on objects has been presented.
This section examines these primitives from a
kernel perspective and describes the internal
implementation of the primitive operations for
various system resources.

4.1. Internal Organization of System
Resources

GARD defines an object to be an abstrac-
tion of a system resource. Although objects may
represent a wide range of resources, all objects
have a similar structure. Every object in the sys-
tem has a memory image defining it. This
memory image is the same for all objects and con-
sists of five parts:

• capability list pointer,

• access list pointer,

• bookkeeping information pointer,

• switch table, and

• data part.

The capability list pointer points to a list
containing all the capabilities the object owns.
Each capability id consist of two fields. The first
is an object identifier which uniquely identifies
any object in the system. The other is a flag
denoting if this is the original capability returned
when the object was created.

The access list pointer points to a structure
which stores the capability identifiers for all
objects having access to this object, and their
respective permissions.

The bookkeeping information pointer
points to a table containing the object size, the
object’s virtual location in secondary storage, and
other information needed to handle the object
correctly.

The switch table defines the effect of each
of the primitive operations on the object. This
table allows the system to map each primitive
operation into the appropriate task, depending
upon the object. Each entry in the table consists
of a capability id referring to an object which per-
forms the operation. Objects have the same
switch tables as those in the templates used for
their creation.

The switch table mechanism provides the
basis for abstract objects since each object con-
tains the necessary information to describe its
behavior. This mechanism could allow for the

use of user defined objects and user defined reac-
tions.

The final portion of an object’s memory
image is the data part. This is the only part of the
object which may be directly modified by a non-
system object. All other parts are protected by the
system. The data part of the memory image is
accessed through a page table like structure. Each
entry either points to a page of data in memory or
is invalid. When a data reference is made to a
page marked invalid, the page containing the data
must be brought in from secondary storage. Oth-
erwise, for valid pages, the image in main
memory is used. Standard paging algorithms can
be used to keep the most heavily used pages in
primary memory. Since an object can become
arbitrarily large, it may be necessary to have mul-
tiple levels of indirection in the page table.

4.2. Capability Address Translation

Since all objects in the system, whether
they be in secondary or primary storage, have the
same form of unique identifier, there is no need to
make a distinction between objects in primary and
secondary storage. This means the same mapping
scheme may be used for all objects.

GARD uses a system mapping table to per-
form the translation of a capability into an object
location. The system mapping table contains
information required to access an object if one has
a capability to it. Each table entry has:

• information to map a capability to an
object’s location,

• a share count of the number of capa-
bilities to this object.

The share count is used for disposing of
unused objects. Each entry in the mapping table
refers to a particular object. Whenever a capabil-
ity for an object is deleted, the share count is
decremented by one.

The system mapping table is also refer-
enced whenever the share counts of an object are
changed. An object is destroyed by deleting its
entry from the table. Invalid capabilities are iden-
tified when the search of the system mapping
table for the capability fails.

When an object is accessed through a
__________________
In a conventional system "objects" that are in primary
storage or in paging storage are identified by an address,
whereas objects in secondary storage are identified dif-
ferently.



- 5 -

capability, the object identifier is hashed to pro-
duce an index into the system mapping table. The
access list for the referenced object is checked to
see if the invoking object has the requested per-
missions. If so, the operation proceeds normally;
otherwise it fails.

This method requires searching the access
list on every reference to the object. Obviously,
this requires much overhead, especially for
lengthy access lists and frequent references. To
improve performance, each capability is given
additional fields. These are the time of the last
access check and bits indicating the specific per-
mission for each operation. Whenever a new
capability is created, these fields are initially zero.
Similarly, a time stamp field is added to each
entry in the system mapping table. This field
records the last time any permissions of the object
were changed. This could be an actual clock
value or a simple count.

When an access to the object is attempted,
the capability time stamp is compared to the
object time stamp. If the value in the mapping
table is greater than the time stamp in the capabil-
ity, the permissions on the object have changed
and must be rechecked. The access list is
searched, the access bits in the capability are
updated, the time stamp from the mapping table is
copied into the capability, and the operation
proceeds if the required access is present. When
the value in the mapping table is less than or
equal to the time stamp in the capability, the per-
mission bits in the capability are checked for the
required access.

4.3. Object Classes

Objects are implicitly divided into classes
by their behavior. Each object’s behavior is
imposed upon it by its switch table. Objects that
behave similarly are members of the same class.
Since an object can only be created based on a
template, the number of different object classes is
limited to the number of different templates sup-
plied by the system. This makes the set of object
classes easily extensible, since all that is required
for a new class is the addition of a new template
with the required behavior.

4.4. Internals of the Primitive Operations

This section gives a kernel perspective for
each of the primitive operations described earlier.

4.4.1. Object Creation

Whenever an object is created, several
operations are performed by the system. First, an
object is created with the same switch table as the
template’s, provided the invoker has create per-
mission to the template. A unique capability id is
then assigned to the newly created object, and an
entry is allocated in the system mapping table for
this capability. Next, the capability id of the crea-
tor is placed in the access list of the new object,
indicating that the creator has unlimited access.
The share count for this object is initialized to
one, and the location of the object is recorded in
the system mapping table.

4.4.2. Capability Deletion

Deletion of a capability removes it from the
capability list of the invoking object. The share
count of the object referred to by the capability is
decremented by one. If the share count becomes
zero (i.e., there are no more capabilities to the
object) the object itself is destroyed. The destruc-
tion of an object causes the system to update the
system mapping table, thereby removing the entry
for that object. Any primary or secondary storage
being used by the object is reclaimed and all capa-
bilities owned by the object being destroyed are
deleted. In the case of ports, the capabilities
referencing any outstanding messages are also
deleted.

4.4.3. Object Execution

Object execution is accomplished via the
start primitive. Start requires four parameters.
The first is the capability id of the object to be
executed, and the remaining three are capability
ids of objects to be used for input, output, and
errors. The last three parameters are placed in the
capability list of the object, and the object is
placed on the CPU queue. When execution ter-
minates, the object is destroyed.

4.4.4. Object Duplication

Duplication of objects is done with the
duplicate primitive. A new object is created and
the entire contents, i.e., switch table, capability
list, access list, bookkeeping part, and data part,
are copied into the new object. The access list of
each object on the original object’s capability list
is changed to allow the new object the same
access as the original. Duplicate returns a capa-
bility to the new object. This capability differs
from that which would be returned by create in



- 6 -

that it does not grant the holder automatic permit
access.

4.4.5. Object Input/Output

Input/output is accomplished with the copy
primitive. As many as five parameters may be
specified:

• the capability id of the source object,

• the capability id of the destination
object,

• the offset within the source object,

• the offset within the destination
object, and

• the amount of data to transfer in
bytes.

If no amount is specified, the entire source
object is copied. For certain classes of objects,
the amount of data to transfer may be ignored.

The switch table entries for the source and
destination objects are consulted to determine
how to transfer data between the two objects.
These routines are passed the starting offsets in
the source and destination objects, and the amount
of data being moved.

4.4.6. Capability Id Passing

Capability ids are passed from one object to
another using the pass primitive. The specified
capability id (which must be in the capability list
of the object calling pass) is copied into the capa-
bility list of the destination object.

4.4.7. Modifying Object Permissions

Modification of object permissions is done
using the permit operation on capabilities. Permit
operations proceed as follows. The access list of
the object whose permissions are to change is
checked for an entry giving the invoker this right.
If the right exists, the access list is searched for an
entry corresponding to the object receiving the
new permission. If an entry for this object cannot
be found, a new entry is formed with the
appropriate permissions; otherwise the old per-
missions are modified.
__________________
In the case of an executing object duplicating itself, the
duplicate call returns twice — once in the parent and
once in the child. The return value in each case is that to
the new object, from the point of view of each object in
which the duplicate returns. This implies that each object
receives a capability to the other.

Note if the object invoking permit has the
original capability to the object whose access list
is to be modified, the operation will succeed
regardless of the current permissions.

5. Behavior and Interaction of Object Classes

We now examine in more detail, the
behavior and interaction of various classes of
objects. Four common classes are considered:
data, devices, ports, and executing objects.

Data objects have their data parts refer-
enced as an array of bytes. Any further structure
must be imposed by the user. A copy to or copy
from a data object is a direct access in the array of
bytes.

The data part of a device object contains the
buffers needed by the device. Each device has
either an input buffer, an output buffer, or both.
The copy from and copy to operations work on the
input and output buffers respectively. These
operations correspond to the upper half of a
device driver in that they do not perform the phy-
sical I/O.

Ports are the primary means of communica-
tion in GARD. They provide a uni-directional
flow of information. Each port’s data part is
organized as a list of capabilities, each of which
identifies a message. The message queue is pro-
cessed in a first-in, first-out order. Copying to a
port involves taking the data given, placing it in a
new data object, and appending the data object’s
capability to the message queue. A copy to may
suspend the caller if the message queue exceeds a
certain length. A copy from operation removes
the requested amount of data from the port, or
suspends the caller if insufficient data is available.
Copy from is not required to take all data from a
particular message. Once the data has been com-
pletely extracted from a message, the message’s
capability is deleted (which results in the destruc-
tion of the object holding the message).

Executing objects are those which receive
CPU service. Data parts of these objects contain
the code of the executing "process". The copy
operations on an executing object are identical to
those on a data object. Even though the system
allows this, it will most likely result in an execu-
tion error in the affected "process". This can be
prevented by removing write access to the execut-
ing object.

Communication between executing objects
is done via ports. Consider the case of setting up
a pipeline between two executing objects. The



- 7 -

following sequence of primitives may be used:

(1) portid = create(port_template);
(2) A = duplicate(A’s_object_code);
(3) B = duplicate(B’s_object_code);
(4) start(A, input, portid, errorA);
(5) start(B, portid, output, errorB);

In this example, (1) creates a new object
which behaves identically to the template (i.e., a
port), but is initially empty. Lines (2) and (3)
create duplicates of the code for objects A and B.
Lines (4) and (5) assign the input, output, and
error objects to A and B, and start them executing.
Now, when A copies data to its output, the data is
placed in the port, from where B retrieves it when
it copies from its input. A and B are deleted when
they finish execution.

Another common operation on executing
processes is a fork. Forking a single executing
object into two may be done by using duplicate
since this primitive creates an exact copy of the
object given as its argument. The sequence of
primitives required appears below:

(1) other = duplicate(parent);
(2) if (other == parent) {
(3) child_code(); /* in child */
(4) } else {
(5) parent_code(); /* in parent */
(6) }

Line (1) effectively accomplishes the fork.
Line (2) determines which half of the fork we are.
Since duplicate has returned the capability of the
other side, we can check to see if the other side
was the parent.

6. Other Approaches

Several attempts have been made to handle
resources in a more uniform manner. MULTICS
[1, 8] succeeded in removing the user distinction
between files and virtual memory. However,
MULTICS was not able to handle all resources
uniformly.

UNIX [7] enables the user to access a
common set of system subroutines for performing
operations on devices, files, and pipes connecting
executing processes. However, resources such as
virtual memory are handled differently and the
primitives required to manipulate entities such as
processes differ from those required to handle
files.

Killian [4] describes a special file system
(called /proc) for the UNIX operating system
which disguises active processes as files. Each
"file" in /proc corresponds to the address space of
a running process. Singleton et. al. [9] introduce
the concept of extrafiles. Implemented under
UNIX, these act as a single model for the normal
uses of both files and processes.

7. Conclusions

We have attempted to present a uniform
interface to system resources that requires
minimal knowledge by the user of the differences
between those resources. The primitives
described allow access to system resources
without explicit knowledge of the type of resource
accessed. Instead, the type of resource desired is
specified by its behavior, based on an object
which exhibits that behavior. Although this
requires some initial knowledge on the part of the
user (i.e., the desired behavior and an object
known to exhibit that behavior), once an object
has been created, it may be used in exactly the
same manner as any other. Clearly, knowing the
desired behavior of an object is necessary for its
use. Short of requiring that the system recognize
arbitrary object descriptions, we were unable to
weaken the requirement that the user know of a
currently existing object to act as a template. In
spite of this, the amount of knowledge the user
requires about resources in GARD is far less than
that required in conventional operating systems.

8. Acknowledgements

We would like to thank Dr. Wlodzimierz
Dobosiewicz for posing this problem to us, and
for his suggestions and support. As well, we
would like to thank Prakash Bettadapur for his
contributions to the original paper on which this is
based, and Ken Hruday for his numerous sugges-
tions and critiques of the paper.

References

1. F. Corbato ´ and V. Vyssotsky, "Introduction
and Overview of the Multics System",
AFIPS Conference Proceedings, Vol. 27,
No. 1, 1965, pp. 185-196.

2. E. Gehringer, in Capability Architectures
and Small Objects, UMI Research Press,
Ann Arbor, Michigan, 1982.

3. A. Jones, "The Object Model: A Concep-
tual Tool for Structuring Software", Lecture
Notes in Computer Science, Vol. 60, 1978,



- 8 -

pp. 8-16.

4. T. J. Killian, Processes as Files, Usenix
Conference, Summer 84, Salt Lake City,
1984, pp. 203-207.

5. Henry M. Levy, in Capability-Based Com-
puter Systems, Digital Press, Bedford,
Mass., 1984.

6. E. I. Organick, in A Programmer’s View of
the INTEL 432 System, McGraw-Hill Book
Company, New York, 1983.

7. D. M. Ritchie and K. Thompson, "The
UNIX Time-Sharing System", Comm.
ACM, Vol. 17, No. 7, Jul 1974, pp. 365-
375.

8. T. Rus, in Data Structures and Operating
Systems, John Wiley & Sons, New York,
NY, 1979.

9. P. Singleton, K. H. Bennett and O. P.
Brereton, "A Single Model for Files and
Processes", ACM Operating Systems
Review, Vol. 20, No. 1, Jan 1986, pp. 12-
18.

10. M. V. Wilkes and R. M. Needham, in The
Cambridge CAP Computer and Its Operat-
ing System, P. J. Denning (ed.), North Hol-
land, New York, 1979.


