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Abstract

Gliomas are diffuse, invasive brain tumours that originate from a single glial cell and infil-

trate through adjacent healthy tissue as the number of tumour cells exponentially increases.

The goal of this thesis is to study glioma diffusion and to propose a classification model

that would shed some light on glioma growth patterns.

We introduce a 3D classification-based diffusion model, CDM, that predicts how a brain

tumour will grow at a voxel-level on the basis of features specific to the patient and the

tumour, and attributes of that voxel and its neighbours. We use Machine Learning algo-

rithms to learn this probabilistic general model, based on the observed growth patterns of

gliomas from other patients. We demonstrate that our learned CDM model can, in many

cases, predict glioma growth more effectively than two standard models: uniform radial

growth across all tissue types and another that assumes faster diffusion in white matter. We

study CDM numerically and analytically on clinical data.
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Chapter 1

Introduction

Cancer, a notorious disease, has affected and devastated many lives. This disease has been
the centre of attention of thousands of researchers for many decades, around the world.
Researchers have combined their knowledge and efforts from many areas ranging from
medical to mathematical sciences, to better understand the disease and to find more effective
treatments. Yet, there is far more to be done before cancer can become a curable disease.

Life-threatening cancer tumours originate from a single cell that has undergone a chro-
mosomal or genetic mutation that affected its protein balance, increasing its capacity for
mitotic division or decreasing the suppression mechanism for cell division. As the malig-
nant cell loses its normal function, it starts to abnormally divide much faster than surround-
ing normal tissue. A small mass of malignant cells results from that single dividing cell,
and starts to invade adjacent normal tissue, and to threaten the affected organ.

In this thesis, we use machine learning to study and model the growth of gliomas, brain
tumours that originate from a single glial cell of the nervous system.

We first define the problem of glioma diffusion modeling, followed by a section that
presents a general overview of the brain anatomy, and of glioma diffusion and treatment.
Section 1.3 introduces cancer research and briefly covers computational modeling contri-
butions to glioma growth prediction, including our proposed approach. In Sections 1.4 and
1.5, we describe Magnetic Resonance Imaging and its role in detecting brain tumours, then
introduce radiotherapy. In Section 1.6, we give an overview of machine learning contribu-
tions and the role of learning and classification in predicting the growth of brain tumours.
Section 1.7 motivates the study of glioma diffusion modeling. We conclude this chapter
with a summary of the scope and contribution of this research study, and we outline the
remaining chapters in this dissertation.

1.1 Problem Definition

The problem that we address in this thesis is the prediction of future glioma growth in
patients diagnosed with primary brain tumours. Since there are several interpretations to
the problem of tumour growth prediction and diffusion modeling, we provide a formal
definition of the research work involved in our task.

In this thesis, we define ‘tumour growth modeling’ as the task of predicting the size and
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shape of the tumour at a later time based on attributes of the visible tumour mass (detected
on the MRI brain scan) and of the regions adjacent to the tumour. This glioma growth
modeling is based on the assumption that occult malignant cells, which have infiltrated
through adjacent normal tissue, are responsible for further tumour growth. By ‘occult cells’,
we refer to cancer cells and tendrils that may have infiltrated through normal tissue adjacent
to the original tumour but are initially found in low concentrations, below the detection
threshold of MR imaging. As these cells build up into small tumour masses over a period
of time, they can then be detected on MRI scans. The work in this thesis takes into account
the spatio-temporal aspect of the problem of modeling glioma diffusion.

Modeling tumour growth has an application in treatment planning, and may help im-
prove the effectiveness of current treatment modalities. Proper treatment requires knowing
where both the visible tumour and the occult cells are. Conventional treatment methods im-
plicitly assume that occult cells are radially spread in all directions alike, but these methods
have not been effective in determining the boundaries of the treatment volume. Therefore,
an effective diffusion model should be able to accurately ‘track’ potential tumour growth
in regions adjacent to the Gross Tumour Volume (GTV). By GTV, we refer to the abnormal
tumour region visible on the MRI scan.

We present an alternative approach to modeling tumour growth. We use data from a set
of patients to learn the parameters of a ‘general’ diffusion model. The data consists mainly
of a series of MRI brain scans for patients diagnosed with gliomas. We apply supervised
learning to a set of features obtained from the patient data. In particular, given properties
of the patient, the tumour and each voxel at one time, our classification-based diffusion
system, CDM, predicts the tumour region at a later time.

Our performance system is initialized with a GTV, of a given patient at one time point,
and estimates what the tumour will look like once it is some k voxels larger. Our system
uses a diffusion model to predict this further tumour growth (i.e., where these k voxels will
be). In order to predict these k voxels, our system uses a probabilistic classifier learned by
a supervised learning system. The input to our supervised learning system is a time series
based on a set of pairs of labeled brain volumes, from various patients, where each pair
is from the same patient, but at different times. We include a number of properties about
each voxel in each brain volume, as well as a label: tumour or non-tumour. For each patient
(represented by a pair of tumour volumes v1 and v2 at different times t1 and t2 respectively),
we use as training data the voxels in the set difference between this pair of volumes (i.e.,
v2−v1) and that a perfect diffusion algorithm would consider, in growing from the patient’s
initial tumour v1 to the final tumour v2, as well as the border immediately around the tumour
volume v2. Figure 1.1 shows the voxel regions that are used in the training, i.e., voxels that
are transitively adjacent to the tumour v1 up to a 2-voxel border around the tumour v2.
The output of the learner is a probabilistic classifier that, given (a description of) a voxel
adjacent to the current tumour volume, returns an estimate of the probability that the voxel
will become tumourous.

Model results are evaluated against the Gross Tumour Volumes (GTV) manually seg-
mented by radiologists. Manual delineations of GTV are based on image abnormalities
detected as enhancing intensity regions and abnormal textures, and are limited by the im-
age acquisition protocols and radiologists’ subjective interpretations. Therefore, the aim of
this work is to predict tumour growth in terms of what human experts define as tumour.
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Figure 1.1: Illustration of voxel regions involved in training classifiers
The white region in the centre of the image represents the tumour volume at an initial time point.

The light grey region represents additional tumour growth between this initial time point and a later
time. The dark grey region consists of normal tissue immediately adjacent to the enlarged tumour.

Voxel regions used in the training data are the light and dark grey regions excluding the white area.

The proposed model can help specify the treatment boundaries more precisely. We
anticipate that our model’s prediction will correspond to regions where radiologically occult
cancer cells concentrate but do not enhance on the MRI scan. Therefore, the model can help
define the appropriate radiation doses to deliver to the visible tumour and to the adjacent
regions, increasing the likelihood of patient survival.

1.2 Medical Background

In this section, we briefly overview some of the brain biology that we need to know for
the purpose of this thesis. We then present some information about glioma growth and the
challenges in treating malignant brain tumours.

1.2.1 Brain Anatomy Overview

The human brain consists mainly of two tissue types: grey matter and white matter. Grey
matter is made of neuronal and glial cells that control brain activity while the cortex is a
coat of grey matter that covers the brain. White matter fibre tracts are myelinated axon
bundles located throughout the inner regions within the brain, that form pathways between
grey matter regions. The corpus callosum is a thick band of white matter fibres connecting
the left and right hemispheres of the brain [15, 85]. See Figure 1.2 for a description of each
of each of these anatomical regions.

The brain also contains cerebrospinal fluid (CSF) that consists of glucose, salts, en-
zymes, and white blood cells. The CSF is secreted into the ventricles (Figure 1.2), occupies
the space between the skull and the cerebral cortex, and circulates through the ventricular
system of the brain and of the spinal cord. Its main function is to cushion the brain against
trauma and to help protect the spinal cord from mechanical shocks [134].

Glial cells are the major non-neuronal cell type in the nervous system. Glial cells func-
tion as supporting cells that help maintain the signalling ability of the neurons but do not
participate directly in electrical signalling [15]. There are three types of glial cells: astro-
cytes, oligodendrocytes and microglia. The first provides support for the neurons, and help
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Figure 1.2: Overview of the human brain
Coronal section of the human brain. The cortex is made of grey matter and is connected, by the
white matter fibres, to the rest of grey matter in the brain. The corpus callosum is a white matter

tract that connects the left and right hemispheres. The cerebrospinal fluid (CSF) is secreted into the
ventricles and circulates to the outer surface of the brain and to the spinal cord.

(This image was reproduced from Figure 5-30 acquired from
http://www.vh.org/adult/provider/anatomy/BrainAnatomy/BrainAnatomy.html)

regulate the chemical environment by contributing to the blood-brain barrier [15]. The sec-
ond and third types serve as insulating and surveillance components of the nervous system.

1.2.2 Glioma Invasion and Difficulties in Treatment

Gliomas are brain neoplasms that originate from a single glial cell. Some brain tumours
are benign, which means that they will not recur after treatment (surgical extraction and
radiation). But most tumours are malignant and often continue to grow and diffuse even
with treatment [96, 62, 26, 14], and ultimately lead to patient death. In general, malig-
nant tumours outpace the growth of surrounding normal tissue as cancer cells divide and
multiply more rapidly. A cell becomes cancerous after it undergoes some mutation (a chro-
mosomal or genetic change) that results in an increase of the mitotic division in this cell
or a decrease in a protein that suppresses cell division [55, 101, 27]. Eventually, cells that
have undergone these genetic mutations become immune to inhibitory growth signals from
their surrounding normal cells [101]. As mutations in malignant cells accumulate while
these cells divide, tumours become even more invasive to normal tissue and threaten the
patient’s life. The speed and degree of invasion of malignant tumour growth are described
in terms of tumour grades. There are four distinct glioma grades ranging from low-grade
brain neopolasms (astrocytomas originating from an astrocyte glial cell) and intermediate
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(anaplastic astrocytoma) to the aggressive grade-four gliomas. These aggressive tumours,
Glioblastoma Multiforme (GBM), are the most common among gliomas [30, 130]. The
higher-grade malignant cells are more capable of invading normal tissue in a relatively
short period of time [85]. The life expectancy of a patient that has been diagnosed with a
GBM is usually less than two years in spite of advanced treatment methods [131]. Defining
the tumour grade is essential for medical specialists as they decide the type and dose of
treatment that will be delivered to the patient. Glioma treatment may combine one or more
of three modalities: surgical extraction of the visible tumour, chemotherapy, and radiation
therapy, the last often following surgery to kill the remaining border of cancer cells that
have not been removed in surgery.

Despite substantial research efforts and more advanced treatment methods, tumours in
general and high-grade gliomas in particular are still recurrent. Tumour recurrence may
be due to several factors including the resistance of cancer tissue to treatment [28, 123,
111] or the presence of occult malignant cells that have not been removed through formal
treatment [26, 77, 63, 133]. Hence, these occult cells start to invade adjacent healthy tissue,
in particular around the tumour border though the visible tumour mass might have been
removed or irradiated. The occult cells continue to diffuse in healthy brain regions beyond
the tumour border, and form other small masses of cancer cells though the visible tumour
may have been removed. Such small masses may remain undetected with MR imaging as
they exist in small concentrations around the visible tumour. For example, even though
surgical treatment eliminates the visible tumour mass, it is likely that the tumour will grow
again from the diffuse cells and tendrils that have invaded the healthy tissue around the
border of the original tumour [63, 133, 62] (e.g., see Figure 1.3). These diffuse tendrils
remain in low concentrations in normal tissue regions around the original tumour, and so
are invisible on MRI scans but can be detected with spectroscopy. These low concentration
tumour masses are usually eradicated with radiation therapy by irradiating a generous 2cm
margin around the border of the original tumour [48, 56, 126].

In more aggressive tumours that grow into a significantly large mass, the malignant cells
compete for nutrients, and so form a necrotic area at the core of the tumour as the cells at
the centre are actually dead. However, the cancer cells at the periphery of the tumour border
continue to proliferate adding to the slower-growing malignant mass, and usually secreting
chemicals that make blood vessels grow into the tumour supplying it with nutrients (this
phenomenon is known as angiogenesis) [40, 41, 42]. Malignant cells use nutrients and
resources from healthy normal cells, exchange materials with normal cells, overload them
with waste products, and are capable of compromising their survival in many ways [44].

Glioma treatment is usually effective in extending the patient’s life by a number of
months or years. But treatment, in particular with radiotherapy, can become more effective
and may even grant the cure to many patients, if the treatment volume is specified in a way
that would help eradicate the diffuse cancer cells and tendrils by applying a high radia-
tion dose; therefore reducing the possibility of recurrence while minimizing the amount of
healthy tissue compromised.

But specifying the treatment volume accurately is not a simple task. Despite advanced
research, it is still very difficult and may often be impossible to track occult cancer cells
and diffuse tendrils that have infiltrated through healthy tissue. This is because there are no
clear boundaries between the cancer region and the normal tissue [48, 56, 126] which makes
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Figure 1.3: Example of glioma recurrence after treatment
This figure shows an example slice from each of three consecutive scans of a patient diagnosed

with GBM, before and after surgical and radiation treatment. Each slice is obtained from a
T1-weighted image volume with contrast, where the tumour shows as an enhancing mass

surrounded by edema (swelling due to increased water content) appearing as a dark region. Left to
right: the first slice (before treatment) shows the tumour in the posterior region of the right

hemisphere adjacent to the ventricles. On the middle slice (after treatment), most of the tumour was
removed and so, the edema decreased and is not visible on the image. The third slice, obtained
from a later scan during patient follow-up, shows glioma recurrence in both the location of the

original tumour and in regions adjacent to it. Tumour growth in adjacent regions is likely due to the
infiltration of occult cancer cells through normal tissue as these cells build up into detectable

masses over a period of time.

it unavoidable to irradiate healthy tissue along with the diffuse malignant cells resulting
therefore in additional compromise of brain function.

1.3 Cancer research

Many health institutions have focused their efforts on cancer research leading to numerous
advances in cancer treatment. But there seems to be no cure in the case of many patients;
in particular those affected with higher-grade tumours. Because of this, cancer research has
gone beyond the walls of medical institutions and biology labs to encompass research in
mathematical and computational sciences as well.

Informatics and Mathematics Cancer research include but is not limited to automated
tumour detection on MRI and CT scans, glioma growth modeling, statistical analyses of
tumour growth rates, automatic tumour grading, evaluation of treatment efficacy, and treat-
ment planning. Section 1.3.1 briefly mentions some of the recent work in cancer research,
which motivates our approach that we overview in Section 1.3.2. These research models
and several others are further described in Chapter 2.

1.3.1 Mathematical and Computational Modeling

Mathematical models are not new to cancer research. They have been proposed by math-
ematicians about half a century ago [109]. Early models were simple, and studied only
solid tumour growth as the cell mass as a whole increased in diameter size. Some of these
models assumed some sort of radial uniform growth. More recent and sophisticated models
introduced the concept of diffusion as researchers started to develop better understanding
of tumour growth and invasion. ‘Diffusion’ refers to the migration of malignant cells from
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the original tumour to healthy tissue adjacent to the tumour border. As these cells infiltrate
throughout adjacent normal tissue, they build up into small tumours over time [85, 110].
Models of cell population growth were proposed by researchers in [125, 120, 121]. These
models were based on age-dependence in cell proliferation and tried to predict the pop-
ulation size at a future time given the initial distribution for the cells. Research has also
introduced logistic and exponential models [76, 108]. Logistic growth suggests that a por-
tion of the tumour is proliferating while another portion is not, due to lack of nutrients as the
tumour grows beyond nutrient availability. Early exponential models assumed that tumour
cells proliferate exponentially and do not impose a restriction on the mass growth. These
mathematical models and numerous others are further described in [85, 109].

Sophisticated computational models are possible now due to the many advances in al-
gorithmics and computational sciences. In the last few years, many Informatics researchers
have contributed to different areas of cancer research. Medical informatics contributions in
the area of glioma research range from detecting the tumour on brain scans [95] to simu-
lating its growth and modeling the treatment volume for radiotherapy [138]. Zizzari [138]
proposes software modules for tumour modeling and radiotherapy planning. The tumour
modeling module introduces a tool that predicts tumour growth, which is used for plan-
ning radiotherapy target prediction to help medical experts specify the treatment volume
for conformal radiotherapy. Also, other researchers [21] tried to simulate tumour growth
by introducing a diffusion model that captures the evolution of tumour density over time,
and an expansion model that predicts the mass effect induced by tumour proliferation in the
brain.

Other research projects have utilized data-driven approaches for decision making in
cancer-related topics, other than tumour growth modeling, such as glioma grading [64], and
robotic surgical planning in the brain [8]. But in this thesis, we focus on approaches to
glioma diffusion modeling, which we compare to existing models (see Chapter 2).

1.3.2 Brief Overview of Proposed Approach

The purpose of our work is to examine the use of machine learning to allow more accurate
predictions of future cancer diffusion in the brain of glioma patients. Our method is data-
driven, and uses learning and decision-making to model glioma diffusion based on a number
of features obtained from the data of several patients diagnosed with various glioma grades.
We first process the patient data which consists of a sequence of MRI scans (see Chapter 3)
and from which we extract the features for the learning model. We then learn a model that
takes as input labeled brain volumes, described by features relevant to the patient and the
tumour, and attributes local to regions adjacent to the tumour. We use the learned model to
perform voxel-level classification (as described in Chapter 4.2) by assigning each unlabeled
voxel around the tumour (at the first of two consecutive time points) to the ‘tumour’ or
‘non-tumour’ class given the features of the unlabeled voxel. We finally predict the tumour
growth by running a diffusion algorithm that iterates sequentially over the voxels at the
active border of the tumour using the classification labels to predict the new status (i.e.,
at the second time point) of each voxel on the tumour-healthy border. This prediction is
based on the probability of the voxel being classified as ‘tumour’ and on the number of
tumour-voxel neighbours adjacent to the candidate voxel. The tumour border becomes
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enlarged as the algorithm iterates as more voxels become ‘tumour’. The model is complete
when the tumour reaches the volume at the second of the two consecutive time points. We
evaluate our approach against the manually segmented Gross Tumour Volumes (GTV), and
we compare the results to those produced by the standard uniform growth [48, 56, 126],
and a tissue-based growth model that assumes faster diffusion in white matter [110]. We
quantify performance for patient-specific predictions in terms of precision and recall [12].

1.4 MR Brain Imaging

Magnetic Resonance Imaging (MRI) provides a 3D description of internal brain structures
by measuring at each pixel the following quantities: Proton Density (PD), spin-lattice (lon-
gitudinal) relaxation time (T1) and T1 with contrast (T1C), and spin-spin (transverse) relax-
ation time (T2), which are innate attributes of the tissue being scanned. To obtain contrasted
images for the purposes of diagnosis and treatment, pulse sequence parameters, including
T1 and T2, are varied. The contribution of PD to the image contrast depends on how many
water molecules are present in the tissue being scanned (e.g., fat, fluid, and edema are high
PD regions). T1 and T2 depend on there being protons present to create a longitudinal and
transverse magnetization. In this thesis, we mainly use T1-weighted and T2-weighted im-
age volumes; see Figure 1.4 for an example slice of each of T1-weighted, T1 with contrast,
and T2-weighted brain images.

A brain scan depends on factors including the pulse sequence, cost, time, resolution,
slice thickness, inter-slice distance, noise signal, etc. The intensity values seen on an MRI
scan for a particular brain depends primarily on the content of that pixel versus neighbouring
tissue and on other factors including the presence of fluids (i.e., cerebrospinal fluid) and fat.
For example, on T1-weighted images, bone, air and water show as dark regions while fat
has bright intensities. On T1-contrast scans, tumours show as bright regions because the
contrast agent enhances the leaky blood vessels of tumours. On T2-weighted images, water
and fluid have high signal while bone, air, and fat remain dark, which makes feasible the
detection of both tumour and edema together on T2 scans [47, 57, 118].

More information about the physics of MRI and how the different parameters are mea-
sured could be found in [10, 47, 57, 118]. Coronal, sagittal, and axial views (see e.g., Figure
1.4) can be acquired for each brain scan providing the full 3D volume of the brain. Each
pixel in the image is referred to as a voxel speaking in terms of 3D volumes. Each voxel
in a particular slice has a color intensity value that corresponds to a measurement of the
tissue weighted by the MR parameters (PD, T1, or T2) averaged over a small 3D region
[47, 57, 118]. Medical experts utilize their knowledge of the human brain anatomy and
structure in conjunction with the intensity values visually detected on 3D MRI volumes to
recognize abnormalities and tumours in the brain.

Data used in this thesis is limited to T1-weighted, T1-contrast, and T2-weighted MRI
scans. Experiments have been performed only on the axial views of the MRI scans.

Brain imaging has a significant role in tumour detection and treatment [33]. Recent,
more advanced imaging tools and methods allow radiologists and oncologists to exam-
ine the patient’s brain on the 3D image volumes, to properly detect tumours, and to plan
treatment based on detected glioma invasion. Imaging also allows doctors to track tumour
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Figure 1.4: MR image modalities
Left to right: T1-weighted, T1 with contrast, and T2-weighted axial views, followed by the sagittal

and coronal views of the same brain.

growth for follow-up purposes during treatment phases in order to examine the efficacy of
the treatment method and to apply the treatment to regions where the glioma started to fur-
ther diffuse. Patient follow-up is of particular importance during a radiotherapy treatment
course where a sequence of brain images taken over a period of a few weeks or months
helps medical experts measure tumour response to radiotherapy and track regions where
the tumour has spread [33]. Doctors can then modify the initial treatment volume to in-
clude regions where more recent tumour invasion has been detected, and to apply to these
regions an appropriate radiation dose as required. Section 1.5 illustrates in more detail
radiation treatment for brain cancer patients.

1.5 Radiotherapy

Radiotherapy, surgery and chemotherapy, represent the three most significant and commonly-
used treatments for malignant tumours including gliomas. In some cases, radiotherapy is
used alone for tumour treatment but more often, it follows surgery or is combined with an-
other type of treatment to kill the cancer cells. In this section, we only describe radiotherapy
as the work in this thesis is motivated by its direct application to the treatment of gliomas
using radiation therapy.

Radiotherapy is applied by delivering an appropriate dose to the cancer tissue while
irradiating the patient from different directions with high energy photon beams generated
from a linear accelerator. The different directions of the beams are generated in a way as
to maximize the radiation dose at the targeted tumour volume while minimizing the dose
delivered to the healthy tissue surrounding the tumour [94, 127, 128, 138]. In conventional
radiotherapy, the treatment volume includes the visible tumour itself along with a 2cm
margin around the visible tumour mass [48, 56, 126]. This 2cm margin may include both
occult cancer cells and normal tissue alike, and may also spare occult tendrils that have
already diffused beyond the treatment margin but remained undetected on the MRI scan
due to low cell concentration. Tumour volumes of any arbitrary shapes are treated with
radiation since the projected beams are customized into the different geometrical shapes of
the treatment volumes. Customizing the beams allows medical doctors to vary the radiation
dose administered to different regions of the brain as to maximize the dose delivered to
the Clinical Target Volume (i.e., the brain region clinically defined as diseased). Targeting
the tumour with high radiation doses ensures a better chance for cure and a smaller chance
for cancer recurrence [50, 138]. The total radiation dose is delivered in a treatment course
through several fractions usually over a period of several weeks.
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Though radiation therapy for gliomas proves to be effective because it can extend the
patient’s life, it has some very serious side effects due to radiation delivered to healthy cells,
and in particular the region within the 2cm margin, causing reduction or even complete loss
of brain function in the treated regions [19]. Radiotherapy may also impose the danger of
initiating other malignant tumours in the irradiated organ (i.e., in normal tissue adjacent to
the treated region) as an irradiation side effect [135]. Radiotherapy is usually more effective
in the first course of treatment than in a second or third course if applied to a recurrent
tumour. But, due to radiation toxicity, it may not even be possible to treat the patient with
an additional course of radiation therapy in case of glioma recurrence [32].

1.6 Machine Learning

In recent decades, machine learning algorithms have been widely used in performing a
myriad of tasks including disease diagnosis, speech recognition, planning, robot control,
prediction, etc. Traditionally-used machine learning algorithms range from simple, proba-
bilistic classifiers like Naı̈ve Bayes [36], which once learned from existing data, classifies
a new data instance by calculating the posterior probabilities of a hypothesis, to more com-
plex algorithms like Neural Networks that loosely simulate information processing by the
human brain, and that involve feed-forward and error propagation algorithms [81].

In supervised learning tasks, we first learn a model from existing training data. Each
data instance is often expressed as a feature vector that provides information with respect
to this instance. We then use the learned model to perform a prediction by classifying new
unlabeled instances such as each instance will be assigned a class label. The classification
of an instance is associated with a decision function score or a probability. Results may be
evaluated in terms of standard precision and recall [12].

In this thesis, the prediction task is about finding out whether a normal voxel, transi-
tively adjacent to the border of the visible tumour, will become malignant. To perform this
prediction task, we first learn a classifier from a large number of data instances obtained
from several brain volumes of patients diagnosed with gliomas. Each data instance is rep-
resented by a feature vector specific to a voxel located in tissue adjacent to the tumour, and
expresses information about the patient, the tumour, and attributes local to that voxel and to
the neighbourhood of the voxel. After learning the model from patient data, the classifier
will assign a label to each new unlabeled voxel, in regions adjacent to the tumour, that indi-
cates whether that voxel is normal or diseased (i.e., ‘tumour’ or ‘non-tumour’). Each voxel
is also assigned a probability as predicted by the classifier or a decision function score from
which we estimate the probability that the voxel is ‘tumour’.

The selection of an appropriate set of features is crucial to the learning and prediction
tasks. The features are discussed in detail in Section 4.5. Other issues that emerge in
learning and prediction are data bias, class imbalance, noisy data, selection of the learning
dataset, data overfitting, etc, which are further discussed in Chapters 3 and 4.
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1.7 Motivations for glioma growth modeling

The work presented in this thesis has direct application in radiotherapy for glioma treat-
ment. As mentioned in the introductory paragraphs about glioma diffusion and treatment,
the conventional method of treating glioma with conformal radiotherapy is to irradiate a
2cm margin around the visible tumour mass, which typically includes both healthy tissue
and malignant tendrils. This radial 2cm margin does not take into account any informa-
tion about the patient or the tumour but simply assumes that occult malignant cells have
uniformly diffused into surrounding healthy tissue. Because this conventional treatment
method is generically applied to all patients regardless of where the cancer has actually
diffused, it often compromises brain function and may still leave behind cancer tendrils al-
lowing tumour recurrence. Hence, the necessity for modeling glioma diffusion – assuming
that occult cancer cells that have infiltrated through adjacent healthy tissue are responsible
for further tumour growth – and finding new methods that may help radiation oncologists
specify more accurately the appropriate treatment volume and radiation dose. In addition,
the introduction of an accurate glioma diffusion model provides the advantages of increas-
ing the level of precision and standardization in specifying the treatment volume, which
will also help oncolgists save time and effort required for treatment planning.

This research investigates how machine learning algorithms can be applied to predict
tumour growth by modeling glioma diffusion in order to ultimately help identify the border
of treatment volumes in glioma patients. A more accurate specification of the treatment
volume can help improve conformal radiotherapy by minimizing the chance of tumour re-
currence, and sparing healthy tissue around the tumour thus saving brain function. The
diffusion model proposed in this thesis is based on the labeling of a probabilistic classi-
fier that learns a model from a set of features specific to the patient and the tumour, and
attributes of the diseased region around the tumour.

1.8 Scope of Thesis

This thesis presents a study of glioma growth modeling. The main results consist of a gen-
eral learning model that may provide insight into glioma growth dynamics and that would
supply medical experts with a tool to help them specify the treatment volume for irradiation.
The application of the model is not restricted to a particular tumour type, i.e., the model can
be applied to all brain tumours ranging from grade-one astrocytomas to the notoriously ag-
gressive glioblastomas (GBM). The proposed diffusion model involves using a classifier to
predict whether a voxel adjacent to the tumour will become cancer. Our classification is
based on a number of features specific to the patient and the tumour and attributes of the
voxels that are recursively adjacent to the visible tumour. A diffusion algorithm iterates
around the active tumour border at an initial time point, and assigns eligible voxels (i.e.,
that are transitively adjacent to the tumour border) to the ‘tumour’ class using the labels
predicted by the classifier. The algorithm terminates when it has added to the initial tumour
volume a number of voxels that represents the set difference between the initial and final
tumour volumes. The output of the diffusion model is a contiguous 3D tumour volume that
corresponds to the GTV at a later time.
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However, the actual specification of the treatment volume and the radiation dose is
outside the scope of this research study as these pertain to the medical side of this work,
and are the responsibility of medical specialists.

This dissertation confirms the thesis that our CDM system performs more accurately
in most cases than radial uniform diffusion, UG, and tumour growth based on the het-
erogeneity of brain tissue, GW. To demonstrate system performance, we compare results
numerically and analytically (see Chapter 5).

1.9 Thesis Outline

This first chapter has provided an introduction to cancer in general and gliomas in particular.
It also described current glioma treatment methods, with a section on radiotherapy, and
described the advanced tools and methods in cancer research to help improve treatment, in
particular radiation therapy. This chapter also includes a section on machine learning and
how the learning and classification tasks are utilized in glioma diffusion modeling.

Chapter 2 presents an overview of glioma treatment and the challenges involved in
the treatment task. It also describes previous and current work in brain cancer research
with emphasis on mathematical and computational models, and their usefulness in glioma
treatment and in improving the effectiveness of radiation therapy.

In Chapter 3, we describe the model framework including the data processing pipeline,
the feature extraction, and the classification and modeling tasks.

Chapter 4 covers the prediction task including the system implementation details and
the use of machine learning algorithms. This chapter also describes the feature space as
well as the training and testing data folds.

Chapter 5 presents the results and compares the output of our CDM model, evaluated
against manually segmented GTV, with the output of the uniform radial growth used in con-
ventional radiotherapy and of the tissue-based growth model that assumes a 5 : 1 diffusion
ratio in white versus grey matter.

Chapter 6 concludes the thesis and presents ideas for future work and improvements to
our current system.
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Chapter 2

Related Work

In this chapter, we describe conventional treatment methods of gliomas as well as mathe-
matical models that have been implemented to predict glioma growth. Section 2.1 describes
clinical issues and challenges involved in the treatment of glioma patients. Section 2.2 de-
scribes existing mathematical and computational approaches that were developed to illus-
trate tumour growth behaviour and to predict glioma diffusion. Section 2.3 discusses and
evaluates standard glioma growth models, which motivates the implementation of our pro-
posed approach. The chapter concludes with a summary of issues and concepts discussed
in these sections.

2.1 Glioma Treatment

Glioma treatment has represented one of the most challenging tasks in cancer research in
the past few decades tough gliomas do not usually metastasize outside the brain (likely
due to the blood-brain barrier). The efforts of thousands of researchers have been dedi-
cated to understanding and explaining brain neoplasms, and to discovering new methods
of treatment or at least improve conventional methods. Both theoretical and experimen-
tal research has shed some light on glioma growth and treatment, and has helped identify
some of the factors involved in cancer diffusion and that make this disease difficult to cure.
Not only are gliomas diffuse and invasive making efficient treatment a challenge, but also
some of the factors involved in the treatment of these neoplasms include the biological and
genetic complexity of the tumour, the growth rate, and the grade. It is known that some
tumours may have histologically heterogeneous cells capable of resisting treatment [85].
In addition, high-grade malignant cells proliferate much faster, and are more invasive to
neighbouring normal tissue. Such cells deprive healthy cells from nutrients, overload them
with waste components, and compromise their survival. Unfortunately, these high-grade
gliomas, known as glioblastomas (GBM), are the most common among brain tumours (see
[30, 44, 85, 109, 130]).

There are several treatments for gliomas, which mainly include chemotherapy, radiation
therapy, and surgical resection. Surgery has been used over the centuries to extract tumour
masses [85]. The resection of the tumour through surgery provides the benefit of relieving
the pressure in the patient’s brain and reducing the symptoms induced by the presence of
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the tumour. Surgery is effective when removing benign tumours since such tumours usu-
ally do not recur. But in the case of malignant tumours, surgery alone is ineffective. This
is because it is impossible for the surgeon to remove the malignant tumour without leaving
behind a border of cancer cells [96, 62, 26, 14, 85]. This is why other treatment methods
are often used after the surgical operation. These treatment methods include chemotherapy
and radiation therapy. Chemotherapeutic treatments are drugs triggered by the cell cycle
phases. These drugs use specialized chemicals to eradicate the malignant cells while the
rest of the brain remains defended through the blood-brain barrier. However, malignant
cells may develop drug resistance in particular because of cancer cell heterogeneity, which
makes chemotherapy much less effective [85, 111, 113]. Radiation therapy has been con-
ventionally used over the last few decades, and often follows surgery to kill the remaining
border of cancer cells left after surgical resection.

Radiotherapy is a specialized science that has progressed quite significantly in recent
years as experts have improved conventional methods and introduced new ones to properly
target the malignant mass while minimizing damage to healthy tissue. Some of these new
methods include computer-assisted radiotherapy in which algorithms and software modules
are used to specify the treatment volume for irradiation [138]. Other software tools assist
in viewing the brain in 3D giving a more visible, and detailed image of the diseased region,
and help medical staff in treatment planning [22, 65].

In radiotherapy, the patient receives the appropriate radiation dose through beams com-
ing from different directions in a way that concentrates the radiation dose delivered to the
tumour and that minimizes the dose delivered to surrounding healthy tissue [138]. Radi-
ation therapy is effective but has many side effects including brain necrosis [19], toxicity,
and initiation of other malignant tumours in healthy tissue [135]. Radiation is usually ef-
fective in the first course of treatment. But it is not appropriate to reapply radiotherapy
to a recurrent tumour after a first treatment course because of radiation toxicity, as healthy
brain tissue surrounding the tumour may not tolerate another radiation dose [16, 18, 25, 32].
However, it is clinically known that a higher radiation dose delivered to an accurately spec-
ified treatment volume will ensure a better chance for cure and will reduce the chance of
malignant recurrence [50, 138]. It is also known that tumours are more likely to recur when
there is a high density of undetected cancer cells in the surrounding normal tissue or after
surgical resection due to the thousands of cancer cells left around the periphery of the al-
ready extracted tumour mass [96, 62, 26, 14]. In this way, tumours have been compared in
an analogous manner to a forest fire where the action of further spreading is happening at
the periphery rather than at the core of the fire [85].

Though these main treatment methods have helped extend the lives of thousands of
patients and perhaps provide the cure for some of these patients, current methods have
often fallen short of properly targeting the action of tumour growth and invasion, which
leads to malignant recurrence and further diffusion; the latter being even more difficult to
treat.

Mathematical and computational modeling research has offered significant contribu-
tions to cancer research in general over the past few decades and has helped provide bet-
ter understanding of tumour diffusion dynamics. Many of these mathematical models are
overviewed and cited in Swanson’s thesis [109]. Several of these models have been imple-
mented to predict or model tumour growth, to plan treatment and to help specify the target
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volume for radiotherapy. Other models were introduced to help quantify the effect of treat-
ment on tumour growth, to determine optimal treatment methods, and to study the effects
of various therapy strategies including combined treatments on specific tumours [111, 113].
Computational models with a learning component, in particular models that involve data-
driven learning, decision making and a prediction component, are the most recent and offer
much promise in understanding tumour growth, and in improving current treatment modal-
ities (see e.g., computer-assisted radiotherapy [138]).

The rest of this chapter presents an overview of mathematical models of brain tumour
growth, statistical analyses of glioma diffusion, and computer-assisted treatment plannning.
The following section of this chapter covers in detail each of these models and illustrates
how the standard approaches relate and compare to our proposed model.

2.2 Tumour Modeling

Current mathematical and computational models of interest can be grouped into two main
categories: microscopic models at the sub-cellular level describing internal activities within
the cell and at the cellular level speaking of cells division, proliferation and interaction, and
macroscopic modeling which studies overall tumour propagation, diffusion and the increase
in cell density.

Earlier models were simple and merely based on exponential tumour growth (see an
overview of these models in [85, 109]). These models were later modified to account for
the gradual slow down of the tumour growth rate when the neoplasm grows beyond a cer-
tain size or when the tumour mass becomes significantly large to form a necrotic centre
[85, 109]. Other models – in an attempt to provide a better explanation of tumour growth
behaviours – used cellular automata [59] to represent a more realistic diffusion process.

In this thesis, we model glioma growth at the voxel level where each voxel represents
8mm3 on the image volume. Our growth model takes into account attributes of the patient
and the tumour, and features of the voxel and of regions adjacent to the voxel. We initialize
our model from the GTV at an initial time point, and we predict (using learning and classi-
fication) the macroscopic volume of the tumour that corresponds to the GTV at a later time
point.

2.2.1 Macroscopic and Volumetric Modeling

Mathematical modeling of gliomas at the macroscopic level has represented the traditional
framework in predicting glioma growth and diffusion, and has been conventionally rec-
ognized as a practical method of quantifying and predicting volumetric tumour growth in
order to help improve treatment techniques. Macroscopic modeling is specifically useful
in identifying the tumour boundaries at a future time by using growth and proliferation
parameters.

We describe three standard glioma growth models at the macroscopic scale. The first
model uses cellular automata to model the different states (or changes) of the tumour cells
[59]. The second is a more recent model that presents three hyperbolastic growth models
that extend early mathematical growth functions [116]. The third model, also relatively
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recent, is based on a diffusion-reaction equation, and was the first to include a supervised
learning component for predicting the treatment volume [138].

Simulating Glioma Growth with 3D Cellular Automaton

The growth model presented by Kansal et al. [59] describes macroscopic tumour behaviour
by simulating the gompertzian growth [59, 11]. The ‘gompertzian model’ views the tu-
mour as a population of cells and the growth as a dynamic process in which proliferating
and inactive classes of cells interact. The gompertzian growth can be typically modeled by
non-linear differential equations describing the interactions of proliferating versus inactive
tumour cells. In this model, Kansal et al. use time-dependent parameters and constant pa-
rameters over three orders of magnitude in radius. These parameters include the probability
of division, the average tumour radius, the proliferating rim thickness, and the necrotic base
thickness. Changes within the tumour mass are described by simulating the fraction of di-
viding cells, the fraction of cells that become non-proliferating, and the necrotic regions.
This allows representing the transition of tumour cells from active, dividing cells (at the
periphery of the tumour) to the necrotic state (in the centre of the tumour mass). The sim-
ulation is designed to predict the rate of growth as the volumetric doubling time at given
radii, using an underlying lattice with variable grid size to allow the modeling of tumour
growth over different orders of magnitude. The results of the simulation are obtained by
averaging the radii of the cells at the edge of the tumour and of the necrotic region. The
model determines the probability of division of active cells and the space radius with which
cells divide or become non-proliferating. The volume and radius of the tumour are plotted
as a function of time. The type of cell (dividing, non-proliferative, or necrotic) in each grid
of the lattice is saved at the given times. The model acknowledges that tumours do not grow
into perfectly spherical volumes, and allows the radii to vary over the surface of the tumour.

In comparison with earlier, more simplistic models, Kansal et al.’s model [59] provides
a more realistic illustration of tumour growth behaviour in 3D at the macroscopic scale,
and also suggests useful simulation parameters that take into consideration the different
states of the cells inside the tumour. The model is evaluated, however, with one test case
that supports its validity. Also, the model is designed to simulate homogeneous tumour
pathology, i.e., it does not take into account the tumour grade and the genetic variety of tu-
mour cells. Therefore, the generality of the model remains in question – i.e., the simulation
[59] may not be able to represent low-grade tumours, and tumours with heterogeneous can-
cer cells – but it is acknowledged that the gompertzian growth is observed in GBM [138].
While Kansal et al.’s model does not assume radial uniform growth (as clearly stated by
the authors), the simulation may likely produce spherical tumour structures because it is
mainly concerned with active versus non-dividing cells within the tumour. The model is
not designed to describe the action of malignant diffusion and infiltration of cancer ten-
drils through surrounding normal tissue. In this, it implicitly assumes that the tumour is an
encapsulated mass with radial growth. Also, the simulation parameters do not express at
any level the heterogeneous brain anatomy. In reality, however, cancer tumours grow into
non-uniform masses and the malignant cells diffuse beyond the original tumour mass.

As opposed to Kansal et al.’s model [59] that describes the tumour in terms of proliferat-
ing, inactive and necrotic cell classes, our proposed model, CDM, predicts glioma diffusion
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in regions adjacent to the active border of the tumour. CDM assumes that occult cancer cells
that may have infiltrated through adjacent normal tissue are responsible for further tumour
growth. CDM does not use already-computed parameters or radii (as in [59]), but it ‘learns’
glioma diffusion patterns from patient data based on attributes describing the tumour and
the tissue adjacent to the tumour.

Hyperbolastic Tumour Modeling

The methods described in [116] represent some of the most recent mathematical models in
macroscopic tumour growth research. The three proposed growth models in [116], called
‘hyperbolastic models’ are designed to help predict and analyze volumetric, self-limited
growth behaviours of multicellular tumours. These hyperbolastic models extend earlier
methods [46, 92, 124, 129] that have been applied to several biological and medical stud-
ies. The proposed models [116] do not assume radial uniform growth, simulate asymmetric
growth patterns as in real tumours, and also accommodate the concept of increasing versus
decreasing tumours. However, these methods do not account for the various factors involved
in clinical tumour growth behaviour such as the infiltration of malignant cells throughout
normal surrounding tissue. Instead, Tabatabai et al.’s models [116] assume that tumours are
encapsulated, self-limited systems, not incorporating therefore the interaction between the
tumour and the adjacent normal tissue as well as the competition of cancer cells within the
malignant mass. Because of these simplistic assumptions, these models may not realisti-
cally represent clinical tumour diffusion behaviour. In addition, these models are general to
all types of tumours, i.e., they are not specifically designed to model gliomas, and therefore
they do not take into consideration the various structures of the brain anatomy.

Macroscopic Modeling and Supervised Treatment Planning

In his thesis [138], Zizzari contributed to glioma research with modules for three different
research areas: tumour detection, tumour growth modeling, and treatment planning. His
study of tumour growth modeling focuses on the development of a mathematical model
that describes tumour growth dynamics on the macroscopic scale. His approach integrates
a reaction-diffusion model, and uses parametric surfaces, compromising between the accu-
racy of the growth description and the computational complexity of the involved methods.
In this work [138], Zizzari describes tumour proliferation using tensor product splines and
differential equations, the solutions of which give the distribution of tumour cells with re-
spect to their spatio-temporal coordinates. The model has been designed and implemented
specifically to consider only the relatively simple volumes of glioblastomas (GBM). Zizzari
suggests that his proposed method can be extended to be generally applied to the modeling
of other evolving objects [138] but his model has not been applied to lower-grade tumours.

In addition to the macroscopic modeling of GBM tumours, Zizzari also introduced a
third module for automatically planning the treatment volume [138]. The purpose of in-
troducing this additional module is to provide a supporting tool that defines the treatment
volume for conformal radiotherapy in a more precise and standard fashion as compared
to conventional methods. This treatment planning module combines the use of both the
reaction-diffusion equation and a supervised learning task with a feed-forward neural net-
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Figure 2.1: Zizzari’s prediction of PTV [138]
Experimental results for Zizzari’s GBM growth model on CT brain images: yellow lines are the

GTV and PTV, respectively, obtained through a medical expert; adjacent white lines are the
predicted PTV from Zizzari’s proposed model. (Figure obtained from [138].)

work [138]. That is, the artificial neural network describes an appropriate radiation volume
according to the detected areas on radiographic CT images, where the GTV has been manu-
ally segmented, and according to the expected growth dynamics described by the reaction-
diffusion equation. To illustrate, the reaction-diffusion equation models the future expected
tumour growth, leading to an estimation of the Clinical Target Volume (CTV). Then, to
predict the Planning Target Volume (PTV), the neural network is applied to the same CTV
such that the control points of the tensor product spline that approximates the surface of the
computed CTV serve as input information to the neural network. The output of the neural
network is a set of control points for the PTV that are associated with another tensor product
spline, which describes another surface to approximate the predicted PTV (see Figure 2.1).
The association between the input control points for the CTV and the output control points
for the PTV has been established through training the neural network on samples extracted
from the CT images, manually segmented by human experts (as described in [138]). The
automatically predicted PTV has been compared to the PTV defined by a medical expert
(see Figure 2.1).

Zizzari’s work [138] provides the advantage of predicting the treatment volume in ad-
dition to modeling the tumour growth. But his model, like most traditional macroscopic
tumour modeling approaches, attempts to quantify future tumour growth from volumetric
and geometrical perspectives without considering biological factors – patient information,
brain anatomy, tissue heterogeneity, pathology, etc. – that have implications in tumour dif-
fusion. This is because his model was designed to specifically predict GBM diffusion only.
Therefore, though the proposed approach represents reasonable descriptions of macroscopic
tumour diffusion, it lacks a general method that could be applied to all tumour types, and
it is still too simple to explain the clinical interaction of the tumour with its surrounding
environment.

2.2.2 Glioma Modeling Based on White Matter Invasion

Unlike the traditional macroscopic and volumetric models that are mainly concerned with
describing the tumour volume as a self-encapsulated system, the trend in glioma research is
to study the factors involved in glioma diffusion. Many recent models incorporate anatom-
ical features to help model tumour growth with a more realistic view based on the charac-
teristics of the heterogeneous brain tissue. Some of these models extend the conventional
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modeling of gliomas at the macroscopic scale to explain tumour invasion at the microscopic,
cellular level.

In this section, we describe glioma diffusion models that take into consideration the
heterogeneity of brain tissue and models that use an anatomical atlas to recognize areas
of malignant invasion. These models show that gliomas are more invasive in white matter
tissue and that malignant cells may likely follow white fibres, which serve as a ‘highway’
to the proliferation of cancer cells while the invasive action of the tumour cells tend to be
slower in grey matter.

Differential Motility in Grey and White Matter

The model presented by Swanson et al. in [110] models glioma diffusion based on the dif-
ferential motility of gliomas in grey matter versus white matter. Differential motility is
estimated using Fisher’s approximation [84, 14] and is based on the suggested linear veloc-
ity of glioma cells in [17] from which are estimated the diffusion rates of glioma cells in
grey matter as compared to white matter. Swanson et al. suggest in [110] that microscopic
tumour invasion is not detectable on MRI scans, and that it is therefore important to identify
pathways of glioma invasion in order to help model tumour growth more accurately, which
would then have a direct implication in specifying more precisely the treatment volume for
irradiation. Swanson et al.’s model [110] extends a basic mathematical model of glioma
growth and diffusion based on the analysis of serial CT scans taken in the terminal year
of a patient with recurrent anaplastic astrocytoma (see [29, 119, 133, 14]). The following
equation summarizes this basic mathematical model:

Rate of change of tumour cell density =
diffusion of tumour cells + growth of tumour cells (?)

Swanson et al. extend this basic equation to account for the heterogeneity of brain tissue
in their new model [110]. In this equation, the diffusion coefficient D will have two different
values – i.e., the diffusion coefficient D is a function of a spatial variable differentiating
regions of grey and white matter. This function will express the faster malignant invasion
of tumour cells in the white matter as compared to diffusion in grey matter, i.e., Dw = 5Dg.
The diffusion parameter is estimated from experimentally observed linear velocities in grey
and white matter (see [17, 84, 14, 110]). The five-fold difference in the diffusion coefficients
in grey and white matter is used throughout the simulations [110]. More details about
the computations of equation parameters and the framework of the model are found in
[109, 110, 85]. Swanson et al.’s model offers an important contribution by accounting for
the heterogeneity of brain tissue. But it is not clear how the model has been evaluated as
there are not proper comparisons with clinical data.

Swanson et al. extended the work in [110] to simulate virtual gliomas as described
in [112] with the purpose of evaluating the effectiveness of medical imaging and current
glioma treatment. This virtual glioma model [112] quantifies the spatio-temporal growth
and invasion in three-dimensional space on a virtual human brain taking into account the
gross anatomic boundaries available through the BrainWeb [24]. Swanson et al.’s model
[112] is described as the rate of change of tumour cell population density – see the above
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equation (?) in this section. The simulation allows the virtual tumour to grow and migrate
within a 3D representation of the brain. The proposed model also tracks progression of tu-
mour growth from a diagnostic size of 3cm to a fatal size of 6cm in diameter. The model is
relatively simple as it focuses mainly on diffusion and proliferation excluding other factors
involved in tumour growth. The model is also easy-to-understand, and provides the flexi-
bility of varying different parameters though there is no quantitative measure of evaluating
the truthfulness and accuracy of the simulation.

Sawnson et al. used their original model in [110] to measure the effectiveness of chemother-
apy in both cases where chemotherapeutic drugs are delivered homogeneously to the brain
and in heterogeneous quantities to different brain tissue types [111]. This new model is
based on identifying white matter as favorable tissue for tumour growth and invasion while
grey matter is not [110]. The model explains that treatment is most effective in certain
brain regions such as the cortex and is least effective as the tumour moves radially inward
from the cortex and as white matter length increases. The model also illustrates tumour
growth over time both with and without chemotherapy, and shows that even for fairly ef-
fective chemotherapies, the tumour continues to grow though this growth is slowed down
when chemotherapeutic drugs are being delivered to the patient. White matter invasion is
clinically undetectable at first due to low concentration of the cancer cells but after a period
of time, cancer cells build up into a detectable mass. This model is particularly important as
it emphasizes the significance of taking into account the heterogeneity of brain tissue when
modeling tumour growth behaviour, treatment response, and recurrence.

In addition, Swanson et al. made use of their mathematical modeling of gliomas [110,
111, 112, 114] to illustrate the limitations of current imaging techniques, to explain re-
currence, and to suggest therapeutic intervention in [115]. Swanson et al. review several
of their findings in [113] where they also describe the modeling of patient survival time,
the modeling of lower-grade gliomas, and the modeling of chemotherapy and surgical re-
section. They also discuss the mapping and interpretation of their simulation results to
the threshold of detection on CT and MRI brain images (see detailed descriptions of these
various models and model framework in Swanson’s thesis [109] and in Chapter 11 of [85]).

White Matter Tract Invasion

Diffusion-Weighted Imaging (DWI) is a magnetic resonance technique that is sensitive to
the movement of water molecules [75]. Diffusion Tensor Imaging (DTI) is a modification
of DWI that is able to depict the anatomy of the white matter fibre tracts in the brain.

Price et al. [90] use T2-weighted scans and DTI sequences for 20 patients to determine
whether DTI of brain tumours can demonstrate abnormalities on T2 scans. Regions of
interest were drawn within the tumour as well as in white matter at distance from the tumour
and in areas of abnormality on DTI that appeared normal on T2 images. Results show that
abnormality detected on DTI was larger than that on T2 in most patients with high-grade
gliomas [90]. Price et al. conclude that white matter disruption can be identified using DTI
for high-grade glioma patients, changes in DTI may be due to tumour infiltration, and that
DTI may provide a useful method for detecting occult white matter invasion.

Clatz et al. [21] propose a model that simulates the growth of Glioblastoma Multi-
forme (GBM), the most aggressive and common gliomas. Clatz et al.’s model assumes that
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gliomas grow faster in white fibres in the brain. Their model is based on an anatomical at-
las that includes white fibre diffusion tensor information and delineation of brain structures.
Clatz et al. model tumour invasion with a diffusion-reaction equation and the mass effect
induced by the tumour growth with a linear elastic constitutive equation. Model results are
based on two consecutive axial scans acquired within a six-month time interval for the same
patient. The first scan is used in initiating the simulation and the second in measuring the
model’s accuracy. The model offers the advantages of patient-specific simulations and of
using diffusion tensor information in tracking white matter invasion.

We currently do not have access to DTI data that we could incorporate into our CDM
system, but as suggested by Clatz et al.’s model [21], using DTI data represents a promising
research direction as it helps more accurately indicate cancer invasion in white matter fibres.

2.2.3 Statistical Analyses of Glioma Diffusion

In this section, we describe some of the existing statistical studies that were performed to
analyze tumour diffusion and to quantify the capability of malignant cell invasion. The first
study measures the continuous growth of the mean tumour diameter in untreated grade II
gliomas using linear regression [73]. The second study is a test of two algorithms, nearest-
neighbour and surface modeling, to quantify the tumour volume and measure the growth
rates [49]. We also briefly mention the use of statistical modeling in measuring tumour
mass effect on anatomical deformations in the brain [83].

Estimating the Tumour Growth Curve with Linear Regression

Mandonnet et al. performed a statistical study [73] in which they reviewed MRI scans of 27

patients with untreated grade II gliomas. In this work, they present a model for proliferation
and diffusion of malignant cells to predict the linear growth of the mean tumour diameter.
Mandonnet et al. performed linear regression statistical analysis to estimate the average
slope of the growth curve of the mean diameter for low-grade oligodendrogliomas and
mixed gliomas. Results show that the mean diameter of the tumour varies among patients
and grows linearly during the follow-up period, at a predictable rate in its pre-malignant
phase, but does not obey exponential evolution. The reported average slope of the evolution
of the tumour mean diameter is 0.00113cm/day; this diameter increases by 4.1mm/year.
Mandonnet et al.’s statistical analysis has the advantage of access to the data of untreated
gliomas, which is not a usual opportunity. Because the data in this study is not affected
by treatment (i.e., as opposed to treatment data often including tumours decreasing in vol-
ume), parameters in Mandonnet et al.’s model can be reliably used in glioma diffusion and
radiological growth modeling.

In our model, however, we did not use the growth rate suggested by Mandonnet et
al. for two reasons. First, this growth rate is relevant to only low-grade and mixed gliomas
(i.e., Mandonnet et al.’s study does not include GBM) while our data represents various
tumour grades including high-grade gliomas. Second, the above growth rate is measured
for untreated gliomas while our data consists of studies of treated glioma patients where
tumour growth rates vary depending on patient response to treatment.
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Tracking Growth Rates with Nearest-neighbour & Surface Modeling

In their study of GBM growth [49], Haney et al. report the results of applying two 3D
image analysis algorithms to serial MRI scans. The algorithms, nearest-neighbour tissue
segmentation and surface modeling, were applied separately to the scans to track the rates
of volumetric change for contrast-enhancing tumours. The outputs of the algorithms were
compared to a manually defined standard of reference. Haney et al. claim, according to their
analysis results, that growth rates obtained with nearest-neighbour algorithm – measured in
terms of halving and doubling times – were highly correlated with the standard of refer-
ence, while those obtained with surface modeling were not, even though surface modeling
algorithm is reported to reliably quantify tumour volumes. Growth rates are calculated from
a time factor – doubling or halving – and from the interval time in days, and the volumes at
onset and the end of the interval period respectively. The significance of this work is in part
the segmentation and quantification of the changing tumour volume on the MRI scans, and
tracking glioma growth rates, which helps determine patient response to treatment. Also,
model parameters could be used in extending supervised pattern recognition approaches to
predicting potential tumour diffusion based on data in the MRI scans (Chapter 4).

Modeling Mass Effect based on Biomechanical Simulations

The work in [83] describes the effect of the increasing volume of the tumour mass on de-
forming the surrounding brain tissue. This effect has been modeled by employing biome-
chanical simulations of tumour growth that use the Abaqus CAE [1] environment. These
tumour growth simulations served in initiating a statistical model for predicting the anatom-
ical deformations induced by the tumour growth in the brain [83].

2.3 Discussion

As described in Section 2.2, the glioma diffusion models presented so far in the state-of-
the-art literature have been designed to mainly describe the geometrical growth of gliomas
as evolving objects. Many of these models introduced macroscopic descriptions of tumour
diffusion behaviour in terms of cell exponential growth, dividing versus necrotic cells, and
the proliferation of the malignant mass as a whole. Some of these models have modeled
tumours as self-limited, encapsulated systems, not taking into account the biological com-
plexity of the tumour cells, the interaction of cancer cells with surrounding normal tissue,
and the heterogeneity of the brain anatomical structures (see Section 2.2.1). These models
are not capable of tracking the diffusive, invasive action of malignant cells as they infiltrate
through adjacent healthy tissue. Also, these models tend to yield symmetrical or spherical
structures of the predicted tumour growth.

Other models incorporated anatomical factors that are believed to have a role in glioma
diffusion. These factors include the different motility rates of cancer cells in heterogeneous
brain tissue [110], and the more invasive nature of glioma cells as they spread through white
matter tracts [21, 90]. Anatomical factors considered also include the different brain struc-
tures that represent pathways of faster diffusion versus boundaries where tumours cannot
spread. These models are likely to be more reliable than the macroscopic models described
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in Section 2.2.1, and they will more closely predict the asymmetric structures of tumour
growth as clinically observed.

Statistical studies helped provide some insights into the understanding of glioma diffu-
sion. These statistical analyses (Section 2.2.3) were usually carried out to quantify glioma
diffusion and to track tumour growth rates in both cases of untreated [73] and treated [49]
gliomas.

It is worth noting that all of these models have been mainly concerned with specifically
predicting the diffusion of GBM, the most invasive type of gliomas. Then, researchers have
tried to extend their high-grade glioma predictions to model low-grade or mixed gliomas
[85]. Consequently, the literature lacks a general model that is capable of predicting glioma
growth behaviour without restriction to the tumour grade or pathology. In addition, all
models presented so far are evaluated by visual comparisons of the clinical tumour growth
or by numerically comparing model parameter values with experimentally reported values.
Neither of the researchers has performed thorough evaluations of glioma growth prediction
in terms of precision and recall measures [12].

Based on the above observations and the evaluations of the existing approaches, we
conclude that simplistic models are not capable of predicting clinical tumour diffusion and
it is therefore essential to identify tumour properties and biological factors that help explain
glioma diffusion. Based on our observations from the state-of-the-art literature and from
contemporary medical knowledge, we identify several factors that will contribute to more
successful glioma diffusion modeling:

• The tumour grade – might be implied by the growth rate since high-grade tumours
tend to grow much faster than lower-grade tumours as clinically observed

• The brain tissue – grey versus white matter

• The brain anatomy – regions that represent pathways versus brain structures that act
as a boundary to the spreading action of the malignant cells

• The neighbourhood at the periphery of the tumour where there is always interaction
between the malignant and the normal cells. These interaction regions where cancer
cells have likely diffused are characterized by the presence of edema and appear as
enhancing regions on T2-weighted images.

• The location of the tumour inside the brain – decides the shape of the tumour depend-
ing on surrounding anatomical structures, and helps estimate growth regions where
the tumour has induced anatomical deformations due to mass effect.

We incorporate these diffusion factors as learning features into a ‘general’ diffusion
model, CDM, that we present in this thesis. Our CDM model is a learning system that in-
corporates the above factors represented in terms of learning features and also includes
several other image-based and tumour-specific features that account for the spatio-temporal
aspect of the diffusion process (see implementation details in Chapter 4). Unlike some ex-
isting approaches that implicitly assume radial or symmetrical growth and try to predict the
macroscopic geometrical evolution of the tumour, our model does not make any assump-
tions about the shape or growth pattern behaviours of the tumour. Neither does it insist
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a-priori on the diffusion rates in grey versus white matter as in [110]. Instead, CDM learns
the glioma diffusion behaviour based on the training patient data and the learning features as
opposed to simulating virtual tumours. This learning task acts on the voxel level by training
on a large number of voxels – at the tumour periphery – obtained for several patients. This
makes our prediction model more accurate as we consider voxel-specific properties in the
training fold and voxel-specific labeling in the classification component, rather than a rough
modeling of the tumour as an evolving object, conventionally implemented in macroscopic
prediction approaches. It is worth emphasizing that unlike Zizzari’s learning method [138],
CDM does not learn control points in a predicted approximation of the treatment volume,
but it learns the factors and features that contribute to tumour diffusion. Therefore, CDM is
a more sophisticated learning system that describes more tangibly the characteristics of the
tumour and of the diseased region tracking potential diffusion according to features specific
to the tumour and to the vulnerable region adjacent to the tumour.

We perform patient-fold testing and we quantify the accuracy of our predictions in terms
of the standard precision and recall measures, which are more accurate than visual and
graphical comparisons of model results against clinical tumour growth as done in [21, 138].
We initialize the model from the manually segmented GTV on the MRI patient scan at one
time and we evaluate model performance from the segmented GTV of the same patient at a
later time (within a few months interval).

CDM is a general model that can be applied to tumours of different grades, as opposed
to GBM-specific modeling in existing approaches. But the model does not offer treatment
planning and radiation dose specifications as these are left to the discretion of medical
experts.

2.4 Summary

In summary, gliomas are usually treated with either of chemotherapy, radiation therapy, sur-
gical resection, or a combination of these treatment methods. Unfortunately, conventional
glioma treatment methods have fallen short of providing the cure to the large numbers of
patients; in particular those diagnosed with high-grade gliomas. This is why thousands of
researchers around the world have dedicated their efforts to studying and modeling gliomas
in order to improve conventional treatment modalities or to discover new treatments.

Numerous mathematical models have been implemented in an attempt to understand
the factors that play a role in tumour growth. Some of these models were simple and made
assumptions with respect to tumour growth behaviour such as radial growth patterns and
self-limited, encapsulated tumours. These methods modeled the tumour at the macroscopic
scale as an evolving object but did not account for the biological complexity within the
tumour cells nor for the heterogeneity of brain tissue. More recent mathematical models
are more sophisticated and take into consideration the biological factors involved in tumour
growth and invasion.

In Medical informatics, research areas range from the development of tools and algo-
rithms that are capable of automatically detecting the tumour volumes (GTV) on the MRI
or CT scans to predicting cancerous tumour diffusion. Research studies also include but are
not restricted to disease diagnosis, the quantification of drug efficacy, the development of
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treatment planning modules, and the improvement of conventional treatment methods.
As observed through the sections of this chapter, there exists many methods that use

mathematical approaches to quantify or predict tumour growth. Some methods are limited
to modeling virtual tumours rather than using clinical data, which might be due to the dif-
ficulty of obtaining patient data. Other methods that use clinical data, whether to initialize
a simulation or to measure model accuracy, are often implemented to specifically model
glioblastomas (GBM), the most common and aggressive brain tumours. So far, the state-
of-the-art literature did not present a general glioma growth model that would be able to
predict malignant diffusion in different tumour pathologies without limitation to a particu-
lar tumour grade.

To the best of our knowledge, our CDM system is the first general model that uses
machine learning algorithms to learn glioma growth patterns from real patient data, and to
predict tumour growth at the voxel level, based on a classification model learned from the
patient data and from voxel-specific features.
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Chapter 3

Glioma Modeling Framework

As described in Chapter 2, many researchers base their work on simulating virtual tumours
often because of the lack of clinical data. Access to patient data is usually under restrictions
by health institutions due to confidentiality matters; because of this, the opportunity to
collect such data is not always available to researchers. But for the purpose of this project,
we were able to collect a set of MRI scans for a variety of glioma grades, which is crucial
to the learning and prediction components of our model and to the evaluation of the results
(see Chapter 4).

In this chapter, we give an overview of the framework of the proposed model including
the tools and methods utilized in the several steps of the data processing pipeline and model
development. Because data is an important part of this work, we also describe in this chapter
how we preprocessed the MRI scans, and extracted the learning features from the processed
image slices.

We collected the MRI scans at the Cross Cancer Institute (CCI) in July 2003. The
database from which we obtained the brain images was relatively recent. The studies that
were available to us cover only from the year 2001 to July 2003.

The total dataset we collected contains multiple consecutive scans for about 200 pa-
tients. In the dataset, the largest time interval between two consecutive scans of a single
patient is less than two years. Each scan consists of several series in three different views of
the brain: axial, sagittal, and coronal. The axial view is usually represented in three differ-
ent modalities: T1, T1 with contrast, and T2. Each series may be either an axial, sagittal or
coronal view of the patient’s brain. Each series has 20−21 consecutive slices with a 6.5mm
slice-interval. Axial images are usually taken in the three main modalities: T1-weighted,
T1 with contrast, and T2-weighted. See Section 1.4 for more detailed descriptions of MR
imaging modalities and the interpretation of brain images.

Combining the slices of a series or the axial, sagittal and coronal views of the same
brain provides medical staff with a 3D image of the patient’s brain and helps them identify
the diseased regions. Scanning the patient after a surgical procedure or during a radiation
course allows medical doctors to follow-up the patient’s progress and to track further tu-
mour growth. Most patients, in particular those diagnosed with high-grade gliomas, are
scanned regularly depending on diagnosis and treatment.

We carefully studied the data collection and selected a subset that is most useful to the
project. The empirical data actually used in the experiments represents only a small subset
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of the overall 200-patient collection. We have selected this experimental subset based on
two main factors: the quality of the scan, and the visible tumour growth observed between
the consecutive scans of the patient. Our data subset covers a variety of patients from
different age categories, and with different tumour grades ranging from low-grade gliomas
to GBM. The experiments reported in this thesis were performed only on the axial views of
the scans using all three modalities.

We first describe the steps involved in the data processing pipeline. Processing the data
has been a large part of the framework in this thesis and is a pre-requisite for the feature
extraction, and the learning and classification tasks. The processing of the data has been
performed with the help of our research team, using the methods suggested in [95]. Data
processing includes noise reduction and other important elements that are required for the
implementation of the proposed diffusion model and that help improve system performance.
The implementation of the proposed model can be summarized in three steps: feature ex-
traction, learning and classification, and the modeling of the tumour growth volume. These
three steps represent the contribution of the thesis.

The steps involved in the framework of the proposed model are outlined as follows and
also illustrated in Figure 3.10 (at the end of this chapter):

1. Noise reduction is meant to reduce the effect of noise, inter-slice intensity variations,
and intensity inhomongeneity in the brain imaging data sequences.

2. Registration is the process of spatially aligning the image to a template in a standard
coordinate system and of warping the image regions to the template.

3. Intensity standardization is transforming the image intensities to provide a more
meaningful approximation of the image regions aligned to those in the template.

4. Tumour segmentation is identifying the tumour volume and boundaries in the brain
scans either manually or automatically.

5. Temporal interpolation is a method for modeling the intermediate tumour volume
between two time points given the initial and final tumour volumes. This method can
be utilized in standardizing the tumour volume increase throughout the dataset.

6. Tissue segmentation is separating regions of brain tissue into distinct classes that will
be used in the classification and modeling tasks.

7. Feature extraction is finding voxel-level features that provide information about the
regions adjacent to the tumour.

8. Classification is the step in which we use a classifier, learned from the patient data
and the attributes of the voxels, to assign each unlabeled voxel in the brain volume of
the test patient to the ‘tumour’ or ‘non-tumour’ class.

9. Diffusion modeling is the actual prediction of the tumour growth – given the initial
tumour volume of the test patient at one time – based on the probabilistic labels
predicted in the classification task. The output of this final step is a contiguous 3D
volume that corresponds to the volume of the tumour at a later time.
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We briefly mention from a technical perspective the image formats involved in the pre-
processing of the data. The medical images we acquired from the CCI were stored in a
format specific to medical tools and applications: Digital Imaging and Communications in
Medicine (DICOM), created by National Electrical Manufacturers Association [34]. This
is the standard image format in the medical field and is used in storing MRI patient scans.
Each DICOM image file has both a header and a data file containing the stream of pix-
els. The header contains information about the patient, type of scan and image dimensions.
We removed patient data from the DICOM header due to patient confidentiality issues. In
addition, we converted the image volumes from the DICOM format to Portable Network
Graphics (PNG) due to the lack of portability of the DICOM format. For this purpose, we
used DicomWorks [35] to obtain PNG image slices for each of the scans by recursively
processing the subfolders of the patients. The PNG files were then converted to Portable
Pixel Map (PPM) image format to make the data available for feature extraction.

3.1 Noise Reduction

This is the first step in the image processing pipeline and is meant to reduce the effect of
noise in the imaging data sequences. It is preferable to perform noise reduction before fur-
ther processing of the data but this step is not as fundamental as other processing steps (see
Sections 3.2 and 3.3), which are required for the prediction task. We use the term ’noise’ to
refer to inter-slice intensity variations, intensity inhomogeneity across the consecutive slices
of an image volume, and misalignments of patient scans along the z axis. The input to the
noise reduction step can be either the raw images or the transformed images after registra-
tion – depending on the type of noise reduction methods used in this first step. The output
will be the same images but where the noise in the data, intensity variations intensity inho-
mogeneity, and misalignments having been reduced. In the preprocessing of our data, the
inter-slice intensity variation reduction was performed before registering the images while
inhomogeneity reduction and slice alignment were performed as post-processing steps to
image registration since registration helps partially reduce noise in the image volumes.

3.1.1 Inter-slice Intensity Variation Reduction

Inter-slice intensity variations are observed as sudden changes in the intensity values across
the consecutive slices of a scan, and depend on the acquisition protocol used in producing
the imaging data sequences. As a result, it is common to observe in a single scan even-
numbered slices being noticeably darker than odd-numbered slices or vice versa [97]; see
Figure 3.1. Because this intensity variation effect is present in some of our data, we applied
inhomogeneity reduction to the scans. Several methods can be applied in smoothing the
intensity variations of MRI scans. Some of these methods are surveyed in [95]. For the
purpose of our task, we used a local implementation of the weighted least squares estimation
method for reducing inter-slice intensity variations [95]. This method computes the linear
mapping to the median slice in the sequence from each of the two adjacent slices, transforms
these slices, and then estimates the intensity mappings of their adjacent slices, until all slices
have been transformed. This method has the advantage of accounting for the presence of
tumours in the scans (Figure 3.1).
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Figure 3.1: Example of inter-slice intensity variation reduction
Top: slices from same scan before reduction of inter-slice intensity variation. Note the alternating

between bright and dark slices. Bottom: the same slices after reduction of inter-slice intensity
variation. The images are moving from bottom to top of the patient’s head, left to right.

3.1.2 Intensity Inhomogeneity Reduction

Intensity inhomogeneity, or bias field, is the corruption with a slowly varying multiplicative
spatial field across the image volume, and represents one of the major problems of auto-
mated MR image segmentation. This problem is inherent to MR imaging and is caused by
the limitations of the current MRI equipment patient-induced electrodynamic interactions
[98]. Bias field is not always visible to the human observer, but it causes significant tissue
misclassification problems when intensity-based segmentation is used.

Therefore, it is required to correct intensity inhomogeneity in the image volume prior to
segmenting it into the distinct tissue classes (see Section 3.6). Several bias field correction
methods are surveyed in [45, 93]. Due to the lack of real data and of studies that effectively
compare such methods, it becomes difficult to quantitatively measure the performance of
each of these methods. This is why it seemed reasonable to choose the intensity inhomo-
geneity correction feature provided in SPM [6], which is the same tool we also use for the
tissue segmentation step described in Section 3.6. Intensity inhomogeneity correction was
applied prior to image segmentation by setting parameters that control the correction of bias
artifact.

3.1.3 Slice Alignment

Slice and angle misalignment is a problem observed in some image volumes, even in con-
secutive studies of the same patient (see Figure 3.2). This problem occurs when the patient’s
brain is being imaged as the MRI technician may start the scanning process at a different an-
gle of the brain or at a different position along the z axis of the patient’s head, as compared
to previous scans of the same patient. Consequently, the same slice position in different
scans of the same patient may show different brain structures. For example, the tumour or
the ventricles may appear in different positions along the z axis in the consecutive scans of
the same patient.

It is important to address this problem because training, prediction, and model evalua-
tion are performed at the voxel level. Therefore, the voxels must align properly along the
z axis in the successive image volumes for each of the patients. Slice and angle misalign-
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Figure 3.2: Example of slice misalignment along the z axis
Top, left to right: slices of an image volume at one time point showing brain anatomy from lower to

upper brain. Bottom row: slices of an image volume of the same brain, at a later time. Images of
the top row correspond to images of the bottom row but they show slightly different brain regions

due to misalignment along the z axis.

Figure 3.3: Reduction of slice misalignment after image registration with SPM
Images correspond to those in Figure 3.2. SPM’s image registration to the Colin Holmes template

has helped significantly reduce slice misalignment along the z axis in most cases.

ments are partially corrected after registering the brain image volumes to a template with
the help of SPM’s spatial registration algorithm [3, 4, 43]. In particular, misalignments may
be entirely eliminated with image registration to a template if the misalignment along the z
axis is only 2 − 3mm (see Figure 3.3). In rare cases, however, the misalignment can be as
severe as a 10mm difference on the z axis between image volumes. This misalignment can
be corrected to a large extent with image registration to a template of an individual brain
(e.g., the Colin Holmes template [54]) rather than an average template of several brains. In
addition, semi-automated adjustment can be performed by sliding the brain images up or
down the z axis by the number of misaligned slices. This adjustment needs to be performed
only on segmented tumour volumes after registration and spatial interpolation. But we have
not needed to apply this type of adjustment to any of the image volumes as registering the
images to the Colin Holmes template [54] – a high quality average image of the brain of an
individual rather than a population – helped eliminate the misalignment from the majority
of the image volumes and significantly reduced severe misalignments.
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3.2 Registration

Image registration is the task of spatially aligning two image volumes. A registration algo-
rithm aligns two image volumes by computing a transformation matrix that maps one image
volume to the other, the second image usually being a template. When the registration task
is complete, the pixels in the transformed image have the same size and locations as the
corresponding pixels in the template. Image registration consists of several steps which
are performing a linear affine transformation, followed by non-linear warping and finally
spatial interpolation. An accurate algorithm should not only be able to align the image
volumes such that their similarity is maximal but the algorithm should also provide some
degree of regularization to prevent unreasonable image deformations, in particular with the
presence of tumours in the brain images. The registration steps below aim at registering a
patient image to a template image where both image volumes have the same modality (i.e.,
aligning a T1-weighted image with a T1-weighted template). But there also exists registra-
tion methods that align images from different modalities (e.g., aligning T1-weighted images
with T2-weighted images).

The registration algorithms are applied to the data after the inter-slice intensity variation
reduction step. The output of the registration process is a transformed image that has the
same coordinate system and highly similar spatial regions as the template. The registration
process is fully automated and performed on three-dimensional image volumes, and does
not depend on any manual recognition or segmentation of the spatial regions and landmarks
in the images or the template. This automatic registration method accounts for the variety
of the human brain anatomy that is obvious in the data and in particular with the presence
of large tumours in the brain scans.

There are several image registration packages that could be used to accomplish the lin-
ear and non-linear registration and spatial interpolation, as described below in the rest of
this section. But we ultimately chose SPM (Statistical Parametric Mapping [104]) which is
a package that combines several algorithms specifically designed for the analysis of brain
imaging data sequences. SPM is commonly used for processing brain images in the research
of brain diseases including cancer. Statistical Parameteric Mapping refers to the construc-
tion and assessment of spatially extended statistical processes used in testing hypotheses
about functional imaging data. The imaging data sequences can be a series of images from
different cohorts, or time-series from the same subject. SPM processes brain imaging data
sequences (or an image volume) in a special format, the ANALYZE format, such that the
image volume consists of a header with dimensional information and a file containing the
stream of voxels. SPM requires setting several parameters in order to obtain the best pos-
sible image registration and noise reduction. SPM provides the advantage that it is easy to
vary its different parameter settings, and so it is widely employed in the processing of brain
imaging data sequences. We explain in the remainder of this section the significance of
each of the registration steps and the algorithm utilized in performing each step. In Figure
3.4, we show an example of image volume registration using SPM.
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Figure 3.4: Example of an image volume before and after registration
Top, left to right: slices from the same image volume moving from the bottom to the top of the

head before performing the registration steps with SPM. Bottom: slices corresponding to the top
row after registration to a template, non-linear warping and spatial interpolation. Note that the

input volume to the registration process is 20 slices while the output is a 91-slice volume.

3.2.1 Linear Registration

The registration of the MR image volumes to a template provides a way of linearly aligning
the images within a standard coordinate system and allows the standardization of the voxels
size. This linear registration step is required by our feature extraction task because the
learning and classification components are performed on the voxel level. That is, when we
register the images to a standard template, the classifiers can use same size voxels while the
voxels in the original image may be of different sizes.

The most commonly known brain coordinate system used in brain image registration
is the Talairach coordinate system [117]. The Talairach brain is the brain dissected and
photographed for the Talairach and Tourneaux atlas labeled with an approximation of the
functional areas in the brain. Another well-known coordinate system is the Montreal Neu-
rological Institute (MNI) system [37, 38], which is defined based on an average template
of a number of individuals, and is therefore more representative of the average brain and
provides spatial prior probabilities. The MNI template was built by first manually defining
landmarks on 241 normal MRI scans and by approximately matching the brains to the Ta-
lairach atlas. Then ‘MNI305’, the first MNI template, was made by matching 305 normal
scans, with the help of a linear algorithm, to the average of the 241 brains that were al-
ready matched to the Talairach atlas. The current standard MNI template is the ICBM152,
which is the average of 152 normal MRI scans that have been matched to MNI305. An-
other important template produced by MNI is the Colin Holmes [54], which is a template
of a normal brain of an individual rather than a population. Holmes was scanned 27 times,
and the scans were coregistered, averaged and matched to MNI305 to produce a high detail
MRI dataset of one brain. MNI templates are included and used by the linear registration
and non-linear warping algorithms in SPM [3, 4, 43]. See Figure 3.5 for an example slice
of each of Colin Holmes, and the ICBM average templates.

To linearly register our dataset of MRI scans, we used the Colin Holmes template be-
cause of its high resolution and image detail. We performed image registration to the Colin
Holmes template by utilizing the linear registration method provided through the SPM
package [3, 4, 43]. This method has several advantages as it accounts for noise in the
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Figure 3.5: Spatial priors used in registration and feature extraction
Left to right: an example slice of each of the Colin Holmes template, ICBM T1 average template,

T2 average template, and the brain mask prior.

data including intensity inhomogeneity, anisotropic voxels, image tilts, and inter-slice gaps.

3.2.2 Non-linear Warping

Non-linear warping is a step that follows linear registration, and consists of applying some
deformations to the image volume so that the image would be more properly lined up with
the template to which the image is registered. The purpose of using non-linear registration
is to partially correct observable differences in the images by mapping spatial regions on
the image to the template. Differences in the images include the head shape of the patient,
the anatomical variability across patient brains, and other image abnormalities. Non-linear
registration significantly increases the degree of resemblance between the image volume
and the template, and allows more reasonable comparisons between the anatomical regions
of the image and those of the template, in particular with the use of a template of a single
individual rather than an average of a population. Another alternative is to warp the template
to the patient’s image but this option will not provide the advantage of correspondence
between the regions in the images and the regions in a standard template. Since the learning
and prediction tasks in our proposed model act on the voxel level and use data instances
from several patients, it is preferable to warp the brain images to the template rather than
alternatively warping the template to patients’ images thus maintaining standard regions
across the patients’ images.

The non-linear registration algorithm we applied is included in the SPM package [104]
and presented in [4], a widely-used algorithm known for its computational efficiency and
performance. We have chosen this particular algorithm among several others as it also
provides a high degree of regularization to correct for excessive local deformations when
the image is being warped to the template.

3.2.3 Spatial Interpolation

Spatial interpolation is applied after non-linear registration and is used to compute the lo-
cations and intensity values of the pixels in the transformed image volume. Among the
several spatial interpolation methods, we use high-order β-splines spatial interpolation pro-
vided through SPM [104] and described in [7]. High-order β-splines interpolation is known
for its accuracy and computational efficiency as compared to other spatial interpolation al-
gorithms; see [95]. The input to the spatial interpolation is a 20-slice image volume that has
already been registered and warped to a template. The output is a 91-slice volume that has
voxel size 8mm3. The number of slices in the output volume and the voxel size are spatial
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interpolation parameters that can be set by the user. In our data, we generate 8mm3 voxels
(rather than 1mm3) to reduce the number of training instances per brain volume (i.e., to
increase the efficiency of the learning algorithms) while still using small enough voxels to
help predict tumour growth as accurately as possible – as there is always a trade-off between
efficiency and accuracy.

3.2.4 Summary of the Registration Task

In summary, image registration includes three steps applied to the MRI brain scans, to
produce the information that we use later in the learning and prediction components of
the proposed glioma diffusion model. These three steps are linear registration, non-linear
warping, and spatial interpolation. The linear registration of a brain scan to a template is
used to produce a standard coordinate system for the image volumes in the dataset. The
non-linear warping performs some deformations on the image volume so that the regions
in the image match more properly the regions in the template. The spatial interpolation
computes the intensities and voxel sizes in the transformed image, and fills the inter-slice
gaps.

3.3 Intensity Standardization

Intensity differences across the image volumes of the same and of various patients can
be observed as relatively brighter or darker image volumes (see Figure 3.6). These inten-
sity differences across patients’ scans represent a problem when performing intensity-based
classification. Intensity standardization is a fundamental step that allows the intensity val-
ues of the brain images to be utilized in the classification framework without accounting
for intensity differences that would have required patient-specific training. The goal of the
intensity standardization step is to convert the intensities of the input image volumes to an
intensity distribution where the values of the intensities will provide a more meaningful ap-
proximation of the anatomical information in patient scans. This is done by converting the
intensities of the input image to an intensity distribution where the intensity values will have
a more meaningful anatomical approximation. But unlike inter-slice intensity variation re-
duction, intensity standardization is a more complicated task due to the presence of tumours
and edema that differ in size and locations in the brain images of the dataset. The main
methods suggested in the literature for this task are histogram-based, model-based, and
template-based [137] approaches. But histogram-based and model-based methods are not
suitable with the existence of large tumours and edema sections in the brain images, which
will corrupt the histogram distributions and model estimations. These approaches and other
intensity standardization methods are surveyed in [95] that also suggests a symmetry-based,
weighted linear regression approach that can be applied to each slice of the image volume
rather than computing a global factor to reduce computational cost. Since this weighted lin-
ear regression method [95] has been tested on a subset of our data collection, and is robust
to the presence of tumours in the images, we selected it among other methods to perform the
intensity standardization task. Figure 3.6 shows an example of the output of this method.
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Figure 3.6: Example images before and after intensity standardization
Top: slices obtained from different image volumes for four different patients after registration to a
template before performing intensity standardization. Note the intensity differences across the four
slices, in particular the noticeably darker intensities of the second and fourth slices. Bottom: slices

corresponding to top row after intensity standardization.

3.4 Tumour Segmentation

In order to model tumour growth, we needed first to delineate the tumour volumes from the
brain images. Throughout this thesis, we use the term ‘tumour segmentation’ to refer to the
identification of the tumour boundary or the delineation of the tumour volume on the brain
scans either manually or automatically. Tumour segmentation has been the most challeng-
ing image processing problems we have encountered throughout the entire data processing
pipeline. We have looked into several automatic tumour segmentation methods and com-
pared their usability given the data we had collected. We found that some of these methods
required preprocessing steps such as brain extraction (or skull stripping), which in turn in-
volved using brain extraction tools. MEDx [80] is a software package that provides several
brain image processing tools including an implementation of the skull stripping algorithm
proposed in [100]. But due to the presence of the tumour in the image, brain extraction
algorithms do not usually perform well and eventually remove from the image the tumour
along with the skull, in particular when the tumour is significantly large. This is because the
tumour and the bone may have a similar signal on the image in particular with the presence
of a contrast agent and when the tumour location is near the skull. Some of the tumour
segmentation methods that we have initially investigated for the purpose of our task are MR
ADORE (originally developed to recognize pine trees in forestry images) [13], fuzzy cluster-
ing [20], and snakes (a method of generating contours) [52, 53]. But these methods require
some preprocessing steps such as brain extraction and algorithm initialization, are sensitive
to noise in the MRI scans, and therefore incapable of finding contiguous tumour regions
in the image without first applying these preprocessing steps. There exists a multitude of
other automated tumour segmentation algorithms including supervised and unsupervised
methods, several of which are surveyed in [95]. Some of these methods are simple and
rely on the contrast agent in the brain image to segment the enhancing tumour but often
miss necrotic regions. Other methods are more robust and use Expectation Maximization
or classification-based approaches that utilize intensity and textural features from the im-
ages (see descriptions of these methods in [95]). Overall, automated tumour segmentation
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Figure 3.7: Example of segmented tumour and edema volumes
Left to right: T1-weighted image with contrast and T2-weighted image (before any processing),

followed by the manually segmented tumour and edema volumes obtained from these T1-contrast
and T2 slices, respectively.

is still an area that could use much more research and improvement.
Because tumour segmentation is a challenging problem that can be invested in a separate

research project and because the accuracy of the segmented gross tumour volumes (GTV) is
a requirement for our system, we chose to manually delineate the tumour volumes from the
brain images with the help of a tool locally implemented. The annotations of the tumours for
the selected data subjects were manually completed and were verified by medical experts.

The manual tumour segmentation task can be summarized in three distinct steps. First,
the delineation of the tumours was done by manually drawing the contour of the tumour
on T1-contrast images where the tumour is often visibly enhancing. Annotations of edema
have been drawn on T2 images where fluid (water or the tumour’s leaky blood vessels)
enhances. Second, we extracted the segmented tumour volumes and edema volumes from
the annotated images, and finally, we applied the above registration steps to the segmented
volumes to obtain tumour and edema images in the same coordinate system and pixel size as
for the other registered images. These registration steps are required for feature extraction,
and for the voxel-level learning and classification tasks.

Manual segmentation of tumours was our best option in comparison with the existing
automatic methods, but it should be mentioned that it is after all a subjective task susceptible
to radiologists’ agreement. That is, different radiologists may have different interpretations
with respect to the determination of the tumour volume and boundaries on the MRI scan
[23, 58, 78, 102]. More specifically, Mazzara et al. [78] quantified an average of 28%
variation between individuals performing the same brain tumor segmentation (the variation
ranged from 11% to 69%), and quantified a 20% variation within individuals repeating the
task three times at 1-month intervals. Manual segmentation also includes an error margin at
the tumour boundary, i.e., if the same radiologist segments the same tumour twice in a row,
the two segmentations will likely be different especially at the tumour boundaries. Despite
these issues, the annotation of a human expert will still be more accurate than automatic
methods as it ensures that normal brain regions that have a similar signal as the tumour
(e.g., enhancing blood vessels on T1-contrast and CSF on T2-weighted images) are not
incorrectly delineated as part of the tumour volume. But manual segmentations are usually
not as consistent as automated ones when a number of tumours are being segmented due to
subjective judgement and the error margin at the tumour boundaries.
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3.5 Temporal Interpolation

While spatial interpolation consists of computing the pixel sizes and filling the inter-slice
gaps in an image volume, temporal interpolation is associated with the prediction task (see
Section 4.3.3) as it provides a method of standardizing the growth increase and quantifying
tumour growth among patient studies in the experimental dataset. Temporal interpolation
is a method that we have investigated to provide a standard tumour volume increase across
the training data instances. For example, in a GBM patient, the tumour may become twice
as large over 6 months while in another patient, diagnosed with a low-grade astrocytoma,
the tumour volume may only increase slightly over one year. This lack of standard volume
increase among patient scans represents a problem when performing volume-based classifi-
cation. Temporal interpolation provides a solution to this problem as it allows the modeling
of the tumour based on a standard increase in tumour volumes across patients’ scans (see
Figure 3.8).

But we have ultimately eliminated the temporal interpolation step from the data process-
ing pipeline. In this section, we define temporal interpolation, we describe the challenges
involved in implementing the algorithm, and we explain the reasons in eliminating this
step from the data processing and the alternative techniques that can be used in generating
training data.

The input to a temporal interpolation algorithm is the tumour volumes from two consec-
utive patient scans. The output is a modeling of the tumour’s shape at an intermediate time
point between these two consecutive scans. The volume of the interpolated tumour is spec-
ified by the user (as a value that depends on a standard growth factor across patient scans),
and must be larger than the tumour size observed on the first of two consecutive scans and
smaller than the volume detected on the second scan. Therefore, the algorithm can be ap-
plied only if there is sufficient tumour growth between the consecutive scans of the patient.
The output of the temporal interpolation will be used as the ‘truth volume’ from which we
obtain the class labels in the prediction task and which we use in evaluating the results of
the diffusion models. Since the interpolation’s output will be used as ground truth, it is
necessary that the interpolation algorithm be able to accurately model the tumour’s shape
and the direction of growth given the volume at an intermediate time. We provide below
a brief overview of the temporal interpolation method and how we initially used it in the
learning and prediction components of the proposed diffusion model.

Given the tumour volumes at two consecutive time points t0 and t2, our temporal inter-
polation method is designed to model the tumour’s shape, volume and direction of growth
at a particular but unknown time point within the time interval between t0 and t2. For exam-
ple, we may have two consecutive scans at time points t0 and t2 respectively. But we may
not have any scans for the patient at time t1 such that t0 < t1 < t2. Given a user-specified
tumour volume v1 that is larger than the original volume v0 at time t0 but smaller than the
volume v2 at time t2, the temporal interpolation algorithm should ideally be able to model
the tumour at time t1 based on its volume v1. The challenge in this task is to be able to im-
plement an accurate algorithm that correctly models the unknown shape and the direction
of growth of the tumour at some unknown time t1 when the tumour reaches a user-specified
volume v1 where v0 < v1 < v2. Note that we assume consistent tumour growth between t0
and t2 (based on a growth factor specified by the user), and we exclude subjects where the
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tumours have decreased in volume due to surgical operations or radiation therapy.
Given the properties that the temporal interpolation algorithm should have, the liter-

ature did not provide standard methods that can be directly applied to brain images and
particularly to tumour volumes. We implemented a simple interpolation algorithm that al-
lows the user to model the tumour volume v1 given an initial and a final volume, v0 and v2,
respectively. This implementation consists of three steps. First, we compute the Manhattan
distances between the border voxels of the tumour at time t0 and the border voxels at time
t2. We start from boundary pixels of the tumour volume at time t0, and grow the tumour
outwards recording the shortest Manhattan distance until we hit the boundary at time t2.
The second step is to compute the normalized Manhattan distances. To obtain these nor-
malized distances, we divide the Manhattan distances by the maximum distance along the
path. Finally, we compute the tumour volume at time t1. We do this by filling in adjacent
voxels starting with those that have the highest normalized Manhattan distance, until we
obtain the user-specified volume v1.

To test the performance of the temporal interpolation algorithm, we must have access
to at least several instances of three scans of the same patient, such that the algorithm will
model the tumour volume at the intermediate time point among these three scans. Because
our data collection contains only a few instances of three consecutive patient scans that
show significant tumour growth across the three scans, it was not feasible to thoroughly test
the above implementation. In several cases, consecutive scans were taken at 3 − 6 months
interval; many of these did not have progressive tumour growth within these time intervals,
which made it difficult to properly quantify the average performance of our implementation.
Also, treatment (usually surgery and radiation) is a factor that affects the tumour growth rate
and direction. In some cases, it may not be possible to accurately model the location and
shape of the tumour at volume v1 simply based on the volumes and shapes of the tumour at
times t0 and t2.

We tested our temporal interpolation method on two patients with invasive glioblas-
tomas; each patient has three consecutive scans where the tumour volume consistently in-
creased. We modeled the tumour volume v1 for each patient given the tumour volumes at
times t0 and t2. We evaluated the results of the interpolation algorithm against the volume
v1 detected at the intermediate scan at time t1. This evaluation of the algorithm yielded
only 65 − 70% accuracy.

In addition to performance concerns, applying temporal interpolation would restrict the
empirical dataset to only those patients that meet a specific threshold of tumour volume in-
crease. This is because the tumour volume increase should be standardized among patients
when performing volume-based classification. For example, if the classification is based on
a growth factor of 2, all tumour instances that did not show growth at least twice as large
as their initial volume at t0 will be excluded, which will result in restricting the number of
data instances we could use in the training and classification tasks to only tumour instances
that increased in volume by more than (2 v0), and will not represent various tumour grades
in particular low-grade gliomas.

Given the restrictions imposed by the temporal interpolation method, we eliminated this
step from the data processing framework. We alternatively introduced features that describe
the volume increase computed from the tumour growth observed between the consecutive
scans of the patient. We also obtain the class label required for the prediction task from the
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Figure 3.8: Comparison of the real tumour with temporal interpolation results
The slices shown in the figure are obtained from scans of the same patient at three different times.
Left to right: the first two slices show the segmented volume of the real tumour at the first and the
second time points, respectively. The third slice shows the modeled volume of the tumour at the

second time point (i.e., the interpolation output). The fourth slice shows the real tumour at the third
time point. The interpolation output is an intermediate volume between the first and third time

points, and has the same number of voxels as the volume at the second time point. We compare the
interpolated volume with the real tumour at this second time point (i.e., the second and third slices

on this figure). Obviously, the two volumes differ in size and in shape at the slice level.

second of the two consecutive scans (see Section 4.3.3).

3.6 Tissue Segmentation

By performing tissue segmentation, we differentiate between the distinct types of tissue
regions in the brain. The non-homogeneous anatomy of the brain includes bone, neural
and glial tissue, and an outer membrane. Cancer tumours do not grow in all types of tissue
alike. In this project, we are mainly concerned with glial tissue where tumours originate and
grow. We differentiate between three types of tissue involved in tumour diffusion, which
are grey matter, white matter, and cerebrospinal fluid (CSF). Tumours do not grow in CSF
(e.g., inside the ventricles) but they push and deform these anatomic structures.

Recent research suggests that gliomas proliferate faster in white matter than in grey
matter [110] and that tumour diffusion follows white matter tracts [90]. We take these
suggestions into account by including features that describe the heterogeneous brain tissue.
These features may provide insight into the direction and growth rates of the tumour.

To differentiate between the brain tissue types, we segment the MRI brain volumes into
three distinct classes (grey matter, white matter, and CSF). We use Ashburner and Friston’s
tissue segmentation algorithm [3, 5, 6] provided in the SPM package [104]. This tissue
segmentation algorithm performs cluster analysis on image volumes, already registered to
a template, with a modified Mixture Model and a-priori information about the likelihood of
each voxel being one of a number of different tissue types. The algorithm then performs a
cleanup of the partitions and finally writes three different image volumes, one for each tissue
type. We preferred to use Ashburner and Friston’s algorithm for its known performance
in comparison with other segmentation methods such as FAST [136], a tool in the FSL
package [100] that segments large brain regions, as it yielded a very high number of false
positives and false negatives when applied to our data.

The output of SPM’s tissue segmentation is three distinct volumes: grey matter, white
matter, and CSF (see Figure 3.9).
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Figure 3.9: Example of segmented grey and white matter and CSF
Left to right: T1-weighted image, white matter, grey matter, and CSF segmented from the T1
image using SPM. Each of these represents one slice in a 91-slice image volume, and they all

correspond to the same position on the z axis.

3.7 Feature Extraction

Feature extraction is a pre-requisite step for both the training and classification tasks. This
step can only be performed after applying a series of image preprocessing steps (described
in the above sections of this chapter) that consist of noise reduction, image registration to a
template, segmentation of the registered images into distinct tissue classes, delineation and
registeration of tumour volumes to the same coordinate system as the brain volumes. After
applying these preprocessing steps, we extract image-based features from the brain images
by obtaining pixel-specific intensities and labels for each image volume.

Most of the learning features that we use in the training and classification are image-
based features that can be directly computed from the images. We compute tumour-specific
and edema-specific features based on the labels extracted from the segmented tumour and
edema volumes as described in Section 3.4. Tumour and edema labels are based on in-
tensity thresholds obtained from the segmented tumour and edema volumes after register-
ing and spatially interpolating these volumes to a template. We also use features local to
the voxel, which include coordinate-based features and intensity-based features directly ex-
tracted from the processed images, and feature-based features computed from the difference
between pixel intensities and the distances between the voxels and the tumour boundary.
Neighbourhood features are image-based features and are specific to the neighbourhood of
the training voxels. Patient-specific features, such as age and treatment information, are
obtained from a separate database.

Section 4.5 describes in more detail the empirical feature space and the importance of
the features involved in the learning model. We have categorized the feature space into
five feature groups: brain attributes (anatomical locations), patient characteristics, tumour-
specific features, properties local to each voxel in the learning set, and features local to the
neighbourhood of the learning voxels.

It is worth noting that we have applied a brain mask prior [104], not as a feature, but
as an alternative method to skull stripping. Brain masking allows us to distinguish brain
tissue from the area outside of the brain boundary. Applying a brain mask ensures that
we exclude from the training data voxels that are not located within the brain area (i.e.,
voxels with zero intensity values as observed on the example slice of the brain mask prior
in Figure 3.5). This brain masking method is simple and more accurate than other methods
that use image intensity thresholds to exclude voxels outside of the brain region. Applying
image intensity thresholds can be rather inaccurate since several brain regions (e.g., CSF)
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may have a similar signal to regions outside of the brain border (i.e., the skull). By using
the brain mask, we can also limit the number of training instances to only voxels within
the brain area, as only these voxels provide useful information for the learning model. In
a similar fashion, we also limit testing instances to only voxels within the brain region.
In addition, the application of a probabilistic brain mask has the advantage of replacing
explicit skull stripping methods, which often have their own segmentation error margins.
To remove non-brain voxels, we used the brain mask prior probability, provided in SPM2
[104], derived from the MNI305 average template [39], then re-sampled and smoothed as
for other SPM priors (see Figure 3.5).

3.8 Classification

After extracting and computing the features from the imaging data sequences, we use the
feature set in training a machine learning algorithm that would later predict whether a voxel
will become ‘tumour’ or ‘non-tumour’ based on the features of this voxel.

In the training phase, the input to the learning algorithm represents a large dataset of
several brain volumes; each volume consists of thousands of voxels described by a number
of features and a voxel label obtained from the segmented tumour volume (see Sections 3.4
and 3.7). The output of the training phase is a model learned from the training features and
that will be used in predicting the labels of the testing voxels. This learned model is the
input to the testing phase. The output of the testing phase is the predicted class labels for
the voxels of a new unlabeled brain volume, based on the features of these voxels.

For most classification algorithms, the testing phase is often computationally efficient
but learning the model can be very costly. Therefore, it is preferable to limit the amount of
training data to instances that will add important information to the learned model. Tech-
niques used in selecting the training data include random and selective sub-sampling where
we exclude a subset of the data either randomly or based on specific criteria, respectively. In
random sampling, some training information is lost. Selective sub-sampling will likely not
lead to loss of information to the same extent as with random sampling, but might produce
biased classification patterns where the learned model is not always capable of distinguish-
ing ambiguous data instances or data points that intersect between the classes.

Chapter 4 provides a more complete illustration of the training and classification com-
ponents as part of the prediction task, and further describes the data, the sub-sampling
techniques, and features involved in learning the diffusion model.

3.9 Diffusion Modeling

After we predict the voxel labels for the unlabeled data instances, we perform the final task
in the glioma growth modeling framework, i.e., the actual modeling of the tumour growth.
To model the tumour growth, we apply a diffusion algorithm that takes as input a tumour
volume (of a given patient at one time) and the voxel labels predicted by a classifier (see
Section 3.8). The diffusion algorithm estimates the shape of the tumour once it is some
k voxels larger. The algorithm starts by iterating sequentially around the active border of
the tumour, considering ‘eligible’ voxels that are likely to become ‘tumour’, as predicted
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by the classifier. The diffusion model terminates when the tumour reaches a user-specified
target volume, i.e., after adding k voxels to the input tumour volume, or if the algorithm is
not able to add more voxels to the tumour volume. For testing, we set this target volume
to be the same volume observed on a later scan of the patient. The output of the diffusion
algorithm is a prediction of the growth of the tumour when it reaches a specified volume. In
other words, the output is a contiguous 3D tumour mass that has the same volume detected
on a later scan of the test patient.

We describe more extensively the details involved in the implementation of the diffusion
modeling task in Section 4.6. We also describe the implementations of the standard models
against which we have evaluated our proposed approach.

3.10 Known Problems

It is worth mentioning that while real patient data is the foundation of the work in this thesis,
the use of clinical data introduces issues some of which remain unresolved. In this thesis,
however, all experiments and result analyses are solely based on the use of the MRI brain
scans from which we obtain the learning features for the training and classification tasks.

In spite of the many steps involved in the image processing pipeline, there will still be
noise in the data, which may somewhat affect the accuracy of the proposed model. But in
this case, we will not have a quantitative measure for the loss of accuracy caused by noise in
the data. That is, we may visually detect errors in some of the processing steps (e.g., image
registration, spatial interpolation and tissue segmentation), but we do not have a method to
quantify the error margins and the loss of accuracy in terms of numerical measures. We
have observed, however, that these errors are at the voxel level.

We outline the issues associated with each of the data processing steps. First, the noise
reduction task can only be used to reduce noise in the data to a large extent but not com-
pletely eliminate it. After we register the images to a template, using SPM [104], most
images are usually registered accurately to a standard coordinate system and should have
similar approximations of the anatomical locations. But a few image volumes are originally
taken at a different angle and therefore do not perfectly align on the z axis with the rest of
the scans even after registeration to a standard template and after the spatial interpolation
step. This leads to anatomical structures appearing in these scans while not in others along
the z axis. The misalignment along the z axis is estimated to be at most 1 − 3mm after
processing the image volumes, and cannot be further corrected given the current image
registration techniques.

Other registration errors include head tilts that may not be completely corrected and
spatial interpolation artifacts. Interpolation errors often occur when processing slices that
have very different properties at the same location. This problem is particularly more appar-
ent when producing tumour and edema volumes, in which case the registration algorithm
may not interpolate the tumour properly resulting in tumour regions overlapping with brain
regions where tumours cannot grow (e.g., the petrous bone). Other interpolation erros in-
clude artifacts that can be observed as sudden bright intensities or straight lines on the out-
put image resulting in non-smooth tumour volumes across the slices of the image volume.
This artifact is even more pronounced if using nearest-neighbour interpolation algorithm
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but mostly eliminated with the high-order β-splines interpolation approach. Both interpo-
lation methods are available through SPM [104]. Though we have not measured the error
margins in terms of numerical quantities, we have visually observed that these errors are at
the voxel level.

Overall, SPM [104] was significantly easier to configure than other existing software
packages that process brain scans. Also, SPM is widely recognized and used, and was
even integrated in other tools such as MEDx [80]. But thus far, we still need to define and
use a metric in order to quantify results of different software packages. Though SPM is
known to be more robust in processing the brain imaging data sequences, value judgements
were based on visual inspection of the output image volumes obtained using a variety of
parameters.

In this thesis, experiments have been based on axial slices though the coronal and sagit-
tal studies that correspond to the axial images were also available. Processing coronal and
sagittal views yielded results that were less accurate than those obtained from registering
axial data. While the current scope of the thesis includes only work performed on axial
images, it may be worth using coronal and sagittal views (see Figure 1.4) to produce a 3D
brain structure that would perhaps contribute to solving some of the data processing and
research problems including the design of an accurate temporal interpolation method.

3.11 Summary of the Diffusion Model Framework

In this chapter, we discussed the sequence of steps of preparing the brain imaging data
sequences and using the information in these images to model tumour growth. We conclude
this chapter with the following diagram which provides a summary of the model framework
including the data processing steps, and the contribution of the thesis represented by the
feature extraction, the classification and the diffusion tasks:
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Figure 3.10: Overview of the framework
The framework of the proposed model consists of two main components: the preprocessing of the

MRI scans and the prediction of glioma growth. The prediction component represents the
contribution of the thesis.
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Chapter 4

Predicting Glioma Diffusion

This chapter provides a general background discussion of some of the existing approaches
to glioma diffusion modeling, which motivates the supervised learning task, and a brief
introduction to our method. Section 4.2 defines the prediction task, and describes the de-
cisions made in the implementation process. Section 4.3 describes the training data and
illustrates how we resolved data-related issues that have an implication into the definition
of the prediction task. Section 4.4 describes the training and classification components in-
volved in the prediction task. Section 4.5 outlines the empirical feature space and describes
the significance of the type of features used in the learning component. Section 4.6 de-
scribes the implementations of the three models: CDM, UG and GW. The chapter concludes
with a summary of our work.

4.1 Introduction to Glioma Modeling

This section presents a brief background discussion of some of the existing approaches to
glioma modeling. This discussion is intended to motivate the use of supervised learning,
which represents the foundation of our proposed model, followed by a general description
of our implementation.

4.1.1 Background Discussion

Most models presented in the state-of-the-art literature simulated tumour growth using
mathematical and statistical approaches (see Chapter 2). Some of these models merely
simulated virtual tumour diffusion without initializing the simulations from clinical data.
Other models are simple and made assumptions with respect to the factors involved in
tumour growth regardless of the truthfulness of these factors in comparison with clinical
diffusion (as described in Section 2.2.1). Statistical studies performed their analyses on
clinical data obtained for a number of patients with treated and untreated gliomas (Section
2.2.3). Other models made use of clinical data to initialize and evaluate the simulations,
e.g., Clatz et al.’s model [21] which is a patient-specific model, and some of the research
work by Swanson et al. [113] that uses clinical data to predict the growth of GBM tumours,
the most common in brain cancer.
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Fairly recent is the idea of involving supervised learning into tumour modeling and
few are the models that can be generalized (or extended) to predict the growth of low-
grade and mixed gliomas (e.g., low-grade astrocytomas and MOA); in particular all models
are specifically designed to originally predict the growth of GBM only. Overall, learning
models are more recent; e.g., Zizzari’s treatment planning module [138] includes a learning
component using Neural Networks to predict the irradiation volume based on mathematical
approximations of the treatment volume at the macroscopic scale.

In general, researchers have more commonly simulated glioma diffusion using math-
ematical approaches, as opposed to using learning and classification, since mathematical
models tend to be simpler and often involve a small number of parameters that could be
used at once. But these approaches tend to make assumptions about tumour growth factors,
and have not contributed an accurate, general model that can learn glioma diffusion patterns
from existing patient data. Obviously, understanding glioma diffusion and discovering fac-
tors involved in clinical diffusion are not trivial tasks.

4.1.2 Motivating the Supervised Learning Task

In recent years, machine learning research and applications have received significant at-
tention because of their latest contributions as well as their potential contributions to the
different areas in Science and Medicine where learning and prediction have already been
used in a wide variety of tasks. In the medical field in particular, machine learning clas-
sifiers have been applied in research topics including but not limited to disease diagnosis
[105, 106], studying behavioural patterns in diseases [74], and predicting drug resistance
versus treatment response [71, 87, 103]. Classifiers have also been employed in detecting
tumours on medical images [95], studying and modeling tumour diffusion, and planning
treatment [138] as well as in numerous other health-related areas.

In this thesis, we examine the use of machine learning algorithms in modeling glioma
diffusion. We believe that supervised learning is a promising research direction that would
enable us to model glioma diffusion more accurately than with existing approaches. Current
glioma growth models are relatively simple, and often consider only one or two aspects of
the problem (see Chapter 2). In particular, medical experts need a far more precise model
than provided in the state-of-the-art literature, to help them specify the treatment volume
rather than irradiating a generic 2cm margin around the detected tumour, which often results
in recurrence and serious side effects.

The use of supervised learning is motivated by the advantage of capturing key informa-
tion represented in the training data and the feature space. This information is crucial to the
learned model, and will have a direct role in the recognition of glioma diffusion patterns
and in the accuracy of the prediction task.

4.1.3 Proposed Approach

Our approach consists of predicting tumour growth, given an initial tumour volume at one
time, by estimating the volume once the tumour is k voxels larger. Performing this pre-
diction requires learning a classifier from data provided for 17 patients and from a feature
set that describes characteristics of the patient, the tumour, and the regions adjacent to the
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tumour. The learned model is then used in classifying each voxel into either of two classes:
the ‘tumour’ class or the ‘non-tumour’ class.

The diffusion model takes as input the voxel labels, as predicted by the classifier, and
iterates around the active border of the input tumour volume. The algorithm updates the
tumour-healthy border by possibly adding candidate voxels to the tumour mass based on
the voxel’s probability (i.e., the probability that the voxel will become tumour as predicted
by the classifier) and on the number of tumour voxels adjacent to the candidate voxel. In
every iteration, the border of the tumour becomes larger and the algorithm increments the
total number of transformed voxels. The simulation finally terminates when the total tumour
mass reaches a specified final volume. To test the model, we use a pair of tumour volumes
for each patient, such that the volumes correspond to two consecutive scans. We initialize
the model from the volume at the first time point, and we allow it to grow the tumour to
the volume corresponding to the second time point. Model results are evaluated in terms of
precision and recall [12], and are compared to the conventional uniform diffusion (Section
1.2.2) and to a simulation of the model in [110].

The rest of this chapter defines the prediction task including the learning and classifi-
cation components. It describes how we generated the training data given the data content
and limitations, and lists the features used in the learning component.

4.2 Defining the Prediction Task

In this section, we define the prediction task, and we describe how we approached the
problem of glioma growth modeling from a machine learning perspective. This is followed
by an overview of the prediction framework, which represents the remainder of the work
described in this chapter.

4.2.1 Task Definition

Glioma growth prediction has been one of the many challenging problems in cancer re-
search. It has often been difficult to determine what factors play a role in tumour growth,
its capability of invasion, and recurrence. Because of this, many researchers have dedicated
their time and efforts to understanding tumour growth patterns and to discovering the fac-
tors contributing to tumour diffusion. From a medical perspective, many questions remain
unanswered to this day with respect to the genetics of malignant cells and their capability of
invasion. More recent research claims that malignant diffusion follows white matter tracts
[90] and that tumour growth rates may be influenced by the heterogeneity of brain tissue
[110]. But the truthfulness of these claims remains questionable to some extent, and it may
take a few more years, or perhaps decades, of research before medical experts know for
certain what factors play the most significant role in glioma diffusion.

From a machine learning perspective, we first need to answer the question, “What are
we predicting?”, for which the answer may seem elusive at first because of the complexity
and vagueness of the problem definition itself. To understand the glioma diffusion problem
and to provide a specific definition of the prediction task, it is required to identify three
main components that have a direct involvement into the task definition:
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• Factors that are believed to play a role in glioma diffusion, according to contemporary
medical knowledge

• Data content and limitations

• Definition of abnormality – i.e., regions we identify as ‘tumour’

Our definition of the prediction task depends on glioma diffusion factors obtained from
contemporary medical literature. These factors are represented in the model in terms of the
feature space that we describe in Section 4.5, and include patient information, attributes
of the brain anatomy, and properties of the tumour. The task definition also relies on the
type of data we collected, and is limited by the data issues that we describe in Section 4.3.
Furthermore, the prediction task is based on what we define as abnormal regions on the
MRI scans. Tumour volumes are mainly obtained by segmenting the enhancing regions, as
detected using T1-weighted images with contrast.

Given the diffusion factors, data limitations, and the definition of abnormality, we ini-
tialize the prediction task from the tumour volume detected on the patient’s scan at one
time, and we predict where the tumour will be when it reaches a specified final volume.
We assume that occult malignant cells are responsible for further glioma diffusion and for
recurrence after surgical procedure or radiation therapy. The challenge in the problem of
glioma diffusion modeling is to find out where the occult cells may have infiltrated in the
adjacent tissue in order to eradicate them, even though these cells may not be detectable yet
on the MRI brain scan.

In the supervised learning task, we first learn glioma diffusion patterns based on the
training data and the features describing brain regions that are likely to become diseased
(see Section 4.5). The input to the training task is a set of pairs of labeled brain volumes;
each consisting of a few thousand voxels. The output is a learned model based on the
training data. A classifier uses this learned model to make the prediction based on what it
‘recognizes’ as abnormal regions and the attributes of the unlabeled voxels. The output of
the classification is a label for each voxel (i.e., labeled as ‘tumour’ or ‘non-tumour’); see
Section 4.4. A diffusion algorithm uses these voxel labels to model the glioma volume of
the testing patient by assigning voxels adjacent to the active tumour border as either normal
or diseased, based on the probabilities predicted by the classifier (see Section 4.6).

This definition of the prediction task does not include treatment planning specifica-
tions, i.e., our model is not designed to decide where to irradiate the patient. Instead, the
prediction task is about the modeling of glioma diffusion in a way that would enable us to
understand some of the factors that have a role in glioma growth and to help medical doctors
specify more properly the treatment boundaries for radiation therapy. This new specifica-
tion of the treatment volume (of arbitrary geometrical shapes) may help more precisely
target cancer regions while sparing normal tissue if possible, as opposed to irradiating a
generic, uniform 2cm boundary around the GTV.

4.2.2 Overview of the Prediction Framework

To predict tumour diffusion, the model is initialized with a tumour volume, of a given
patient at one time, and estimates the shape of the tumour when it grows by some k voxels.
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We predict these k voxels by first learning from patient data a probabilistic classifier which
we use to predict a label (‘tumour’ or ‘non-tumour’) for each voxel.

As a pre-requisite to the learning and classification, we must resolve data-related issues
in order to generate the training data for a total of 17 patients and we also extract the learning
features from the MRI scans. The input to the learning stage is the labeled voxels obtained
for 16 patients and we test on the 17th, that is, we use n−1 patients for training and the nth

patient for testing with cross-validation. Then, we apply the diffusion algorithm to each of
the 17 patients. The output of this first stage is the learned model, used in the classification
of the unlabeled brain. The output of the classification stage consists of voxel labels for
the testing patient based on the features of these voxels. Each voxel is associated with a
probability as predicted by the classifier. The higher this probability, the more likely this
voxel will become ‘tumour’.

We apply the diffusion model to the voxels of the testing patient. The model takes as
input the voxel labels and iterates around the border of the tumour volume detected on the
patient’s scan at the first time point. The diffusion algorithm may add ‘eligible’ voxels to the
tumour volume depending on the probability of the voxel, as predicted by the classifier, and
on the number of tumour-voxel neighbours adjacent to the candidate voxel. The algorithm
terminates when the tumour reaches the volume detected on the patient’s scan at a later time
(i.e., the volume used as ground truth).

The remainder of this chapter describes in more detail the steps of the prediction frame-
work, and the components involved in each step. Section 4.3 discusses the data-related
issues, and how we approached each of these issues as they have a direct implication into
the definition of the prediction task. Section 4.4 presents the learning and classification
stages, the classifiers used in the experiments, and the training and testing data folds. Sec-
tion 4.5 describes the feature space that will be used in the experiments, and how these
features were obtained from the MRI scans. Finally, Section 4.6 describes the three diffu-
sion models, CDM, UG and GW.

4.3 The Training Data

In this section, we describe how we generated the training data from the MRI scans, which
is a pre-requisite step to specifying the learning and classification tasks. We also describe
the data-related problems and how we addressed each of these problems as they have a
direct implication into the definition of the prediction task, as mentioned in Section 4.2.1.

Data-related issues that emerged while processing the MRI scans, to generate the train-
ing dataset for the supervised learning task, include noise in the images, variation in tumour
volumes across studies of the same and of different patients, variations in time intervals be-
tween the scans, and the class imbalance between the ‘tumour’ and ‘non-tumour’ classes.

4.3.1 Data Noise

Noise in the image volumes, inter-slice intensity variation and intensity inhomogeneity,
required additional preprocessing in order to make the data usable. This was generally dealt
with in the image processing pipeline as a pre-requisite to the machine learning component
(Chapter 3). But it was still required to exclude data subjects from the training dataset since
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these subjects were not usable due to surgical cavities visible on the brain images, or other
MR artifacts that could not be corrected with current image processing algorithms. This has
imposed a restriction on the number of subjects (or patients) we can use in the supervised
learning task.

4.3.2 Class Imbalance

The class imbalance problem is not uncommon to machine learning applications. In partic-
ular, when using real patient data such as the medical imaging data sequences used in this
thesis, rather than synthetically-generated data. In such case, data bias and class imbalance
are usually inevitable.

In our data, the class imbalance problem is caused by the difference between the number
of normal voxels (i.e., voxels that represent the ‘non-tumour’ class) versus the number of
tumour voxels (i.e., the ‘tumour’ class) in the brain image. Because the tumour voxels rep-
resent only a small percentage of the voxels on the MRI scan, the ‘tumour’ class is always
far smaller than the ‘non-tumour’ class. Besides, the total number of training instances
(combining both ‘tumour’ and ‘non-tumour’ classes) provided to the classifier can be in
terms of a few millions, only 10 − 15% of which belong to the ‘tumour’ class. Therefore,
using the entire brain volume in the learning task would result in extremely large training
datasets. These large sets have two disadvantages. First, the number of positive instances
(i.e., the ‘tumour’ voxels) will represent only a minor percentage of the total number of
training instances. Second, training the classifier on large datasets is rather inefficient and
may not necessarily yield higher accuracy.

Since most current machine learning algorithms are not designed to handle class imbal-
ance issues, it is required to perform at least some preprocessing, or sub-sampling, on the
training data before presenting it to the classifier.

For the purpose of the prediction task, we do not intend to obtain highly-balanced
classes with a 1 : 1 ratio, though we performed initial experiments with a 1 : 1 class ra-
tio. In initial experiments, we included all ‘tumour’ voxels and non-randomly sub-sampled
the ‘non-tumour’ class by skipping a number of voxels in every row of voxels around the
tumour border in a way that would provide almost equal class sizes. This sub-sampling
technique resulted in non-contiguous training volumes, and did not properly represent re-
gions adjacent to the tumour since voxels that are distant from the tumour border were also
included in the training set. Instead, we generate the training data in a way to allow a proper
representation of the regions of interest (i.e., regions that are adjacent to the tumour and that
are more likely to become diseased). To provide a reasonable representation of the positive
data instances, we train on the voxels in the set difference between a pair of tumour vol-
umes at two different times for the patient. To obtain the voxels in this set difference, we
include in the training dataset all the ‘tumour’ voxels as well as a 2-voxel border from the
‘non-tumour’ class to account for segmentation error at the tumour boundary.

We obtain the class label from the second of two consecutive patient scans. The ‘tu-
mour’ class represents the regions that will become tumour at the second time point ex-
cluding the visible tumour detected on the scan taken at an earlier time. The non-tumour
voxels are adjacent to the border of the truth volume (i.e., the tumour at the second time
point). Graphically, the combination of the tumour and non-tumour voxel classes form a
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Figure 4.1: Example voxel regions at the slice level, used in training the classifiers
Left to right: the segmented tumour volume at one time, the volume at a later time (the truth) for

the same patient, and an example image slice of the training data which excludes the tumour at the
first time point and includes a 2-voxel border around the truth. All 3 slices correspond to the same

position along the z axis.

contiguous 3D volume around the initial tumour (i.e., the tumour at the first time point), see
Figures 1.1 and 4.1.

This sub-sampling of the data does not result in 1 : 1 ratio classes since the number
of positive data instances will represent a larger percentage in the training data. This per-
centage is not a fixed value but depends on the initial and final tumour volumes detected
at the two consecutive studies used in the training. This sub-sampling method ensures a
proper representation of the regions of interest, which are voxels adjacent to the tumour,
and are more likely to become tumourous as compared to the rest of the brain. Also, by
sub-sampling the training data, we reduce the number of training instances provided to the
classifier; hence increasing the efficiency of the learning process.

The testing dataset is generated from the voxels located within the brain border on the
MRI scan (i.e., the entire brain volume) but exclude the initial tumour at the first time point.

4.3.3 Time-interval and Volume Variations

Another problem encountered while processing the data is the tumour volume variations
across patients and the time interval variations between studies of the same patient and
studies of different patients. As a result, not all patient studies were usable even though we
have collected a reasonably large dataset.

‘Time-interval variations’ refer to the inconsistency in time intervals elapsed between
the scans of the same patient or of different patients. For example, the first two consecutive
scans of a patient may be three months apart while the interval between the next two scans
could be one year.

‘Tumour volume variations’ refer to lack of a standard growth rate or volume increase
across patient scans. This means that the tumour volumes in different patients, or differ-
ent studies for a single patient, may range from very small cell masses to large, invasive
tumours. The variation in growth rates may be due to the effect of surgical and radiation
treatment and to other diffusion factors whether these factors are presently known or un-
known to the medical world. For example, one of the known factors is the tumour grade.
Low-grade tumours do not significantly increase in volume over a few months, while high-
grade tumours tend to be very invasive in a short period of time. Because our data collection

51



contains various tumour grades at multiple time points, the tumour volume increase, among
patients, ranges from slow-growing tumours that do not visibly grow over a year or more
to aggressive tumours that become significantly large over a short period of time (typically
3 − 6 months). Another factor is the effect of treatment on the growth rate variation. Some
patients may not respond to treatment. In other patients, the tumour may even show visible
shrinkage on the next consecutive MRI scan of the patient because of treatment or due to a
post-surgical decrease in fluid or edema surrounding the tumour.

Patient studies that showed visible decrease in the tumour mass and those that showed
no growth at the next time point were excluded from the working dataset. A minimum of
two consecutive studies per patient were required to perform the learning and prediction
tasks. But due to the data limitations mentioned above, the number of patients involved in
this thesis was only a small subset of 17 patients from the total amount of data collected.
We were able to use, however, multiple studies for patients with more aggressive tumours in
which there was visible tumour growth at each time point in spite of the relatively short time
intervals between these studies. We were also able to include several low-grade tumours that
showed detectable growth across the scans of the patient. The patients are from different
age groups, 16 of which are adults and a 13-year old patient.

To address the problem of time-interval and tumour volume variations, there are three
potential options to consider: time-based prediction, volume-based prediction using a stan-
dard growth rate, or volume-based prediction independent of the time interval and the vol-
ume increase between the patient’s scans.

The first option is to predict glioma diffusion based on time intervals (i.e., to answer the
question “Where will have the tumour spread 6 months later?”). But given the data and the
characteristics of the problem of glioma diffusion modeling, it is not feasible to implement
the model based on this option, in particular that model evaluation will require a standard
of reference (i.e., a truth volume) to compare to the predicted volume.

The second option is to predict glioma diffusion based on volume increase (i.e., “If the
tumour is currently 5000 cu voxels, where will it have grown when it doubles?”). This
second option was identified as a more reasonable task than time-based prediction as it
provides a way of evaluating the predicted tumour volume against a standard of reference
(i.e., an interpolated volume or the real tumour volume from the next patient’s scan). Also,
volume-based modeling provides the advantage of comparing the predicted tumour volumes
with those produced by other standard methods. With volume-based prediction, the learned
model will find all voxels adjacent to the tumour border that will have become malignant
when the tumour has reached a specified volume regardless of the time interval elapsed
since the patient’s previous scan. This requires providing the machine learning algorithm
with a training dataset that depends on a standard volume increase or growth rate among
the patients’ instances.

One way to model tumour diffusion based on volume increase, in spite of different
growth rates among patients, was to use a temporal interpolation method in the data pro-
cessing. Temporal interpolation is meant to provide a consistent growth rate (or volume
increase) throughout the dataset (as described in Section 3.5). This is done by interpolating
between two time points and by modeling the tumour, based on a user-specified growth rate,
at an intermediate time between these time points; as shown in Figure 3.8. However, we
encountered two main challenges when using our locally developed temporal interpolation
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algorithm. First, this algorithm was relatively simple, did not yield sufficiently accurate re-
sults, and could therefore have a negative impact on the accuracy of the proposed diffusion
model as we would obtain CDM’s parameters and evaluate its prediction based on the results
of the temporal interpolation algorithm. It is difficult and may be even impossible to accu-
rately model the intermediate tumour shape and location by simply interpolating between
two tumour volumes (see Section 3.5). Second, using temporal interpolation further limited
the dataset to tumours that have a higher growth rate than the user-specified rate (see Sec-
tion 3.5 for more detail). Therefore, the usage of temporal interpolation was restricted to
patients with significant tumour volume increase, which would ultimately result in further
limiting the experimental dataset to cases that the interpolation method can be applied to.
Because of these challenges, the interpolation method was not used in the data processing.
In fact, the development of a solid, accurate temporal interpolation algorithm that would
not impose such restrictions on the dataset may require the time and efforts that could be
invested into a separate research project.

Investigating the first two options leads to the implemention of the glioma diffusion
model based on the third option, which is a volume-based prediction independent of the
time interval and the growth rates of the tumours across patients’ studies. This option is
reasonable given the data limitations and the lack of a standard growth rate across patients’
studies. This implementation requires that we provide to the learning algorithm information
specific to the tumour volume since there is no standard growth rate across the training
instances. In this case, we model tumour growth based on volume difference such that
the diffusion algorithm is required to add to the original tumour (i.e., at the first of two
consecutive time points) a number of voxels, δV = V2 − V1, where V2 is the final tumour
volume detected on the second time point and V1 is the volume at the first time point. For
example, if V1 = 5000 voxels, and we need to predict ‘where’ the malignant cells are
when the tumour will have increased in volume by 25%, that is when the tumour reaches
a volume V2 = 6250 voxels. In this case, the diffusion model should predict the volume
increase δV = 1250 voxels, i.e., the set difference between V1 and V2.

The implementation of the model based on the third option does not require using the
temporal interpolation step; hence preventing the accumulation of errors resulting from this
step. Instead, we incorporate in the learning task features that are specific to the tumour
volume (e.g., the growth rate and the tumour volume increase); see Section 4.5.

4.4 Learning and Classification

After we specified the prediction task, and studied the data content and limitations, we iden-
tified the learning and classification components. In this section, we present a description
of the 2-stage prediction task, and we explain how we generated the data folds used in each
of the learning and classification components. We also describe the machine learning al-
gorithms used in learning glioma diffusion patterns and in predicting tumour growth for an
unlabeled brain volume.
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4.4.1 Task Description

In Section 4.3, we have described the data-related issues that have a direct role in defining
the prediction task. We now present a more detailed description of the components involved
in this 2-stage task.

The first stage is the training process which involves building a classifier from a large
number of data instances obtained for 17 patients. Each data instance represents a single
8mm3 voxel on the brain image. Training voxels are retrieved from non-enhancing re-
gions adjacent to the tumour, on T1-weighted images with contrast, at an initial time point.
Many of these voxels will appear diseased on later scans for the patient (i.e., these vox-
els are labeled as ‘tumour’ in the training data). The number of training voxels obtained
from the MRI scans of a total of 17 patients is approximately 1

2 million after applying the
sub-sampling method described in Section 4.3.2. Note that this sub-sampling method sig-
nificantly reduced the number of training instances as the total number of 8mm3 voxels
in a single brain volume is about 350, 000. By retrieving the training voxels from regions
adjacent to the tumour on patients’ images (rather than using the entire image for training),
we are able to more properly represent the regions of interest, i.e., voxels that are more
likely to become ‘tumour’. Since the training stage can be very computationally costly,
this sub-sampling method also helps reduce the training time. Training time is approxi-
mately 30 − 40 minutes when learning a Naı̈ve Bayes or Logistic Regression classifier on
the 1

2 million data points. But when using Support Vector Machines, the training stage can
be extremely costly, which requires further sub-sampling the training dataset by including
only every 15th or 25th data point depending on the size of the feature set being used (see
Chapter 5). This further sub-sampling reduces the training set to only 40, 000 data points
or less. Note that sub-sampling is not intended to provide 1 : 1 ratio classes but to represent
more properly voxels of interest in the training data and to reduce the size of the dataset.
The output of the training stage is the learned model based on the information content in
the data and on the learning features.

In the second stage, the learned model is used in classifying the unlabeled voxels of a
new patient, based on the features of these voxels. The output of the classification stage
is an assigned label for each testing voxel, such that a voxel can be assigned to either the
‘tumour’ or the ‘non-tumour’ class, and a probability corresponding to the labeling of the
voxel, as predicted by the classifier.

4.4.2 The Classifiers

Classifiers we considered in the prediction task include Naı̈ve Bayes [36], Logistic Re-
gression [68], Multilayer Perceptron [132], Support Vector Machines (SVM) [60, 88], and
Decision Trees [91]. Most of these algorithms are provided through WEKA’s implementa-
tions [132], which automatically discretizes the attributes in the feature space. No scaling
was used; instead, the numerical values for the features were provided to the classifiers as
computed by our feature extraction functions.

Given the characteristics of the data, we expect that probabilistic classifiers and algo-
rithms that linearly classify the data into distinct binary classes, will provide more explain-
able results (i.e., a voxel is more likely to become tumourous given that certain conditions
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hold – that is, if the voxel has features relevant to ‘tumour’ voxels) than other complex clas-
sifiers, e.g., Neural Networks. In addition, given the size of the training dataset, we choose
algorithms that have less costly training functions. We also account for the problem of class
overlap, i.e., in the training data, some voxels have the same characteristics (very similar
feature values) but different class labels. Many of these voxels fall in edema regions where
it is more likely that cancer cells infiltrated, but enhancing tumour masses may not yet show
on the MRI scans.

Because of training data issues (e.g., class overlap, characteristics of the training voxels,
overfitting) and for efficiency reasons, we used in the final experiments (Chapter 5) three
different classifiers to obtain a prediction probability. We then used a threshold to exclude
from the ‘tumour’ class voxels that have a lower prediction probability than the threshold.
CDM results obtained with different classifiers are presented and further discussed in Section
5.3. The three classifiers used are:

Naı̈ve Bayes
The cornerstone of Naı̈ve Bayes (NB) classification is the Bayes theorem, see [81], which

provides a way to calculate the posterior probability P (Y |X) of a hypothesis Y , given the
training data X , from the prior probability P (Y ) that denotes the initial probability that
hypothesis Y holds, together with P (X) and P (X|Y ), see Equation 4.1.

P (Y |X) =
P (X|Y )P (Y )

P (X)
(4.1)

The Bayesian approach to classifying a new instance is to assign the most probable
target value given the attribute values 〈x1, x2...xm〉 that describe this new instance [81].
The NB classifier, computes P (X|Y ), based on the simplifying assumption that attribute
values are conditionally independent given the target value of the instance, as described by
the following equation:

yNB = argmaxyj∈Y P (Y = yj)ΠiP (X = xi|Y = yj) (4.2)

Given yj that denotes the target value of an instance, NB learning involves estimating
the various P (xj) and P (xi|yj) terms based on their frequencies over the training data [81].

Given our training data, we produce the parameters of a NB classifier, which we then
use to predict whether a voxel is likely to become tumour by calculating the posterior prob-
ability for this voxel given the attributes of the voxel, i.e., the tumour-specific information,
properties of the brain, and image-based features specific to this voxel and to its neighbour-
hood. The classifier’s output is a prediction probability that we threshold to obtain voxel
labels (‘tumour’ or ‘non-tumour’).

Logistic Regression
The algorithm we used in the experiments is a multinomial Logistic Regression classifier

with a ridge estimator that slightly modifies LeCessie’s original algorithm [68] to handle
instance weights; see [132]. But in our work, we only use binary classes; therefore, this
multinomial algorithm reduces to a binomial one.

55



Given k classes (note in our data, we use binary classes, ‘tumour’ and ‘non-tumour’)
with m attributes, the parameter matrix β to be calculated will be an m × (k − 1) matrix.
X is the vector of attributes describing an instance in the training data, and Y is the target
value of the instance.

The probability for the first class is:

P (Y = yj |X) =
e(X·β)

1 + e(X·β)
(4.3)

The second class has probability:

P (Y = yk|X) =
1

1 + e(X·β)
(4.4)

Since we need to classify unlabeled data points into binary classes, we describe a multi-
nomial Logistic Regression algorithm that reduces to building a binomial model (as shown
in Equations 4.3 and 4.4). For further details on the implementations of this algorithm, see
[132]. The output of the Logistic Regression classifier for each testing voxel is a prediction
probability that we threshold to obtain the binary class label for this voxel.

Linear SVM
The linear Support Vector Machine (SVM) classifies the data by finding the linear dis-

criminator that separates the data into two distinct classes. Linear SVM performs this classi-
fication by determining the linear separator that maximizes the margin before hitting a data
point, on each side of this separator, such that the points on the two sides of the separator
represent two distinct classes. Figure 4.2 shows an example classification of a linear-kernel
SVM that separates the data points into two distinct classes, each class on a different side of
the hyperplane. See [60] and [88] for further details and for the mathematical representation
of the algorithm.

We use WEKA’s implementation [132] of Platt’s sequential minimal optimization algo-
rithm for training a support vector classifier [88]. This implementation globally replaces
missing values, and normalizes the attributes by default. The probability value for each
classified voxel is estimated, given the decision function score, by fitting Logistic models
to the margins [89, 132].

4.4.3 Training and Testing Data Folds

To perform cross-validation and patient-specific labeling, we use the leave-one-out method.
Patient-specific labeling requires categorizing the data into two distinct folds: one fold used
in the learning and another in the classification. The training fold includes all patients
except one (i.e., it includes n − 1 patients for a dataset size n). In our dataset, the training
fold contains 16 patients, some of which may have multiple studies at different time points.
This training fold includes the labeled voxels from several brains. Each of these voxels
is initially a non-tumour voxel adjacent to the tumour mass at the first of two consecutive
studies of the patient, and labeled as ‘tumour’ or ‘non-tumour’ based on its status on a later
scan. The second data fold is used for testing and consists of the voxels of the patient study
(i.e., the 17th patient) that has been excluded in the training process. The classifier predicts
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Figure 4.2: Support Vector Machine classification of a 2D linearly separable dataset
The line between the two classes is the linear discriminator found by the Support Vector Machine

and the three circled data points are the support vectors.

tumour growth by labeling each testing voxels based on the model learned from the training
data and the feature set used in the experiment.

Since the purpose of our work is to predict glioma growth at the patient level (using
a 17-fold cross-validation), we do not perform voxel-level cross validation, i.e., our model
must predict tumour growth for a new patient that was not represented in the training data.

Performing patient-specific predictions (as opposed to voxel-level) allows us to observe
possible factors involved in glioma diffusion and to identify special cases of tumour growth.
Prediction results are converted into images to help visually inspect and explain the model’s
performance, and to compare the prediction of CDM with that produced by standard meth-
ods, UG and GW.

4.5 The Feature Space

We list in this section the feature set used in the prediction task. The features are grouped
into five categories (as mentioned in Section 3.7). Different feature combinations are used
in the experiments depending on the information content and significance of the features
(see Chapter 5). This section lists all the potential features used at different stages of the
experiments, described per feature category:

• Patient-related characteristics including age, pathology and history.

• Brain features describing anatomical regions.

• Tumour-specific features describing the tumour volume and growth rate.

• Features local to the voxel including image intensity information.

• Features describing the adjacent neighbourhood of the voxel.
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We describe each of the feature categories, the importance of the feature for the learning
task, and the challenges encountered in selecting the features. We found that to success-
fully model tumour growth using supervised learning, we need to answer two main ques-
tions: “What features contain the most important information that would express tumour
growth? What features represent factors in glioma diffusion given the data we collected?”
But answering these questions required a great deal of literature reviewing. Some of the
information presented in the literature could not be used in this thesis due to lack of data
and to other limitations. The data preprocessing framework and the feature extraction com-
ponent have been extensively described in Chapter 3.

Throughout the experiments, regardless of the feature subset being used, we have used
the same class labeling, which assigns the unlabeled voxel to one of two classes: ‘tumour’
or ‘non-tumour’ (Section 4.2). In the training stage, class labels are retrieved from the
second of two consecutive patient studies.

We list the features per category; note the feature naming between parentheses as it will
be used in Chapter 5 to identify the individual features involved in the different experiments.

Patient-related features

• Age: The patient’s age has usually some correlation with tumour grades and sur-
vival time. More aggressive tumours tend to occur with a higher frequency in older
patients, while low-grade tumours are more common in children [30, 67]. The cor-
relation between the patient’s age and the tumour grade can be observed throughout
our dataset of 17 patients, as shown in Table 4.1.

• Pathology: This patient-specific feature indicates the type or grade of the glioma,
and was used in preliminary experiments but was later excluded from the empirical
feature space (as it can be expressed through other attributes). The glioma grade is
important because it indicates the speed and invasiveness of the tumour diffusion.
That is, tumours that spread faster are often high-grade tumours; in fact, the most
common, and invasive tumours are grade IV GBM. But this information has also
been expressed in terms of the growth rate and the increase in the tumour volume and
border area.

• History of malignancy: This feature provides information about other malignant tu-
mours in the patient’s records, and was used in preliminary experiments only. This
feature did not seem to express additional tumour growth information; in particular,
our prediction is based on primary brain tumours that originate from a glial cell rather
than from metastasis.

• Family history: This feature provides information about whether there is family his-
tory of glioma in the patient’s records, and was used only in preliminary experiments
as it did not add tumour growth information to the learning model.

• Karnofsky Performance Scale (KPS) is a numerical value that quantifies the health
status of the patient. Higher KPS values are often associated with a prolonged sur-
vival time [30, 67]. KPS was initially used in early experiments but did not help
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Figure 4.3: AAL and Brodmann anatomical labels
Left to right: an example image slice of Anatomic Atlas Labeling (AAL), and of Brodmann maps,
both generated for 1mm3 voxel images (different colors correspond to different anatomic labels).

express tumour diffusion information and was therefore excluded from the final fea-
ture set.

Brain anatomy features
In an early stage of the experiments, we have included in the feature set the Anatomical

Automatic Labels (AAL) [122] and Brodmann maps [9, 31] to indicate the approximate
anatomical or functional location of each voxel in the dataset (see Figure 4.3). We used
these functional labels assuming that the tumour anatomical location might provide insight
into glioma diffusion and that tumours might have different growth rates in different brain
regions. But these labels were eventually excluded from the experimental feature set as they
did not contribute with additional information to the model neither from a clinical aspect
nor empirically. First, AAL and Brodmann labels were originally generated for templates
with 1mm3 voxels. Since we are using 8mm3 voxel images, we generated an approximation
of these brain regions. Our approximation was not sufficiently accurate and may likely have
contained errors. Second, tumours spread over several anatomical regions, and in rare cases,
over regions that are not labeled, which is ambiguous for the classifiers. Third, expressing
these regions in terms of numerical features causes overfitting (nominal regions could not
be used with SVM). And finally, there is no clinical evidence that tumours have different
growth behaviours in different functional brain regions.

We also plotted image intensities obtained from three different MR modalities, T1-
weighted, T1 with contrast, and T2-weighted, to examine if there are potential intensity
clusters that may correspond to the different anatomical structures in the brain. The inten-
sities were plotted for a 3D image volume, and represented by vectors 〈T1,T1c,T2〉 where
T1 is the voxel’s intensity value obtained from T1-weighted image, T1c is the intensity
obtained from T1-weigted image with contrast, and T2 is the intensity obtained from the
T2-weighted image. The plotted intensity values included all brain voxels (i.e., ventricles,
skull, tumour, etc). The intensity vectors were normalized, and yielded more dense cluster-
like regions that correspond to particular anatomical structures (e.g., the ventricles which
are dark on T1 and bright on T2) but did not show any meaningful groupings of the rest of
the brain anatomy (see Figure 4.4). Clustering would have been performed with K-means
algorithm [51] for several values of K that would correspond to the number of anatomi-
cal structures to be identified. But as shown on Figure 4.4, there does not exist any clear
boundaries between the plotted intensities, which consequently led to discarding the option
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Figure 4.4: Plotting of image intensities from T1, T1-contrast and T2 modalities
The plotting was performed with intensity vectors 〈T1,T1c,T2〉 for a 3D image volume of 256x256

image size at the slice level.

of identifying brain anatomy regions with clustering.
Eventually, the empirical feature space does not include any features describing the

anatomical brain regions since we removed the anatomic labels and the Brodmann maps.
We used, however, brain tissue features at the voxel level such that a voxel may be identi-
fied as a grey matter, white matter or CSF region (see ‘Features local to the voxels’ below).
These voxel-specific features help generally define the anatomical structures of the brain,
and the regions where gliomas can grow (e.g., white matter tracts) versus anatomical barri-
ers (e.g., the ventricles).

Tumour-specific features

• The 3D tumour and edema volumes (TumVol, EdemaVol) computed in terms of the
number of voxels of the visible mass on the MRI scan.

• The tumour area-volume ratio (AreaVol) is the quantity |At|
|Vt|

where At is the tumour
surface area and Vt is its volume.

• Tumour growth rate (GRate) computed as the volume difference observed between
two consecutive patient studies for which the time interval is expressed in terms of
days; i.e., the growth rate is |V2−V1|

|t2−t1|
where V2 is the volume observed at time t2 and

V1 is the initial volume detected at time t1. Even though GRate is an important fea-
ture that implicitly describes the tumour grade (see Table 4.1), GRate was eventually
excluded from the empirical feature space as it required using multiple studies per
patient in order to estimate the growth rate of the tumour. Only six of the 17 patients
are represented by more than one study in the training data. Should additional studies
become available for these patients, the growth rate could then be estimated from the
intermediate studies of the patient (as the final study on the timeline is used only for
testing).

• The edema percentage (EdemaPerc) is computed as |100×(Ve−Vt)|
|Ve|

where Ve is the
total edema volume also including tumour regions and Vt is the tumour volume. Ve
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is the volume delineated from the T2-weighted image, and Vt is the volume of the
enhancing tumour obtained from T1-weighted with contrast.

• The tumour volume increase (VolInc), |V2|
|V1|

where V1 is the tumour volume at one
time point and V2 is the volume at a later time; in other words, this feature measures
by how many times the tumour grew between the two scans.

• Volume difference (VolDiff), V2 − V1 in terms of the number of voxels

Tumour and edema volume-related features are important quantities that provide infor-
mation about tumour invasiveness. Larger glioma sizes may often indicate the grade of
the tumour and its capability of diffusion. Area-related features may provide information
about the tumour diffusion dynamics, and about the shape of the tumour border since the
existence of sharp edges or tendrils suggests further malignant invasion.

Features local to voxels adjacent to the tumour

• Probability that the voxel belongs to each of three tissue classes: white matter (WM),
grey matter (GM), and cerebrospinal fluid (CSF). This probability is obtained as a
normalized intensity (i.e., by dividing the image intensity corresponding to the voxel
by the maximum intensity). These tissue classes are obtained from the segmentation
of the patient’s brain image using SPM [3, 5, 6, 104].

• Voxel membership in each of the three tissue classes (white and grey matter, and
CSF). This membership is based on probabilities obtained above and is expressed as
{0, 1} based on an intensity value threshold of 50% with ‘1’ meaning that the voxel
belongs to the specified tissue class and ‘0’ that it does not.

• Probability of the voxel’s membership in each of the white matter, grey matter, and
CSF, (Ch2GM, Ch2WM, Ch2CSF) obtained by segmenting the CH2 template [54]
into the tissue classes using SPM.

• Edema expressed as {0, 1} to indicate whether this voxel is located in an edema
region or not.

• Euclidean distance (EuclDist) is the minimum distance from the local voxel to the
tumour border computed as

√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

• Coordinates x,y,z of the local voxel in the brain image

• T1 and T2 intensity values (T1Int, T2Int)

• The intensity difference between T1-contrast and T1: tumour regions that enhance
on T1-weighted with contrast images will yield a non-zero intensity difference.

• Intensity value (Ch2Int) obtained from CH2 template [54] to which we registered the
patients’ scans.
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• Distance-area (DistArea), computed as the Edist
At

, where Edist is the Euclidean Dis-
tance between the current voxel and the border of the original tumour, and At is the
surface area of this tumour.

• Distance-volume ratio (DistVol) is Edist
Vt

where Edist is the Euclidean Distance be-
tween the current voxel and the border of the original tumour, and Vt is the tumour
volume.

• Tissue-map membership {0, 1} where ‘1’ indicates that the voxel is located in a tis-
sue region where tumours grow, and ‘0’ indicates that the voxel is located in a bone,
ventricle, or membrane region where tumours cannot grow. The tissue map was gen-
erated from segmenting the CH2 template [54] and the average T1 template [79] with
SPM [104], and overlaying the grey and white matter obtained from both segmented
templates.

Neighbourhood features
In 3D, each voxel has 6 immediate neighbours, that is, 2 adjacent voxels from each

dimension. The following features are computed for each of the 6 neighbours of each
training voxel in the dataset:

• Probability for each of the 6 neighbour-voxels to fall into an edema region (Ede-
maNei), computed from the normalized intensities of the edema volume after regis-
tration and spatial interpolation (i.e., a total of 6 features where a neighbour outside
of the brain boundary has zero probability value).

• T2 and T1-contrast scaled intensity values (T2IntNei, T1cIntNei) obtained from the
patient’s image, and computed for each of the 6 neighbour-voxels.

• Membership probabilities for each of the voxel’s neighbours in each of the three
tissue classes: grey matter, white matter, and CSF, segmented both from the pa-
tient’s scan (GmNei, WmNei, CsfNei) and from the CH2 template (Ch2GmNei,
Ch2WmNei, Ch2CsfNei) with SPM providing 36 probability values in total.

4.6 Diffusion Models

We describe in this section the classification-based diffusion model CDM we developed for
the purpose of this thesis as well as two standard models that we implemented to compare
our results. One of these standard methods describes the uniform 2cm boundary conven-
tionally used in specifying the treatment volume [48, 56, 126]. We implemented this uni-
form model to determine if tumours grow spherically. The second standard model assumes
that the diffusion rate of malignant cells is different depending on whether the tumour is
spreading in the heterogeneous grey matter or white matter tissue in the brain [110]. All
three implementations are designed to allow the tumour to grow on the voxel level, but not
outside of the brain border.
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Patient Id Patient Age Tumour pathology (Grade) GRate ( cu voxels
days

)
6 33.1 Astrocytoma II (likely progressed into GBM) 210.7
8 38.4 Anaplastic Astrocytoma III 14.7
9 54.9 Glioblastoma Multiforme IV 80.3
25 60.1 Glioblastoma Multiforme IV 55.6
37 59.9 Anaplastic Astrocytoma III 17.6
44 13.4 Astrocytoma I 5.2
51 50.0 Unspecified (likely GBM) 110.7
69 37.7 Mixed Oligo-Astrocytoma II 118.6
83 54.4 Glioblastoma Multiforme IV 31.7
93 77.6 Glioblastoma Multiforme IV 102.5
105 52.9 Glioblastoma Multiforme IV 28.5
106 70.4 Glioblastoma Multiforme IV 25.8
108 58.0 Glioblastoma Multiforme IV 58.0
147 41.9 Glioblastoma Multiforme IV 24.4
160 72.0 Glioblastoma Multiforme IV 51.4
165 41.5 Glioblastoma Multiforme IV 133.6
169 65.9 Glioblastoma Multiforme IV 52.8

Table 4.1: Tumour grade and growth rate information for each patient in the dataset
This table provides the patient’s age, the tumour grade information (or histology) and the growth
rate (GRate), computed using the first and final studies on the timeline, for each of the 17 patients
that represent the training data. Note the correlation between the patient’s age and the tumour grade
(i.e., low-grade gliomas are more common in the younger population and in children while grade
IV gliomas occur more frequently in older patients [2, 30]). Also, GBM (grade IV) tumours are the
most common in glioma patients [30, 130], and represent therefore 2

3
of our training data.
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Diffusion( VoxelLabel: VL; GeneralInfo: e; int: s )
% VL [i, j, k]=1 if position 〈i, j, k〉 is a tumour
% Initially VL corresponds to current tumour
% When algorithm terminates, VL will correspond to tumour containing “s” additional voxels
total count := 0
Do forever:

Compute N :=
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For each location vi ∈ N
Determine if vi becomes a tumour (?)
If so,

Set VL [vi] := 1
total count++;
If (total count == s), return

Figure 4.5: Generic Diffusion Model

In general, a diffusion model takes as input the current ‘voxel label’ (VL ), which labels
a voxel as ‘1’ if it is currently a tumour and ‘0’ otherwise (see Figure 3.7), and general
information e = ePatient∪eTumour ∪{ei}i about the patient ePatient, the tumour eTumour

and the individual voxels {ei}i. The third input s tells the diffusion model how far to grow
– i.e., s is the number of additional voxels to include. The output is the prediction of the
next s additional voxels that will be incorporated into the tumour (e.g., imagine the tumour
is currently 1000 voxels and the doctor needs to know where the tumour will be, when it is
20% larger – i.e., when it is 1200 voxels. We would set s = 200). See Figure 4.5.

A diffusion model is first initialized from the original tumour at each stage. The diffu-
sion model identifies the set of voxels N just outside the border of the initial tumour; see
Figure 4.5. In the following image

v1 v2 v6 v7 v5

X X v3 v4 X
X X X X X

(4.5)

(where each X cell is currently a tumour cell), N would consist of the voxels labeled v1
through v5 , but not v6 nor v7 (as we are not considering diagonal neighbours). In the 3D
case, each voxel will have 6 neighbours.

The diffusion model then iterates through these candidate voxels, vi . If it decides that
one has become a tumour, it then updates VL (which implicitly updates the tumour/healthy
border, and increments the total number of ‘transformed voxels’). Note we do not consider
edema, nor any other labels.

After processing all of these neighbours (in parallel), it will then continue transform-
ing the neighbours of this newly enlarged boundary. If a voxel is not transformed on one
iteration, it remains eligible to be transformed on the next iteration. When the number of
transformed voxels matches the total s, the algorithm terminates, returning the updated VL
assignment.
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The various diffusion models differ only in how they determine if vi has become tumour
– line (?) of Figure 4.5. The uniform growth model, UG, simply includes every ‘legal’ voxel
it finds (where a voxel is legal if it is part of the brain, as opposed to skull, eye, etc). The
tissue-based model, GW, assumes the growth rate for white matter is 5 times faster than for
grey matter [110], and 10 times faster than other brain tissue. In the GW model, whenever
vi is white matter, it is immediately included. If vi is grey matter (other tissue), its count is
incremented by 0.2 (resp., 0.1) on each iteration, and the voxel is included when its count
reaches 1.0 . GW does not allow diffusion into the skull. The ei part of the GeneralInfo
e specifies the tissue type of each vi voxel, as computed by SPM [104].

CDM uses a probabilistic classifier to compute the probability qi that one tumour neigh-
bour of this voxel vi will transform this voxel to become tumourous, qi = PΘ( `(vi) =
tumour | ePatient, etumour, ei ) where Θ represents the parameters of the model (i.e., the
classifier’s CP table). Some voxels can have more than one such tumour-neighbours; e.g.,
in (4.5), the voxels v1 , v2 and v5 each has a single tumour-neighbour, while v3 and v4
each has 2. Each tumour-neighbour of the voxel vi has a qi chance to transform this vi;
hence if there are k such neighbours, and each acts independently, the probability that vi

will be transformed on this iteration is pi = 1 − (1 − qi)
k. CDM will then stochastically

transform this voxel to be a tumour with probability pi . CDM performs these computations
in parallel – hence even if v3 is transformed, v4 still has only 2 tumour-neighbours (on
this iteration). CDM learns qi by training on the learning data folds. One could argue that
at training time, we could be learning pi (rather than qi), we are exploring this issue as a
future research direction.

Another alternative to stochastically simulating tumour growth is to threshold the clas-
sification probability values where values above the threshold would be associated with a
positive (i.e., tumour) voxel, and values below the threshold are negative voxels. A thresh-
old of 65% was used, that is by satisfying the condition pi > 0.65 and yielded slightly
higher results than the stochastic simulations. This is because low-probability voxel candi-
dates were excluded from the tumour class. Such candidates can often be misclassified.

Other thresholds of 60% and 70% were used as well but a lower threshold tends to in-
clude more false positives and higher thresholds yielded similar results to the 65% thresh-
old. Also, higher thresholds make the diffusion algorithm more computationally costly as
the number of iterations increase because with higher thresholds of 70% or above, a fewer
number of voxels per iteration meets this threshold, and so more iterations are required to
reach the number of additional voxels s to include.

A 10% diffusion rate was incorporated into CDM to help model the mass effect of tu-
mour growth on deformed CSF regions (e.g., the ventricles and sulci); see Figure 4.6. This
10% rate was selected based on the percentage overlap between the CH2 template [54] (a
normal brain with no tumour) and each of the patients’ scans where the tumour has induced
pressure on the ventricles. The average overlap percentage obtained for several patients was
approximately 10% (Figure 4.6).

We empirically evaluated the three models, UG, GW and CDM, over a set of 17 patients.
For each patient, we had two sets of axial scans R1 and R2 taken at different times, each
with known tumour regions. Let si refer to the size of the tumour in scan Ri. We then input
to each model the R1, and predicted the next s = s2−s1 voxels that would be transformed.
We could then compare the predicted voxels, with the truth – i.e., the tumour region of the
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Figure 4.6: Tumour-induced pressure on the ventricles
Top: image slices for four different patients showing tumour-induced pressure on the ventricles.

Bottom: the corresponding slices from a template of a normal brain. Note: the induced pressure in
the patient’s scans is represented by the tumour overlap with the ventricles in the template. The

average overlap for a sample of nine patients was approximately 10%.

second scan, R2.
To measure the quality of each model, let “nt” be a set of new tumour cells for a patient

(i.e., this is the ‘truth’) and “ptχ” be the cells that model χ predicts will be transformed.
The standard measures we use are ‘precision’ of χ (on this patient) is |nt∩ptχ|

|ptχ|
and ‘recall’ is

|nt∩ptχ|
|nt| . In our case, as our diffusion models stop when |ptχ| = |nt| = s, the precision and

recall values will be the same (see Section 5.3) as opposed to values directly obtained as
classifiers’ results where there is usually a significant tradeoff between the precision and the
recall values. Also, the diffusion models do not allow gaps in the simulation; that is, each
of the model iterates around the initial tumour border producing a contiguous, encapsulated
tumour mass that has the same volume as observed on the second of two consecutive scans
of the patient (i.e., the ‘truth’ volume for that patient).

While UG and GW are completely specified already, CDM must first be trained. We use
a ‘patient level’ cross-validation procedure. That is, we trained the classifier (e.g., Naı̈ve
Bayes [36]) on n − 1 patient studies, then tested on the nth study. Each training instance
corresponded to a single voxel vi outside the initial tumour in the first scan R1, with features
ePatient, etumour, and ei, where the label was ‘1’ if this voxel was in the tumour in R2, and
‘0’ otherwise. Training is at the voxel level, and is not based on diffusion, but the tumour
volume considered in the training corresponds to the ideal scenario of diffusion.

All diffusion models allowed the tumour to grow to the volume observed on the second
of two consecutive scans of the same patient.

While virtual simulations often assumed that tumours are self-limited systems that grow
uniformly in all directions, as described in Chapter 2, our UG model was tested on clinical
data to determine if tumour growth behaviour is generally non-uniform. UG restricts virtual
tumour growth outside of the brain border and into the skull, and tends to preserve the shape
of the initial tumour producing a larger mass that has the exact same shape of the initial
tumour detected on the first scan. In GW, we generated the grey and white matter, and
CSF tissue classes by segmenting the average T1 template with SPM [104], which gave
more contiguous tissue classes in comparison with those obtained by segmenting the CH2
template [54] or the patients’ brain image.
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4.7 Summary

Modeling glioma diffusion is not a simple task. In spite of the tremendous research efforts
over the last few decades, scientists are still struggling to understand the factors involved
in tumour growth and its capability of invasion. But these research efforts have made many
contributions toward the improvement of treatment methods and planning. In particular, the
use of software algorithms and tools has helped medical doctors view the patient’s brain in
3D and target the tumour volume more properly with computer-assisted radiation planning.

In this chapter, we described how we model glioma growth from a machine learning per-
spective based on factors which, according to state-of-the-art literature, are believed to play
an important role in glioma diffusion and invasion. The task of modeling glioma growth
involves four important components. First, the type of classifier involved in developing the
proposed model has a significant impact on the model’s results; this is because different
machine learning algorithms are sensitive to the features depending on how the decision
function computes the prediction for a particular data instance. Second, the feature space
represents an important part of this thesis as it required investing a few months into research
and experiments in order to find out what factors may have a role in glioma diffusion and
how these factors can be expressed in terms of training features to help describe tumour
growth more accurately. The prediction is ultimately based on features specific to the pa-
tient and the tumour, and attributes of each candidate local voxel and the neighbours of the
candidate voxels. Third, the processing of the empirical data has also been a significant
component of the work in this thesis. In order to extract the classification features for each
patient from the clinical dataset collected from the CCI, the MRI scans required several
steps of preprocessing and denoising as described in Chapter 3. Finally, we developed a
diffusion algorithm that uses the probabilities predicted by the classifier to simulate tumour
growth. The algorithm is initialized from the patient’s tumour and allows the tumour to
grow to a specified target volume (for testing, we set this target volume to the volume de-
tected on a later scan) by iteratively adding to the tumour border the eligible voxels that
meet the probability condition as shown in Section 4.6.
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Chapter 5

Results

This chapter presents the experiments, the results, and challenges involved in assessing the
performance of our implementation of glioma diffusion modeling. Section 5.1 describes the
performance measures used in evaluating the implementation and the challenges of prop-
erly assessing the model’s performance as compared to existing approaches. Section 5.2
describes the feature selection method and illustrates how we selected the different subsets
of features involved in the experiments and the significance of these features. Section 5.3
presents the experiments followed by an in-depth analysis of the results for each experi-
ment, including a description of average and best case results versus special scenarios of
tumour diffusion. This section also evaluates the dataset and the training features in light of
the empirical results, and discusses issues related to the performance measures.

5.1 Performance Evaluation of CDM

In this section, we first describe issues involved in evaluating CDM’s performance and we
then discuss the evaluation measures used in quantifying the model’s accuracy.

Assessing the performance of our implementation of glioma diffusion modeling has
been a challenging task due to several factors and data-related issues:

• Lack of implementation of standard methods

• Unavailability of standard datasets

• Inconsistency of manual tumour segmentation

• Method of generating the training data

• Error margin in evaluating performance

We further describe each of the above listed issues in more detail. We also explain
whether we resolved the issue or if it remains an open question for future research.

First, there are no available implementations of existing methods that we could use to
compare the performance of CDM to that obtained by standard methods. For this reason,
we implemented two of the standard models: uniform radial diffusion, UG, and tumour
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diffusion based on motility in grey and white matter, GW. The UG model is conventionally
used in radiotherapy and implicitly assumes that the tumour grows in all directions equally
(our implementation does not allow the tumour to grow outside of the brain border). The
GW growth model is suggested by Swanson et al. [110] and assumes faster diffusion in
white versus grey matter with 5 : 1 ratio (see Section 4.6). In all of the experiments, we
compare the accuracy of the three models to clinical data for each patient. That is, we
compare the tumour growth predicted by each of UG, GW, and CDM to real tumour growth
observed on the patient’s brain scans.

Second, to obtain a consistent assessment of models’ performance and comparison, it is
required to evaluate the various models on a standard dataset. However, there is no standard
dataset commonly available for this type of research. This is mainly due to confidentiality
of patient scans and data privacy policies set by governments and health institutions. As a
consequence for the lack of a standard dataset, different models are being evaluated on the
different datasets that are available to these models.

In addition, patient treatment (often surgery and radiation) imposes a limiting factor
on how the data could be used. Because of treatment, it is possible to observe tumours
shrink then recur in regions adjacent to the original tumour. It is also possible to observe a
decrease or elimination in fluids (that can be erroneously detected as edema on T2-weighted
images while they are actually post-surgical bleeding). This effect is particularly more
pronounced in brain scans taken after surgery where scans that immediately follow surgery
will show high-signal regions around the original tumour because of bleeding. These high-
signal regions will disappear over time in later scans. Ideally, it is most useful to collect
data for untreated patients but such data is very rare and often unavailable. In our dataset,
every patient has undergone a combination of one or more treatments including surgery
and radiation. While it is not feasible to maintain a perfectly consistent dataset where
tumours do not decrease in volume or recur, after treatment, in regions adjacent to the
original tumour mass, we have put together a small but fairly consistent dataset. We have
also excluded subjects where tumour shrinkage was observed or where surgical cavities
introduced additional noise in the image.

Third, we obtained the delineated tumour and edema volumes through manual labeling
of the brain images by drawing the contour of the tumour volume on the images before
performing data processing. Tumour labels were drawn with the help of a tool that was
locally implemented and that allowed users to view the different image modalities simulta-
neously. Segmented images where tumour and edema volumes where manually delineated
were verified by radiologists. These manual labels are generally more accurate than au-
tomated segmentations of tumour volumes but are likely less consistent than automated
labeling because of the error margin at the tumour boundary and because of human sub-
jective interpretation of abnormal regions on brain scans. In spite of these issues, several
existing tumour growth models use manually delineated data as it is more accurate than
automatically segmented volumes (Chapter 2). In our work, since we use learning and clas-
sification, our model results will depend on what the model learns as ‘tumour’, and which
in turn, depends on the labeling decisions made by human experts.

Fourth, deciding how to generate the training data is a significant factor in evaluating
model performance as the model relies on supervised learning. Generally, tumour voxels
represent only a small percentage of the total number of voxels in a brain image, and there-
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fore, positive data instances will not be well represented in the training data if the entire
brain image was used in the training. Using the entire brain image would result in very
large datasets that would make the training task rather computationally costly. For these
reasons, sub-sampling is required in order to obtain a more balanced training set. In our
case, we have trained classifiers on voxel regions adjacent to the original tumour at the first
of two consecutive time points (but that exclude the tumour itself) up to a 2-voxel border
around the tumour at the second time point (i.e., when the tumour has reached a larger vol-
ume); see Chapter 4. This set of voxels used in training represents the voxels considered by
a diffusion model, using a perfect classifier. This selection of training data allows a stronger
representation of the positive (tumour) voxels in the learning phase.

In addition to the selection of training voxels, it is worth noting that using different sub-
sets of the feature space may help improve model performance depending on the classifier
used in the learning and the prediction (Sections 5.2 and 5.3). This is because some tumour
diffusion scenarios require a higher degree of generalization for the learned model which is
determined by both the classifier used and the feature set, given the training data.

Finally, since the learning and classification are performed at the voxel level, we also
evaluate model performance at the voxel level using the precision and recall measures [12].
This voxel-level assessment will include an error margin at the tumour boundary due to
segmentation error and to misclassifications of the tumour-healthy border regions.

We define the precision P = |nt∩ptχ|
|ptχ|

and the recall R = |nt∩ptχ|
|nt| where “nt” represents

the cells that have become tumour for the patient (i.e., the truth) and “ptχ” is the set of
tumour cells predicted by the model. Because the diffusion model generally stops when
|ptχ| = |nt| = s, then P = R, except when the model terminates early as the tumour
grows into a significantly large volume, or because of segmentation errors at the tumour
boundary, or in cases of recurrence (i.e., the tumour shrinks but later grows in a region
adjacent to its original location); see Section 5.3. Achieving equal precision and recall
scores compensates for the tradeoff between these two measures when directly obtained as
classifiers’ results [12].

5.2 Feature Selection

In preliminary experiments, we used a feature set, IFS, listed in Table 5.6, that combined
four of the five feature categories described in Section 4.5. IFS included attributes spe-
cific to the patient and labels for brain anatomy regions and tissue types. It also included
information about the volumes and surface areas of the tumour and the edema, the dis-
tance between normal voxels and the tumour border, and intensity-based features local to
the normal voxels adjacent to the tumour. This feature set did not incorporate neighbour-
hood attributes for the training voxels – i.e., the normal voxels adjacent to the tumour (see
Table 5.6). This initial feature set was applied to a 5-patient dataset with patient-fold cross-
validation. Results showed that some of the features involved in preliminary experiments
did not accurately express glioma diffusion in most scenarios (see Table 5.1). In particular,
features such as patient history and Karnofsky Performance Scale (KPS), anatomical labels,
voxel coordinates, and raw tumour volumes computed as the number of tumour voxels per
patient, did not help our classification-based model find diffusion patterns in regions ad-
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Patient Id (Pathology) CDM UG GW
9 (GBM) 0.753/0.444 0.617/0.364 0.872/0.514
37 (AA) 0.381 0.330 0.421
69 (MOA) 0.280 0.288 0.334
85 (AA) 0.274 0.259 0.239
160 (GBM) 0.744 0.628 0.678

Table 5.1: Precision and Recall obtained in initial tests for the three models using the IFS
feature set (listed in Table 5.6) with 5-fold ‘patient-level’ cross-validation
(Note: Due to unusually large tumour size in patient #9, CDM predicted only 44% of the tumour
yielding different precision 0.753 and recall 0.444 . To allow comparison, we make UG and GW
predict the same volume increase that CDM predicted. In this experiment, we used Naı̈ve Bayes
classifier in CDM. Pathology was used as a feature to indicate the tumour grade – Glioblastoma
Multiforme (GBM), Anaplastic Astrocytoma (AA), and Mixed Oligo-Astrocytoma (MOA).

jacent to the tumour. This conclusion was based on training machine learning algorithms
with various combinations of feature groups derived from the feature space listed in Sec-
tion 4.5. Results did not significantly change if patient history, KPS and pathology, voxel
coordinates and tumour volumes were excluded from the training features. That is, these
features did not add sufficient information to the learned model, and in particular anatom-
ical labels reduced accuracy in some scenarios, likely due to errors in approximating brain
anatomical regions. For this reason, we excluded these attributes from the empirical feature
space, and we then incorporated neighbourhood features that describe the voxels adjacent
to each training voxel; training data represents the set difference between a pair of tumour
volumes detected on two scans of the patient at different times; see Figures 1.1 and 4.1.

Having incorporated the voxel neighbourhood features listed in Section 4.5, we per-
formed several experiments with different classifiers and with three combinations of feature
groups: FS0, FS1, and FS2. Based on preliminary results and the information content of
the learning features, we believe that these neighbourhood features help express more ac-
curately glioma diffusion patterns, given our training set of 17 patients. Since features have
a direct role in the results obtained through supervised learning and classification, the same
features may yield different results when applied to different classifiers depending on how
the learning algorithm interprets the information content in the features given the training
voxels. In addition, some tumour growth scenarios may require a higher-level of generaliza-
tion (i.e., may require features that help more properly generalize tumour growth patterns,
e.g., without making assumptions about the tumour location, which is specified in terms
of voxel coordinates and features specific to the brain tissue). It is therefore not beneficial
to apply the entire feature space since a particular combination of features may help more
properly predict some tumour growth scenarios but may not as accurately predict specific
scenarios, e.g., where tumours induce pressure on the ventricles and deform them (see Fig-
ures 5.5, 5.7 and 5.9). In such cases, it is more useful to actually exclude voxel coordinates
and tissue-specific features. To obtain various combinations of feature groups, it is neces-
sary to first quantify the information content in the feature space, to rank the features in
order of significance, and to group them based on feature types that can be used together.
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We can then use these feature groups in various experiments and compare the significance
of the attributes according to empirical results.

For this purpose, we computed the information gain for the feature space using the at-
tribute selection implementation in WEKA [132], and obtained information gain scores for
each attribute in the FS0 feature set (see Table 5.6 at end of chapter) given the entire train-
ing set of 17 patients. We first describe how information gain scores are computed. Let Y

be a target value among data instances where X , an attribute, has value x. The information
gain, IG(Y |X) = H(Y ) − H(Y |X), is computed using the following equation:

H(Y = yj |X = xi) = −Σxi
Σyj

P (Y = yj , X = xi) log
P (Y =yj ,X=xi)

P (Y =yj)P (X=xi)
.

We list the results of the attribute selection in Table 5.2 (at end of chapter). Score values
slightly changed when measuring the information gain on a large subset of the training
data, e.g., when computing the information gain for a set of 16 patients. Based on general
observation of the information gain scores, we rank the feature groups, listed in descending
order of significance (i.e., the higher the number, the lower the significance), according to
the scores in Table 5.2, as follows. (Note the description of each feature can be found in
Section 4.5.)

1. Distance-area (DistArea) – distance between the local voxel and the tumour border
divided by the tumour surface area

2. Edema features (Edema and EdemaNei) – the probability of edema in the 6 adjacent
neighbours to the training voxel, and the edema {0,1} for the local voxel

3. T1-weighted image intensity for the training voxel (T1Int) where abnormalities and
edema may appear as dark regions

4. The voxel-level tissue map {0,1} differentiating between regions where tumour can
grow such as grey and white matter or where tumours do not grow such as bone or
eyes (TissueMap)

5. Euclidean distance (EuclDist) between non-tumour voxels and the tumour border

6. Intensities obtained from T2-weighted images for the training voxel (T2Int) and its 6
adjacent neighbours (the 6 T2IntNei features)

7. Intensity value (Ch2Int) for the training voxel obtained from the Colin Holmes, CH2,
template [54]

8. Tumour volume increase (VolInc)

9. Grey matter probability for the local voxel and for its adjacent neighbours obtained
from the CH2 template (Ch2GM and the 6 Ch2GmNei features)

10. Intensity values obtained from T1-contrast images (T1cInt and the 6 T1cIntNei)

11. Voxel coordinates in 3D
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12. Edema Percentage (EdemaPerc) and area-volume ratio (AreaVol)

13. Patient’s age

14. Grey matter probabilities (GM and GmNei) obtained from the segmented brain image
of the patient

15. White matter probability for the local voxel and for its adjacent neighbours obtained
from the CH2 template (Ch2WM and the 6 Ch2WmNei features)

16. White matter probabilities (WM and WmNei) obtained from the patient’s scan

17. CSF probabilities from CH2 (Ch2CSF and Ch2CsfNei) and probabilities specific to
the patient’s segmented image volume (CSF and CsfNei)

But in order to divide the features into more meaningful groups to be combined in the
experiments, given the difference in information gain scores is minimal between the fea-
tures (see Table 5.2), we use a “high-level” grouping of the same features ranked above.
This grouping is based on the above ranking and on the information content (Table 5.2).
The reason for grouping the features is to be able to identify the attributes that can be used
together to express particular glioma growth information. For example, tumour-specific
features are grouped together, and can often be used as one feature entity in the learning
task. Another feature entity is the tissue map and voxel coordinates that may be more infor-
mative when used together. Similarly, edema attributes are used as a single feature entity,
and intensity-based features are also more expressive when used together. The grey and
white matter features are combined into a single group of brain tissue where tumours grow,
while CSF attributes are separated into a different group since tumours cannot grow into
CSF regions. The attributes (grey and white matter, and CSF) obtained by segmenting the
CH2 template [54] – an image of a normal brain – are grouped separately from those ob-
tained by segmenting the patient’s image since segmenting the patient’s image often yields
less accurate attributes due to the presence of tumours in the images.

We list the feature groups in descending order from most to least important depending
on whether a feature group should be excluded from the empirical attribute set:

• Tumour volume, area and distance information (DistArea, EuclDist, AreaVol, EdemaPerc
and VolInc)

• Edema features (Edema and EdemaNei) – contain the highest information gain scores
in the entire feature set

• Intensities obtained from T2-weighted images (T2Int and T2IntNei), also capable of
detecting edema, and T1-weighted image (T1Int, T1cInt, and T1cIntNei) where we
use the difference between T1c and T1 intensities for the local voxel rather than the
raw T1cInt.

• The patient’s age

• Voxel-level map (TissueMap) and the x,y,z coordinates of the local voxel
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• Segmented grey and white matter of the CH2 template (Ch2GM, Ch2WM, Ch2GmNei,
and Ch2WmNei)

• Segmented matter specific to the patient (GM, WM, GmNei, WmNei)

• CSF features from CH2 and from the patient (Ch2CSF, Ch2CsfNei, CSF and CsfNei)
are the least informative features in the entire feature space

Using this “high-level” grouping of the FS0 feature space (which contains 75 features),
we have put together two feature subsets, listed in Table 5.6 (at end of chapter), which
we use in the experiments described in Section 5.3. The first subset, FS1, uses volume-
related attributes, edema information, intensity-based features and the patient’s age (i.e.,
the first four items in the high-level feature grouping above). We excluded from FS1 all
attributes specific to the brain tissue since these attributes have relatively lower IG scores
(see above feature grouping and Table 5.2). The second subset, FS2, uses the same features
in FS1 in addition to voxel coordinates, tissue map, and features obtained from CH2 tem-
plate (Ch2Int, Ch2GM, Ch2WM, Ch2GmNei, and Ch2WmNei). In FS2, we exclude grey
and white matter features obtained from patients’ images as well as all CSF features (i.e.,
features with lowest IG scores as shown in Table 5.2). Patient-specific tissue segmentation
(grey and white matter, and CSF) likely contains errors because SPM [104] does not ac-
count for the presence of tumours when it segments the brain images of the patients into the
three tissue classes. It is therefore more useful to obtain tissue features from a segmentation
of the CH2 template, which is an image of a normal brain. We completely excluded CSF
features from both FS1 and FS2 since these features have the lowest IG scores among all
training features. These low IG scores may be attributed to tissue segmentation errors with
SPM [104] due to the presence of the tumour in the patients’ scans. Also, while tumours
cannot grow into CSF regions (e.g., the ventricles and the sulci), large tumours often induce
pressure on these anatomic structures and deform them, producing an effect that there is
tumour at CSF voxel regions. This effect can cause confusion during the classification task.

By excluding from FS1 patient-specific and template-specific information such as voxel
coordinates, tissue map labels, grey and white matter, and CSF attributes, we allow the
model to further generalize tumour diffusion patterns. We expect this feature set, FS1,
to help more accurately predict tumour diffusion scenarios that require a higher degree
of generalization. But we also expect that accuracy may slightly decrease for subjects
that rely on more specific training information. In FS2, we have included patient and
template-specific information with the exception of patient-specific grey and white matter
attributes and CSF, since these features have the lowest information gain scores and may not
therefore properly represent brain tissue classes due to SPM’s segmentation errors. Since
FS2 does not provide the same level of generalization as FS1, it is expected that results
for experiments performed with FS2 will be more similar to the results performed on the
entire feature set, FS0.

5.3 Experiments and Results Analysis

Given the nature of the problem, we perform only patient-specific testing; i.e., we train on
several patient studies then we test on a study that was not represented in the training data.
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This allows us to perform both inter-patient and intra-patient testing at the 3D level.
Our training data is limited by several factors (discussed in Section 4.3). Because of

these data limitations, we selected only a subset of the available data for the experiments.
The empirical subset represents only 17 of 200 available patients. Six of the 17 training
patients are represented by more than one study in the data, which allows intra-patient
testing in a way that training is performed on 16 patients in addition to one or more studies
of the testing patient (the 17th patient). Then, we test on the held-out study of the testing
subject. In inter-patient experiments, the unlabeled patient is not represented in the training
(this is the case for subjects that have only one study). Experiments are performed with
cross-validation in a way that we hold out one patient study in each round of training (from
16 patients) and we classify the unlabeled held-out subject. The training set used in building
the learning model usually consists of approximately 1

2 million voxels obtained from 16
training patients. Experiments performed with SVM required further sub-sampling of the
training data to help improve the efficiency of the training task (see Section 4.4). Training
data is obtained from regions adjacent to the tumour at the first of two consecutive scans
(see Section 4.2, and Figures 1.1 and 4.1). The testing set consists of the entire brain image
(excluding the tumour at the first time point) for the unlabeled patient.

For the purpose of the prediction task, we use three different classifiers, available
through WEKA’s implementations [60, 68, 88, 132]:

• Naı̈ve Bayes (NB)

• Logistic Regression (LGT)

• Support Vector Machines (SVM) with linear kernel

The choice of classifiers is based on two factors: computational efficiency (i.e., the
amount of time the learning algorithm spends on training) versus the accuracy of the clas-
sification (i.e., how correct is the classifier in predicting tumour voxels for the unlabeled
subject). In initial experiments, we also used Decisions Trees (C4.5) and Multilayer Per-
ceptron (MLP) available through WEKA’s implementations [132]. In initial experiments
performed with C4.5 and MLP, results were similar to those obtained with other classifiers
but training was more computationally costly. Therefore, we only report diffusion model
results based on training and classification with NB, LGT, and SVM using cross-validation
on the 17 patients.

Once we have obtained the labels predicted by the classifier (i.e., ‘tumour’ or ‘non-
tumour’) for each of the voxels of the testing patient, we run a diffusion algorithm on
this patient. The algorithm decides whether a voxel will become ‘tumour’ based on the
classifier’s labels and the probability of the label at this voxel. The diffusion algorithm is
initialized from the tumour at the first of two consecutive time points for this patient, and
iterates around the active border of the tumour until it reaches the target tumour volume
(i.e., upon adding k voxels to the initial tumour volume). For testing, we allow the model
to grow the tumour to the volume observed at the next time point. The algorithm iterates
until it reaches the volume observed on the next scan of the patient or until it is no longer
able to add more tumour voxels to the predicted tumour volume (see Section 4.6). The
latter situation is more likely to occur if the classifier’s probabilities are very low (i.e., if
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the classifier was not able to decide whether a voxel will become tumour resulting in a
large number of false negatives). As the diffusion algorithm continues to iterate and as
more voxels become ‘tumour’, a low-probability voxel v may also become ‘tumour’ if one
or more of this voxel’s neighbours have already become ‘tumour’, i.e., if v is situated in a
concave region of the tumour border; see Diagram 4.5 and Figure 4.5. But when the number
of false negatives is large, CDM may iterate for very long periods of time (in terms of days)
before it reaches the volume at the next time point. In these cases, the diffusion algorithm is
able to add only a very small number of voxels to the tumour in a single iteration, requiring
a larger number of iterations in order to reach the specified volume. This issue is even more
prominent if the real tumour has grown into a significantly large mass in comparison with its
initial volume at the first time point. In cases like these, it may not be possible to allow the
diffusion model to iterate for lengthy periods of time (in terms of days), but the algorithm
will be terminated early though it may have predicted only a fraction of the specified tumour
volume. This is the case of the prediction output obtained with Naı̈ve Bayes classification
(see Tables 5.4 and 5.5).

The results of our CDM model are compared to those of UG and GW. These two models
do not involve as many parameters and are not as sophisticated as CDM. They consist
basically of initializing a diffusion algorithm from the tumour at the first time point. The
algorithm iterates around the tumour border adding ‘eligible’ voxels to the tumour mass,
until the tumour reaches the volume observed at the next time point (see Section 4.6).

So far in this chapter, we identified the performance evaluation measures, and we de-
scribed the training data, the features, and the classifiers used. In the remainder of this
chapter, we describe the experiments and the results. In Section 5.3.2, we analyze the
average and best case scenarios where CDM performs more accurately than UG and GW.
In Section 5.3.3, we discuss special scenarios where CDM performs the same as the other
models. We then evaluate the training dataset and the features in Sections 5.3.4 and 5.3.5
respectively, and we discuss the fairness of the performance measures in Section 5.3.6. We
conclude the chapter with remarks about the problem of glioma growth prediction and the
performance of our CDM system.

5.3.1 Experiments and Results Comparison

In this section, we present three rounds of experiments performed with training on differ-
ent feature combinations, FS0, FS1, and FS2 (see Table 5.6) which we derived from the
feature space listed in Section 4.5, based on the feature selection method described in Sec-
tion 5.2. Experiments have been performed with Naı̈ve Bayes (NB), Logistic Regression
(LGT), and linear-kernel Support Vector Machines (SVM). In each experiment, we com-
pare our CDM model results with results obtained with UG (uniform diffusion) and GW
(tumour growth based on diffusion motility in grey and white matter).

We report results obtained for CDM with cross-validation for the 17 patients. The
dataset consists of various tumour grades ranging from low-grade astrocytomas to grade
IV glioblastomas (GBM). Note that we excluded the pathology attribute from the empirical
feature space (Section 4.5). Though the tumour grade helps indicate the degree and speed
of invasion, the extent of invasion can be expressed more properly in terms of the growth
rate and the tumour volume increase (i.e., feature attributes GRate and VolInc, but GRate
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was also excluded from the empirical feature space due to the lack of multiple scans per
patient, which were required to estimate the growth rate of the tumour). In addition, the
tumour grade can often be expressed in terms of the patient’s age. It is generally observed
that GBM tumours tend to occur more frequently in older patients while low-grade tumours
are more common in children [30, 130]. Table 4.1 lists the age, pathology and the tumour
growth rate corresponding to each patient in the dataset in order to help more thoroughly
explain results given the tumour grade information.

In each experiment, we compare CDM results based on training and classification with
each of LGT, NB, and SVM separately.

In Experiment I (Table 5.3), we compare the results of UG and GW with CDM results
obtained from training each of the three classifiers based on the feature set FS0, which
consists of 75 features and a binary class label (see Table 5.6).

In Experiment II (Table 5.4), we compare the results of the three models including CDM
results when training classifiers on the feature subset FS1, which consists only of tumour
volume attributes, edema, intensity-based features and a binary class label (see Section 5.2
and Table 5.6).

In Experiment III (Table 5.5), we compare the three models’ results including CDM’s
based on the feature subset FS2, which combines the features in FS1 with voxel coordi-
nates and template-specific features (see Section 5.2 and Table 5.6).

Given CDM results with three different feature sets, and the results obtained with the
standard models, we compare the three models’ performance and provide a thorough anal-
ysis of CDM’s performance. We first discuss the average and best scenarios followed by
special cases of tumour diffusion. Section 5.3.4 evaluates the fairness of the dataset and
discusses data-related issues that have an impact on CDM’s performance. We also com-
pare CDM’s accuracy with respect to low-grade versus high-grade tumours. Section 5.3.5
evaluates the training features, and their effect on the model’s results. In Section 5.3.6, we
discuss issues related to the performance measures.

5.3.2 Average and Best Case Results

In general, it is medically known that edema regions, adjacent to the visibly-enhancing
tumour, may contain diffuse cancer cells [61, 72]. Such tumour regions do not enhance at
first on T1-weighted images with contrast but as cancer cells build up into small detectable
masses, enhancing tumours will appear in regions of edema. Hence, the presence of edema
is an indicator of abnormal cell activity possibly due to potential malignant invasion and to
the presence of the tumour causing swelling in adjacent normal tissue.

In our data, edema features are associated with the most significant IG scores (see Table
5.2) when measuring information gain on the entire training set for the 17 patients. Con-
sequently, classifiers tend to assign higher probabilities of diffusion to voxels that fall in
edema regions, i.e., it is more likely that these voxels will become ‘tumour’.

Given the data and the empirical results, cancer diffusion in edema regions is true for
at least several patients, e.g., patients #9, 106, and 160; see Figures 5.1, 5.2, and 5.3 re-
spectively for CDM prediction results, using Logistic Regression (LGT) classification based
on FS1 features, as compared to the truth volume. These patients represent average case
results where CDM performs more accurately by at least a small percentage as compared
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Figure 5.1: Patient #9 image volumes and CDM results
Top: contrast-enhancing T1-weighted image, at the first of two consecutive time points. Middle:

the patient’s image volume one year later (i.e., this is the truth volume). Bottom: CDM results after
the tumour has become nine times larger corresponding to the truth volume (initial tumour colored
white, true positives green, false positives red, and false negatives blue). The images are moving

from bottom to top of the patient’s head, left to right on each row.

to both of UG and GW (see Tables 5.3, 5.4, and 5.5). In these cases, the tumour tends to
grow along the edema as glioma cells have already infiltrated into the peritumoural edema
regions. These diffuse occult cells did not enhance at first on the T1-weighted images with
contrast as these cells may be found in low concentration. But on the next scan of the pa-
tient, enhancing tumours appeared in these regions as tumour cells built up into detectable
masses.

Infiltration of glioma cells in edema regions is particularly more obvious on the MRI
scans for patient #165, which represents the best case results as CDM models tumour diffu-
sion more accurately than UG and GW, by 20% and 12% respectively (see Tables 5.3, 5.4,
and 5.5). Figure 5.4 shows CDM prediction results, using LGT classification based on FS2

feature set, for patient #165 in comparison with the tumour and edema 3.5 months later,
after the tumour has tripled in volume.

In average and best case scenarios, the prediction is based on what the classifier recog-
nizes as ‘tumour’, which are often voxels located in edema regions. Glioma cell infiltration
in peritumoural edema may be even more detectable if the truth volume was obtained from
a patient scan before that patient would undergo a surgical procedure or would be adminis-
tered radiation treatment.

5.3.3 Special Cases of Tumour Growth

By ‘special cases’, we refer to tumour growth scenarios that do not follow usual diffusion
patterns along the edema regions or consistent growth behaviour, which is often due to the
effect of treatment followed by tumour recurrence. We also refer to scenarios of multifocal
tumours (e.g., patient #147, Figure 5.12), non-contiguous enhancing tumours (patient #83,
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Figure 5.2: Patient #106 image volumes and CDM results
Top: T1-weighted image showing enhancing tumour and peritumoural dark edema regions.

Middle: the image volume (the truth) ten months later including a treatment cavity that appears as a
dark region in the centre of the tumour. Bottom: CDM results corresponding to the truth volume
(initial tumour colored white, true positives green, false positives red, and false negatives blue).

The images are moving from bottom to top of the patient’s head, left to right on each row.

Figure 5.3: Patient #160 image volumes and CDM results
Top: T1-weighted image showing enhancing tumour and dark edema regions. Middle: the image

volume (the truth) nine months later. Bottom: CDM results corresponding to the truth volume
(initial tumour colored white, true positives green, false positives red, and false negatives blue).

The images are moving from bottom to top of the patient’s head, left to right on each row.
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Figure 5.4: Patient #165 image volumes and CDM results
Top: T1-weighted image slices, at the first of two consecutive time points, where the tumour is

enhancing and the edema appears as dark regions around the tumour. Middle: the patient’s image
volume three months later (i.e., this is the truth volume). Bottom: CDM results for the same patient
after the tumour has become three times larger. Note tumour growth into edema regions (top row
versus the truth volume). CDM prediction volume corresponds to the truth volume (initial tumour
colored white, true positives green, false positives red, and false negatives blue). The images are

moving from bottom to top of the patient’s head, left to right on each row.

Figure 5.9), and treated tumours that include a surgical cavity or an irradiated necrotic re-
gion. For example, the truth volumes for patients #106 and 169 include a treatment region
that appears as a dark region at the centre of the tumour (Figures 5.2 and 5.13 respectively).
Special cases also include shrinkage on one side of the tumour (due to radiation treatment)
and fast growth on another side of the same tumour depending on the radiation dose deliv-
ered to different regions of the tumour, to peritumoural edema regions, and to the adjacent
normal tissue. For example, patient #25 is one scenario of a recurrent tumour that appeared
in locations adjacent to the original tumour mass (see Figure 5.6).

Currently, our CDM model does not implement any special handling of these scenar-
ios though we train the model on subjects that have undergone surgical operations and on
tumours that appear as multifocal or as non-contiguous enhancing masses on one or both
sides of the brain. Our dataset consists of patients that are at different stages of treatment.
Not all patients respond to treatment, in particular most GBM tumours continue to aggres-
sively invade adjacent brain tissue even after surgical resection and radiation therapy. It
is worth noting that recurrent tumours tend to appear in a new location near the resection
cavity or the irradiated tumour volume (e.g., Figure 5.6) . These scenarios are more difficult
to predict with our CDM system since our model does not have a method of accounting for
tumour recurrence after treatment. For this reason, we have excluded from the training data
and from the experiments image volumes where the recurrent tumour appears in different
locations across the consecutive scans of the patient (e.g., patient #25, see Figure 5.6).

We tested our model, however, on cases where tumours do not grow along the edema
regions or do not show consistent diffusion behaviour along a particular direction. In these
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cases, CDM’s performance was the same or slightly more accurate than UG or GW. Patients
#25, 83, and 147 are examples of special tumour growth cases where CDM performed the
same as standard models (see Tables 5.3, 5.4, and 5.5).

Patient #6 is one of the scenarios where CDM models the tumour growth more accurately
than standard models. In this case, the tumour grows beyond the edema regions visible on
the first of two consecutive scans of the patient’s brain (see Figure 5.5).

In patient #93, the tumour originated in the left hemisphere of the brain but crossed
over to the right hemisphere through the corpus callosum in the posterior section adjacent
to the ventricles (see Figure 5.10). In this scenario, CDM modeled the tumour growth more
properly than UG and GW, but did not predict diffusion into the right cerebral hemisphere.

In patient #108, the enhancing tumour appeared in some of the edema regions while the
rest of the tumour actually continued to grow toward the posterior section of the brain where
there was no visible edema on the first of the two consecutive scans of the patient (see Figure
5.11). This tumour diffusion behaviour may be attributed to several factors including the
effect of treatment, and the ability of glioma cell masses to enhance in specific brain regions
more than others depending on blood supply, and angiogenesis. It is medically known that
edema regions may contain non-enhancing glioma cells, but in our experiments, we define
the tumour volume as the enhancing tumour regions excluding the edema. In the scenario
of patient #108, CDM’s accuracy was slightly higher than that for UG and GW.

In summary, given the small training set of 17 patients, and the effect of treatment
and glioma recurrence present in most tumour growth scenarios, at least one third of the
scenarios can be categorized as ‘special cases’ of glioma diffusion. While our CDM model
does not specifically handle inconsistent diffusion patterns, recurrence, multi-focal tumours,
and treatment effect, our model’s accuracy is comparable or better than the performance of
UG and GW with respect to these scenarios.

5.3.4 Fairness of Dataset

Though we have collected a large number of patient studies for our training dataset, only
a small subset of these studies could be used due to the effect of surgical resection and
radiation treatment as observed on several patient scans (e.g., Figures 5.6 and 5.12). Also,
while we know that all patients are at different stages of treatment, we do not have specific
information about the treatment volumes, the radiation dose delivered to different regions of
the brain, or patients’ response to treatment. The information we have is mostly represented
through what we could visually detect – at the human eye level – on the MRI scans.

Because the effect of treatment is present in all patient studies, it is difficult to prop-
erly measure the performance of our system given the training data and the tumour recur-
rence scenarios where the tumour is eradicated from its initial location but appears later in
new locations adjacent to the resection region. This effect makes it more difficult for our
classification-based model to track tumour growth behaviours across patient scans. It is also
difficult to properly evaluate model results since the truth volume (i.e., the tumour at a later
time used in evaluating models’ performance) may not represent real tumour growth due to
the effect of treatment.

Ideally, it would be more desirable if we could train and test our model on patients that
have not undergone any treatment. But such data is extremely rare and often unavailable.
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Figure 5.5: Patient #6 image volumes and CDM results
Top: the image volume at the first of two consecutive time points. Middle: the patient’s scan six

months later (this is the truth volume). Bottom: CDM prediction results corresponding to the truth
volume (initial tumour colored white, true positives green, false positives red, and false negatives
blue). The images are moving from bottom to top of the patient’s head, left to right on each row.

We have compensated for the lack of untreated patient data by excluding from our training
set recurrent tumours that appear in different locations across the scans of the same patient.
By excluding recurrent tumour instances, we obtain a dataset of consistent tumour growth
across the scans of each patient, rather than tumours that decrease in volume then appear
in regions adjacent to the original tumour mass. We were also able to use several scans for
patients diagnosed with GBM tumours and that did not respond to treatment (e.g., patient
#9, Figure 5.1).

Model Performance versus Tumour Grade

Our dataset consists of four different glioma grades ranging from low-grade astrocytomas
to the most invasive glioblastomas (GBM). Since GBM is the most common of all primary
brain tumours in glioma patients [2, 96, 113], it represents 2

3 of patients’ studies in our
data (see Table 4.1). While we have excluded the ‘pathology’ (i.e., the tumour grade) from
the learning features, tumour grade information can be expressed in terms of the tumour’s
growth rate and the patient’s age. There is a direct correlation between the tumour grade
and its growth rate. It has also been observed that higher-grade tumours tend to occur
more frequently in older patients while low-grade tumours are more common in children
[30, 130]. We excluded the growth rate feature from the current feature space because the
dataset does not contain multiple studies for many of the patients; these multiple studies
were required to estimate the growth rate of the tumour. We were able to include, however,
the patient’s age in the feature space as it implicitly indicates the tumour grade [30] (see
Section 4.5).

Because CDM is a general learning model, it is not restricted to predicting a particular
tumour grade, but it requires involving a fair representation of the different tumour types
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Figure 5.6: Patient #25 image volumes and CDM prediction results
Top to bottom: the image volumes of the same patient at three different time points in chronogical

order, followed by CDM prediction results. The images are moving from bottom to top of the
patient’s head, left to right, on each row. Note treatment effect as both tumour and edema

disappeared from the two left slices (top versus second row) and appeared in a different location as
seen on the third row. We excluded the top image volume from the training data and the

experiments. CDM prediction (bottom row) is based on information of the image volume at the
second time point (second row) and on the truth volume (third row). The initial tumour is colored
white, true positives are green, false positives red, and false negatives blue. Images at the bottom

row (i.e., the prediction) corresponds to the truth images at the third row.
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Figure 5.7: Patient #37 image volumes and CDM results
Top to bottom: the image volumes at two consecutive time points followed by CDM prediction

results. The initial tumour is colored white, true positives are green, false positives red, and false
negatives blue. The images are moving from bottom to top of the patient’s head, left to right on

each row.

Figure 5.8: Patient #44 image volumes and CDM results
Top to bottom: the image volumes at two consecutive time points followed by CDM prediction

results. The initial tumour is colored white, true positives are green, false positives red, and false
negatives blue. The images are moving from bottom to top of the patient’s head, left to right on

each row.
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Figure 5.9: Patient #83 image volumes and CDM prediction
Top: the image volume at the first of two consecutive time points. Middle: the patient’s scan five

months later (the truth volume). Note the tumour did not grow into the anterior brain region along
edema regions (left two slices, top versus middle row). The tumour started growing instead toward
the posterior region of the brain, detected as non-contiguous masses on the right slice, middle row.
Bottom: CDM prediction results evaluated against the truth volume (initial tumour colored white,
true positives green, false positives red, and false negatives blue). The images are moving from

bottom to top of the patient’s head, left to right on each row.

Figure 5.10: Patient #93 scans and CDM results
Top to bottom: the image volumes at two consecutive time points at a four-month interval, followed

by CDM prediction results.

85



Figure 5.11: Patient #108 scans and CDM results
Top to bottom: the consecutive patient scans at a 12-month interval followed by CDM prediction
results evaluated against the truth volume obtained from the second scan (initial tumour colored
white, true positives green, false positives red, and false negatives blue). The images are moving

from bottom to top of the patient’s head, left to right on each row.

Figure 5.12: Patient #147 scans and CDM results
Top: the image volume at the first of two consecutive time points. Middle: the patient’s scan seven

months later (used as the truth volume). Note the tumour at each lobe of the brain and the
shrinkage of the left lobe tumour due to treatment (top versus middle row). Bottom: CDM’s

prediction evaluated against the truth volume (initial tumour colored white, true positives green,
false positives red, and false negatives blue). The images are moving from bottom to top of the

patient’s head, left to right on each row.
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Figure 5.13: Patient #169 scans and CDM results
Top: contrast-enhancing T1-weighted image volume. Middle: The image volume (the truth) a year

later showing a necrotic treatment region. Bottom: CDM prediction results corresponding to the
truth volume (initial tumour colored white, true positives green, false positives red, and false

negatives blue). The images are moving from bottom to top of the patient’s head, left to right on
each row.

in the learning data in order to properly model all types of gliomas. Currently, low-grade
tumours are under-represented in the training data since they are less common than GBM
among glioma patients.

Given the representation of tumour grades in the training data, CDM tends to predict
GBM tumour growth more accurately than UG and GW, while it performs the same or
slightly better than these standard models in the case of low-grade gliomas. We discuss
in the following sub-section the statistical confidence in these results. Also, CDM’s pre-
diction is based on the probabilities assigned by classifiers to the unlabeled voxels. High-
probability voxels are likely to be located in edema regions, in particular in high-grade,
large tumours where there is larger edema regions surrounding the tumour (e.g., Figure
5.4). In low-grade gliomas, the edema regions and the tumour volume increase are much
smaller than in high-grade tumours (e.g., Figure 5.8) leaving a smaller number of unlabeled
voxels for the diffusion model to predict, therefore, a higher error margin in particular at
the tumour periphery. This larger error margin is due to a smaller intersecting region of true
positives between the prediction volume and the truth volume. Also, the manual segmenta-
tion error may be prominent when the tumour volume increase across the patient’s scans is
small.

Statistical Evaluation of the Three Models using the t-Test

Given the average recall values for CDM (obtained with LGT, SVM, and NB using the
feature set FS1) are 0.598, 0.596, and 0.518, respectively, and the average recall values
obtained with UG and GW are 0.524 and 0.566, respectively, we determine if these average
recall values are statistically significant by performing Student’s t-test [107]. This test indi-
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cates whether the difference in the calculated means (i.e., two sets of recall values obtained
with two different diffusion models and averaged over 17 patients) may be attributed to
“chance”.

To report the various possible outcomes: from means not significantly different to
means in fact “significantly” different, the probability P that the difference is due to chance
is reported. We reject the null hypothesis if P is “small”.

We perform the test on paired data, i.e., the same sample of patient studies, to which we
applied three different diffusion models (CDM, UG and GW). The paired t-test (Equation
5.1) focuses on the difference between the paired data and reports the probability that the
actual mean difference is consistent with no difference. This comparison is aided by the
variance associated with the differences.

Let Xi and Yi be two paired sets of data, each of sample size n, Xavg and Yavg are
the mean values for the two sets respectively, and Xsi

and Ysi
are the standardized sample

means such that Xsi
= Xi − Xavg and Ysi

= Yi − Yavg. The t value is computed as the
following:

t = (Xavg − Yavg)

√

n(n − 1)

Σn
i=1(Xsi

− Ysi
)2

(5.1)

We perform the t-test by first computing the t values for each of the result samples
obtained with the three diffusion models, CDM, UG and GW. We use n− 1 degrees of free-
dom and 95% confidence interval for the mean. We then compute the probability assuming
the null hypothesis (i.e., the means are not significantly different). The standard deviation
measured for each of UG and GW is 0.126 and 0.117 respectively. The standard devia-
tion for CDM results obtained with each of LGT, SVM, and NB is 0.129, 0.128, and 0.117

respectively. We perform the test on the following pairs of data:

• CDM results obtained with LGT using feature set FS1 versus UG results: the t value
is 4.14, and the probability, assuming the null hypothesis, is 0.001. In this case, we
reject the null hypothesis and we conclude that the average recall values obtained
with CDM and UG are significantly different.

• CDM results obtained with LGT using feature set FS1 versus GW results: the t value
is 3.61, and the probability, assuming the null hypothesis, is 0.002. Therefore, we
reject the null hypothesis and we conclude that the average recall results obtained
with CDM and GW are significantly different.

• CDM results obtained with LGT versus SVM, using FS1: the t value is 1.09, and the
probability, assuming the null hypothesis, is 0.293. In this case, we do not reject the
null hypothesis, which means that results obtained with LGT and with SVM are not
significantly different.

• CDM results obtained with LGT versus NB, using FS1: the t value is 2.84, and the
probability, assuming the null hypothesis, is 0.012, which leads to rejecting the null
hypothesis. Results obtained with a generative classifier (i.e., NB) can be significantly
different from those obtained with discriminative classifiers (i.e., LGT).

88



5.3.5 Evaluation of Training Features

Currently, most of our training features are based on image intensities and voxel coordinates
as well as tumour volume information. These attributes are obtained from normal versus
abnormal regions visually detected on the MRI scans and are therefore susceptible to sub-
jective human interpretations of the definition of abnormality. The current features have
offered an important but limited contribution given training data limitations and treatment
effect. In more consistent tumour growth scenarios (Section 5.3.2), the training features
incorporated in our CDM model helped more accurately predict tumour growth than the
standard models UG and GW. But in other cases (Section 5.3.3), CDM performed the same
as the standard models.

In addition, when we train and test on the same data, as opposed to testing with cross-
validation, we do not obtain perfect accuracy. Applying classifiers on the feature set FS0

to train and test on the same data yielded a precision of 0.711 and a recall of 0.849 with
Logistic Regression, and 0.707 precision, 0.714 recall with Naı̈ve Bayes. These non-perfect
precision and recall values are due to overlapping data points between the ‘tumour’ and
‘non-tumour’ classes. In other words, the attributes of a voxel may indicate that this voxel
will be labeled as ‘tumour’ but on the truth volume, the voxel may fall in the ‘non-tumour’
region. This effect might be due to treatment and to other factors given our training data is
limited to information visually detected on the MRI scans, and given the error margin at the
boundary of the segmented tumour volumes. In addition, our current training features may
not be sufficiently expressive of the abnormal regions – i.e., regions of potential glioma
diffusion. It is also worth noting that information acquired from the MRI scans does not
help differentiate between increased water content and micro-infiltration of glioma cells in
peritumoural edema regions. That is, these edema regions likely contain diffuse glioma
cells that have infiltrated through normal tissue but can be found, with MR spectroscopy, in
low concentrations below the threshold of detection of MR imaging.

We believe that model accuracy might have significantly improved if we could include
in our features information acquired through spectroscopy, metabolic tumour data, and de-
scriptions of the genetics of the tumour cells. As opposed to visually detecting abnormal
regions on the MRI scans, spectroscopy helps indicate invasion of cancer cells into adja-
cent normal tissue even though these cells may be found in very low concentrations and are
undetected on the MR images. Metabolic and genetic tumour features may help predict ma-
lignant diffusion in tumour regions where the cancer cells are more active and proliferate at
a faster rate than in the rest of the tumour. On the MRI scans, this effect might be detected
as fast tumour growth on a particular side of the tumour border while the cells at the rest of
the tumour periphery proliferate with a lower rate.

At the present time, it may be very costly to obtain spectroscopy and genetic tumour
information. Most existing approaches use therefore CT or MRI scans to obtain model
parameters and to evaluate results.

Comparison of Results using Different Feature Sets

Currently, training with different subsets of feature combinations (i.e., FS0, FS1, and FS2

described in Section 5.2) does not yield significantly different results (see Tables 5.3, 5.4,
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and 5.5). In some scenarios, the accuracy may increase or decrease by 2 − 3% depending
on the features used in the training and prediction, and on whether these scenarios require
a higher level of generalization.

For example, the accuracy slightly increased, for patients #6, 37, 44, and 83, when train-
ing a Logistic Regression classifier (LGT) with FS1 – which excludes voxel coordinates,
tissue map, template intensities, and brain tissue types – versus training with the FS0 fea-
ture set (compare Tables 5.3 and 5.4). This slight increase in accuracy may be attributed
to the higher level of generalization provided in training with FS1 features. Also, tumour-
induced pressure on the ventricles is common in these four scenarios, suggesting that it is
more beneficial not to learn template-specific information in particular in the ventricles re-
gion (i.e., the template’s ventricles may overlap with tumour growth regions on the patient’s
image), and brain tisue information where the tumour has pushed the CSF. In cases where
the tumour volume is significantly large or pushes CSF anatomic regions, SPM does not
properly segment the grey and white matter and CSF due to the size and location of the
tumour. In other scenarios, e.g., patients #8, 108, and 147, the accuracy slightly decreased,
likely due to the treatment effect (tumour shrinkage and recurrence) that becomes more
prominent when training mainly with edema features (as in FS1). In these scenarios, the
classifiers assign higher probabilities to voxels situated in edema regions, assuming poten-
tial tumour invasion along the edema, but since the enhancing tumours may appear in only
some of these edema regions (due to the effect of treatment and to other anatomical factors),
this prediction will result in a large number of false positives.

Training with FS2 feature set yielded similar results to training with the entire feature
space (compare Tables 5.3 and 5.5). This is because FS2 incorporates the template-specific
information and voxel coordinates that were excluded from FS1.

Comparison of Classifiers’ Performance

By comparing the results of the three classifiers (Tables 5.3, 5.4, and 5.5), we observe that
the results of Logistic Regression (LGT) are more or less comparable to those of SVM
while both classifiers are performing more accurately than Naı̈ve Bayes (NB).

In our results, the average recall for NB results tends to be lower than the average
recall obtained with LGT and SVM, which means than NB classification yields a larger
number of false negatives (i.e., it labels more ‘tumour’ voxels as ‘non-tumour’). In each of
the three experiments, we average the recall values obtained for the 17 test patients. The
average recall for the results in Table 5.3 is 0.594, 0.565, 0.592 for LGT, NB, and SVM
respectively. In Table 5.4, the average recall is 0.598, 0.518, 0.596 and in Table 5.5, it is
0.594, 0.544, 0.592, for LGT, NB, and SVM respectively. Note the average recall for NB
is 3 − 8% lower in the three experiments.

We attribute NB results, in comparison with LGT results, to the generally observed
performance of generative (i.e., NB in our experiments) versus discriminative (i.e., LGT)
classifiers. Given a target function P (Y |X) that we wish to learn, where Y is a target
attribute and X is the instance space, a generative classifier views the distribution P (X|Y )
as describing how to generate random instances X conditioned on the target attribute Y
[82]. A discriminative classifier directly estimates P (Y |X) as it views the distribution
P (Y |X) as directly discriminating the value of the target attribute Y for any given instance
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X [82]. Naı̈ve Bayes classifiers have a higher asymptotic error (as the number of training
examples becomes large) than Logistic Regression models [86]. In the general case, NB
and LGT converge to their asymptotic accuracies at different rates in the order of log n and
n respectively where n is the dimension of X , i.e., LGT converges more slowly [86, 82].
With a large number of training examples, the error of the LGT classifier is smaller than that
of the generative NB, which yields better performance with LGT [86, 82]. This effect has
been observed in our results as LGT yielded a higher average recall for the 17 test patients
as compared to NB results.

5.3.6 Fairness of Performance Evaluation

While current approaches compare their model results by measuring the distance in mil-
limeters between the boundaries of the predicted tumour and of the truth (see e.g., [21] and
[138]), we use precision and recall measures to evaluate CDM performance at the voxel
level. These measures are more accurate in assessing system performance as opposed to
graphically measuring the distance between the prediction results and the truth (see Figure
2.1).

We note, however, that the results of the three models, CDM, UG and GW, include a
non-quantified error margin at the boundaries of the manually segmented tumour volumes,
due to human error and to the definition of tumour versus normal regions.

Presently, CDM’s performance is restricted by our definition of tumour volume, which
consists of the enhancing tumour and abnormal textures adjacent to the enhancing volume.
This definition does not generally include the peritumoural edema regions. In scenarios
where CDM predicts glioma diffusion into edema regions, the prediction accuracy will de-
pend on whether enhancing tumours will appear in the edema regions on the next scan of
the patient. In these cases, the accuracy might be under-estimated since edema regions are
likely to contain diffuse glioma cells. But given our definiton of the abnormal regions, we
evaluate the prediction in terms of enhancing tumours only.

CDM’s performance is also limited by the tumour volume increase. In smaller tumour
volumes (often low-grade gliomas), the error margin at the tumour boundary may represent
a larger fraction of the total number of unlabeled voxels. CDM tends to model larger tumours
more accurately.

Another limitation is the spatial interpolation step (see Chapter 3), which also includes
a non-measured error margin at the tumour boundary. After spatial interpolation of the tu-
mour volumes, we discard low-intensity voxels that fall below the 50% threshold (obtained
from dividing the voxel’s intensity by the maximum intensity). The output of the regis-
tration and spatial interpolation steps is a 91-slice image volume obtained from a 20-slice
image volume (before processing). Errors observed in the output volume include tumour
voxels overlapping with the petrous bone, and other interpolation artifacts that appear as
non-smooth lines or sudden intensity changes across the slices of the output image (as de-
scribed in Section 3.10).
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5.4 Conclusion

In this chapter, we have discussed the challenges involved in evaluating the performance of
our classification-based model, CDM. We have also discussed the feature selection, issues
related to training data, and the evaluation measures used in assessing system performance.
We then presented experiments performed with three different classifiers and the results
obtained when training with three sets of feature combinations.

We conclude from the results that, though glioma diffusion prediction is a rather chal-
lenging problem, it is feasible to model glioma growth based on learning and classifica-
tion more accurately than with standard methods. Several scenarios in the experiments
showed that our classification-based method can ‘track’ glioma diffusion patterns, in par-
ticular when the enhancing tumour spreads along the edema regions. Peritumoural edema
is due to both increased water content and to glioma cell infiltration into normal tissue. The
presence of edema may therefore indicate abnormal cell activity as glioma cells continue to
build up in the edema into enhancing, detectable tumour masses [61, 72].

We also conclude that glioma diffusion does not conform with radial uniform growth
(performed by the UG model) but tumours tend to grow into asymmetric volumes. In addi-
tion, several factors are involved in this diffusion process, and it is not sufficient to account
only for the heterogenous brain tissue when modeling tumour growth (as performed with
the GW growth model). Instead, to successfully model glioma growth, it is important to in-
corporate information specific to the voxels adjacent to the tumour, the edema regions, the
brain anatomy and to the patient. It is medically observed that edema regions likely contain
diffuse glioma cells [61, 72], and that tumours may continue to grow along the direction of
the white fibres [113, 90]. But these tumour cells do not diffuse into CSF regions (e.g., the
ventricles) though the tumour-induced pressure may deform these anatomic structures. An
accurate diffusion model should be able to differentiate between the heterogeneous brain
anatomy. Our CDM model utilizes template-based information to allow tumour growth into
the grey and white matter only, and to simulate tumour-induced pressure on CSF regions at
a 10% diffusion rate.

To evaluate the statistical confidence in our conclusions regarding the performance of
the three models, we performed Student’s t-test [107] (see Section 5.3.4). The results of
this statistical test showed that the average recall values, obtained with the three different
models (CDM, UG and GW), are significantly different in that these differences are unlikely
to be due to chance. We applied the test to the recall values (averaged over the 17 patients)
given that our implementation of the three models yields equal precision and recall values
(see Section 4.6).

Our learning system, CDM, is also efficient as in most cases, it performs the diffusion
modeling in real time. Given a preprocessed MRI scan and a segmented tumour, CDM
performs tumour growth modeling, using an already learned classifier, in terms of minutes
depending on the additional number of tumour voxels to grow (i.e., the target volume of the
tumour). The preprocessing of an MRI scan of a single patient and the feature extraction
are performed in approximately one hour. The average efficiency of the diffusion algo-
rithm, given the labels predicted by Logistic Regression based on the feature set FS0, is
9.7 minutes averaged over the 17 patients.

We believe that CDM would have performed more accurately if the effect of treatment
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was not present in the training data, in particular in special case scenarios where tumour
shrinkage and recurrence were observed. In these cases, CDM’s performance is comparable
to that of standard models.

Also, CDM tends to perform more accurately when predicting diffusion for high-grade
gliomas than low-grade and MOA tumours (Section 5.3.4). This is because these lower-
grade gliomas are not properly represented in the training data (about 1

3 of our training
instances), and they are more likely to respond to treatment in comparison with high-grade
gliomas. CDM also performs more accurately in predicting large tumours, where signs of
abnormality (edema and texture) are detectable more easily on the MRI scans. Since the
model’s prediction is based on information acquired from the brain images, including image
intensities and edema regions, these features have an important role in the model’s accuracy.

Given the three different experiments presented in this chapter, empirical results showed
that combining different features did not have a significant effect on CDM’s performance in
general. These feature combinations have helped slightly increase the accuracy in glioma
diffusion scenarios that require a higher level of generalization, but did not increase the
overall average accuracy. It should also be mentioned that predictions based on NB clas-
sification yielded lower recall than with LGT and SVM. This means that NB classification
yields a high number of false negatives resulting in a larger number of iterations with the
diffusion algorithm, causing the algorithm to terminate before reaching the target volume.
NB classifiers have been more sensitive to ambiguous training data where some ‘tumour’
versus ‘non-tumour’ voxels may have similar attributes in particular if located in the edema
regions. LGT and SVM yielded similar results though LGT performed far more efficiently,
at training time, as compared to SVM that required further sub-sampling of the training data
to reduce training time.

In summary, CDM performs more accurately in most scenarios as compared to radial
uniform growth (UG). It is also more accurate than diffusion based on grey and white mat-
ter (GW) in several scenarios. Currently, CDM’s prediction is mainly based on features
extracted from the MRI scans and can only be as accurate as the threshold of detection of
tumour regions with MR imaging and the segmentation of tumour volumes.

Through this research study, we hope to help radiation oncologists identify regions
where there may be potential glioma invasion in order to specify more precisely the treat-
ment volume and radiation dosage delivered to the patient’s brain; hence, decreasing the
chance of malignant recurrence.
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Feature Name IG score F. Name (Cont’d) IG Score
DistArea 0.03798 Age 0.01292
EdemaNei3 0.03565 GmNei5 0.0107
EdemaNei6 0.03427 GmNei1 0.01068
EdemaNei5 0.0341 GM 0.01049
EdemaNei1 0.03326 GmNei4 0.00989
EdemaNei2 0.03274 GmNei2 0.00984
EdemaNei4 0.02968 GmNei6 0.00984
Edema 0.02923 GmNei3 0.00891
T2IntNei3 0.02733 Ch2WmNei3 0.00805
T1Int 0.02699 Ch2WmNei6 0.00778
TissueMap 0.0238 Ch2WmNei5 0.00755
Ch2Int 0.02168 Ch2WM 0.00745
T2IntNei6 0.02136 y coord 0.00716
EuclDist 0.02113 Ch2WmNei1 0.00707
T2Int 0.02111 Ch2WmNei2 0.00701
T2IntNei5 0.02095 Ch2WmNei4 0.00643
T2IntNei1 0.02013 Ch2CsfNei3 0.00612
VolInc 0.01994 Ch2CsfNei5 0.00574
T2IntNei2 0.01989 Ch2CSF 0.00527
x coord 0.01969 Ch2CsfNei6 0.00515
Ch2GmNei3 0.01932 Ch2CsfNei1 0.00497
Ch2GmNei6 0.01887 Ch2CsfNei2 0.0046
T1cInt 0.01885 WmNei6 0.00439
Ch2GM 0.01883 WmNei5 0.00436
Ch2GmNei5 0.01845 Ch2CsfNei4 0.00432
Ch2GmNei1 0.01836 WM 0.00428
Ch2GmNei2 0.01814 WmNei2 0.00424
T1cIntNei1 0.01761 WmNei1 0.00421
T1cIntNei5 0.01753 WmNei3 0.0041
T2IntNei4 0.01727 WmNei4 0.00397
T1cIntNei6 0.01705 CsfNei2 0.00307
T1cIntNei3 0.01694 CsfNei4 0.00294
EdemaPerc 0.01669 CsfNei1 0.00287
T1cIntNei2 0.01646 CSF 0.00276
Ch2GmNei4 0.01598 CsfNei5 0.00259
z coord 0.01488 CsfNei6 0.00236
AreaVol 0.014 CsfNei3 0.00146
T1cIntNei4 0.01332

Table 5.2: Information Gain (IG) scores ranked in descending order for the FS0 feature set,
a subset of the feature space, described in Section 4.5
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Patient Id CDM(LGT) CDM(NB) CDM(SVM) UG GW
6 0.703 0.617 0.704 0.660 0.635
8 0.633 0.544 0.620 0.611 0.588
9 0.765 0.807/0.601 0.765 0.679 0.730
25 0.466 0.463 0.468 0.390 0.452
37 0.628/0.602 0.647/0.620 0.624/0.598 0.476/0.456 0.661/0.634
44 0.544 0.536 0.543 0.564 0.579
51 0.575 0.552 0.574 0.448 0.553
69 0.507 0.515 0.510 0.509 0.523
83 0.365/0.371 0.364/0.371 0.368/0.375 0.362/0.369 0.350/0.354
93 0.726 0.718 0.721 0.674 0.676
105 0.433 0.419 0.434 0.431 0.377/0.373
106 0.723 0.683 0.721 0.476 0.685
108 0.676 0.665 0.673 0.630 0.654
147 0.361 0.378 0.373 0.258 0.367
160 0.692/0.712 0.637/0.655 0.681/0.701 0.649/0.668 0.628/0.646
165 0.649 0.663 0.638 0.469 0.544
169 0.644 0.635 0.646 0.624 0.629

Table 5.3: Experiment I Results
Precision and Recall for the three models with three classifiers for CDM using the feature set FS0

(described in Section 5.2 and in Table 5.6). For efficiency purposes, data used in training SVM has
been sub-sampled by including every 15th voxel.
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Patient Id CDM(LGT) CDM(NB) CDM(SVM) UG GW
6 0.720 0.788/0.469 0.723 0.660 0.635
8 0.614 0.422/0.326 0.608 0.611 0.588
9 0.765 0.952/0.383 0.765 0.679 0.730
25 0.465 0.463 0.468 0.390 0.452
37 0.659/0.631 0.657/0.630 0.653/0.626 0.476/0.456 0.661/0.634
44 0.592 0.486 0.588 0.564 0.579
51 0.571 0.559 0.568 0.448 0.553
69 0.504 0.484 0.507 0.509 0.523
83 0.378/0.385 0.373/0.380 0.374/0.381 0.362/0.369 0.350/0.354
93 0.716 0.706 0.715 0.674 0.676
105 0.435 0.431 0.427 0.431 0.377/0.373
106 0.730 0.736 0.725 0.476 0.685
108 0.663 0.581/0.554 0.667 0.630 0.654
147 0.343 0.279 0.353 0.258 0.367
160 0.704/0.724 0.715/0.673 0.702/0.722 0.649/0.668 0.628/0.646
165 0.656 0.652 0.644 0.469 0.544
169 0.648 0.595 0.651 0.624 0.629

Table 5.4: Experiment II Results
Precision and Recall for the three models with different classifiers for CDM using FS1 features
(described in Section 5.2 and in Table 5.6). For efficiency purposes, data used in training SVM has
been sub-sampled by including every 15th voxel.
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Patient Id CDM(LGT) CDM(NB) CDM(SVM) UG GW
6 0.704/0.705 0.752/0.489 0.705 0.660 0.635
8 0.632 0.465 0.614 0.611 0.588
9 0.765 0.940/0.506 0.765 0.679 0.730
25 0.467 0.466 0.468 0.390 0.452
37 0.638/0.612 0.648/0.621 0.625/0.599 0.476/0.456 0.661/0.634
44 0.542 0.503 0.546 0.564 0.579
51 0.571 0.561 0.575 0.448 0.553
69 0.506 0.516 0.511 0.509 0.523
83 0.364/0.371 0.369/0.376 0.364/0.371 0.362/0.369 0.350/0.354
93 0.723 0.715 0.723 0.674 0.676
105 0.443 0.418 0.434 0.431 0.377/0.373
106 0.719 0.706 0.716 0.476 0.685
108 0.675 0.643 0.673 0.630 0.654
147 0.354 0.338 0.361 0.258 0.367
160 0.689/0.709 0.655/0.674 0.682/0.704 0.649/0.668 0.628/0.646
165 0.664 0.645 0.657 0.469 0.544
169 0.644 0.606 0.649 0.624 0.629

Table 5.5: Experiment III Results
Precision and Recall for the three models with different classifiers for CDM using FS2 features
(described in Section 5.2 and in Table 5.6). For efficiency purposes, data used in training SVM has
been sub-sampled by including every 15th voxel.
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Feature Set List of Features
IFS Patient: Age, pathology, history, KPS

Anatomical: AAL & Brodmann labels
Tumour: TumVol, EdemaVol, AreaVol, GRate, EdemaPerc, VolInc, VolDiff
Voxel: WM, GM, CSF, Edema, EuclDist, T1Int, T2Int, T1cInt, DistArea, DistVol

FS0 Patient: Age
Tumour: AreaVol, EdemaPerc, VolInc
Voxel: coordinates, TissueMap, EuclDist, DistArea, Edema, WM, GM, CSF,
Ch2Wm, Ch2GM, Ch2Csf, T1Int, T2Int, T1cInt, Ch2Int
Neighbourhood: EdemaNei, T2Int, T1cInt, WmNei, GmNei, CsfNei,
Ch2WmNei, Ch2GmNei, Ch2CsfNei

FS1 Patient: Age
Tumour: AreaVol, EdemaPerc, VolInc
Voxel: EuclDist, DistArea, Edema, T1Int, T2Int, T1cInt
Neighbourhood: EdemaNei, T2IntNei, T1cIntNei

FS2 Patient: Age
Tumour: AreaVol, EdemaPerc, VolInc
Voxel: coordinates, TissueMap, EuclDist, DistArea, Edema,
Ch2Wm, Ch2GM, T1Int, T2Int, T1cInt, Ch2Int
Neighbourhood: EdemaNei, T2IntNei, T1IntNei, Ch2WmNei, Ch2GmNei

Table 5.6: The four feature subsets used in the experiments
List of features corresponding to each feature subset derived from the potential feature space listed
in Section 4.5. Identifiers (feature names) used in this table are the same as in Section 4.5.
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Chapter 6

Conclusion

In previous chapters, we have introduced the problem of modeling glioma diffusion based
on information acquired from MR images. This problem has been motivated by its practical
application in radiation therapy, and its potential usefulness in improving current treatment
methods. Given the characteristics of the problem, glioma diffusion modeling can be solved
as a pattern recognition task where machine learning algorithms learn glioma diffusion
patterns from the attributes of the voxel regions adjacent to the tumour volume. In Chapter
3, we have presented the processing pipeline of the imaging data sequences, and provided
an overview of the model’s framework. Chapter 4 defined the problem, and presented the
implementation of the proposed diffusion model, CDM, along with an implementation of
two standard models. Chapter 5 evaluated the performance of the proposed model in terms
of patient-specific testing. This final chapter summarizes the contribution of the thesis, and
discusses potential future directions of research that directly follow from this work.

6.1 Contribution

While most glioma growth models proposed in the state-of-the-art literature are based on
mathematical approaches that predict diffusion at the macroscopic scale, as described in
Chapter 2, this thesis presents a general model based on learning and classification at the
voxel level. Our proposed model learns glioma diffusion patterns from MR image volumes
acquired for 17 patients, and classifies the unlabeled voxels of a new patient based on the
attributes of these voxels. Voxel attributes are obtained from image-based features, infor-
mation specific to the tumour volume, characteristics of the brain tissue in regions adjacent
to the tumour, and attributes of the patient. A diffusion algorithm is then initialized from
the tumour volume observed on the patient’s MRI scan at one time. The algorithm iterates
around the tumour border adding candidate voxels – i.e., voxels that are more likely to be-
come tumour as predicted by the classifier – until the tumour reaches a specified volume.
To evaluate this approach, we set the target volume to the volume observed at a later scan
for the patient, and we then compare the predicted volume with the actual tumour volume
observed at this second scan.

Results show that image-based features, in particular intensity-based and edema at-
tributes, help ‘track’ glioma diffusion in adjacent tissue. The results also show that glioma
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cells often infiltrate through peritumoural edema regions though these tumour cells may not
enhance at first on T1-weighted MR image with contrast. Our proposed model is able to
recognize these diffusion patterns and is able to model glioma growth in these cases more
accurately than standard methods. In other scenarios, particularly recurrent gliomas that ap-
pear in new locations near the treated volume, CDM performs the same as standard models.
In these special scenarios, image-based features do not provide sufficient information that
would help track the activity of occult glioma cells. In some cases, cancer cells may already
have infiltrated through adjacent normal tissue without any detectable signs of abnormality
on the MRI scans. In these scenarios, information solely obtained from the MR images will
not provide the necessary features required for recognizing abnormal tissue regions where
glioma cells have infiltrated but are found in very low concentrations below the threshold
of detection of MR imaging.

In addition, the comparison of results obtained from the three models suggests that
glioma cells do not follow a radial uniform growth pattern, but tend to be more invasive
to normal tissue in particular regions of the brain, i.e., regions that represent “highways”
for glioma cell diffusion. Glioma diffusion is based on a large number of factors, some of
which may still be unknown, but include the tumour grade or histology, the brain anatomical
structures, patient attributes, and properties of the tissue adjacent to the diseased region.
Unlike radial uniform diffusion conventionally assumed in cancer treatment and growth
models based only on the diffusion rates in white versus grey matter [110], our proposed
model is more sophisticated. That is, CDM takes into account a combination of factors –
mainly available through the MRI scans – that are currently known to have a role in glioma
invasion, and uses the information from the MRI scans to produce more accurate results as
compared to standard approaches.

6.2 Future Directions

Given the current results and the special case scenarios, there are several future directions
that are worth exploring both at the data processing level and in the implementation of the
diffusion model. Section 6.2.1 presents potential improvements that can be made at each
step of the data processing pipeline and in the model framework overall. Section 6.2.2
suggests additional data required to improve the performance of the diffusion model, and
future work based on this data. Section 6.2.3 suggests additional features and classification
methods that represent promising future research directions that may help discover glioma
diffusion patterns. Finally, we present in Section 6.2.4 potential additions to the model to
help differentiate brain anatomical regions and to guide the diffusion algorithm into regions
where gliomas are more likely to grow.

6.2.1 Framework Improvements

Future improvements can be made in each step of the data processing pipeline, and include
modifications or additions to the noise reduction step, the spatial registration, the inten-
sity standardization, the delineation of the tumour volumes from the brain images, and the
segmentation of brain tissue classes.
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Noise reduction can be improved by incorporating an additional step to reduce local
noise at the 2D and 3D levels, e.g., using noise reduction filters such as Smallest Univalue
Segment Assimilating Nucleus filter [99] (suggested in [95]), which preserves the data in
the image while reducing the effects of local noise. Local noise is the corruption of signal
recorded at each pixel; it is independent of pixel location, but dependent of the tissue mea-
sured at this location. Other improvements include making the noise reduction algorithms
more robust to abnormalities in the image volumes, and to use algorithms that make the
transformed intensities more consistent across the scans of different patients. This applies
to the intensity standardization as well. Also, a non-linear intensity standardization algo-
rithm or classification-based methods are likely to be more effective than existing methods.

Spatial registration can be made more accurate by accounting for abnormalities in pa-
tient images, different scanning angles and the slice positioning along the z axis in compar-
ison with the template image. Another registration step that can be added to the processing
of the MRI scans is the coregistration of images from different modalities to ensure that
T1-weighted and T2-weighted images of the same patient properly align. Coregistration
can be applied before the tissue segmentation step since both image modalities are used in
segmenting brain tissue into three separate classes.

Tissue segmentation also needs to consider the abnormal tumour regions in the patient’s
image since the current output tissue volumes include a corrupted region around the tumour.
Also, improving the intensity inhomogeneity reduction, which is applied prior to tissue
segmentation, will likely help improve the differentiation between the tissue classes.

In the tumour segmentation step, it would be more desirable to use an accurate au-
tomatic method (rather than manual tumour segmentation). An automatic segmentation is
more likely to make the delineated tumour volumes more consistent across patients’ images,
in particular at the tumour boundaries, where manual segmentation generally introduces an
error margin. Making tumour segmentation more accurate requires proper discrimination
of the abnormal versus normal regions in the image, which would in turn help improve
the results of our model since the classification, prediction and model evaluation tasks are
subject to the definition of abnormality detected on the MRI scans.

In addition to improving each individual step in the processing pipeline, the overall
framework can also be modified by adding or removing one or more of the above steps,
combining several methods in one task (such as intensity inhomogeneity reduction and
tissue segmentation), and changing the order in which the processing steps are applied to
the MRI data.

6.2.2 Data-related Suggestions

In order to improve the accuracy of the proposed diffusion model, many data-related issues
(e.g., noise, time-interval inconsistency across scans, and tumour volume variations) need
to be resolved since supervised learning methods are generally sensitive to the training
data. First, we need to obtain a larger training dataset, which would require access to a
significantly large data collection, in order to select from this collection usable studies. It is
also important that this data collection would contain a varied population of patients from
different age categories and with a range of tumour grades. The dataset should also include
tumour occurrences in different locations of the brain. Because it may not be possible
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to acquire data for untreated patients, it would be useful to obtain treatment information
including the type of treatment and the radiation dose (which may be used as features), in
order to account for the treatment effect in the learning task.

Once a large training dataset is available, training on the same tumour type (or histol-
ogy) may help improve the results in particular in the case of low-grade gliomas, which are
currently under-represented in our training data. It may also be worth experimenting with
different definitions of the abnormal region. Currently, the prediction task and the model
evaluation are mainly based on ‘enhancing tumours’ as the ‘abnormal’ region. Other defi-
nitions of abnormality may also include peritumoural edema regions assuming that glioma
cells have infiltrated into these regions. But in order to include the peritumoural edema into
the definition of abnormality, we must have access to a very large set of patients’ studies
such that the tumour volume increase between each two consecutive studies of the same
patient should be large enough to make a prediction.

Other useful additions to the data include using other image modalities, e.g., FLAIR, or
even a different type of scan, e.g., PET (Positron Emission Tomography) that has a lower
threshold for finding low-concentration cancer cells as compared to MRI. It would also
be useful to incorporate DTI data, which can help track the direction of glioma diffusion.
Combining different image modalities or data from different scanning techniques can pro-
vide further insight into glioma diffusion behaviour and potential regions where cancer cells
are more likely to infiltrate.

6.2.3 Suggestions for the Classification Task

In addition to improvements of the model framework and the training data, we discuss
future directions with respect to the machine learning task and the diffusion model. An
obvious addition to our current system is a broader feature space that would not only in-
clude image-based and volume-specific features, but also attributes of the cancer cells at
the microscopic level. These features would include metabolic data of the tumour, the in-
teraction between normal and cancer cells, and the genetic features of the tumour’s cells.
This is particularly useful when predicting the growth behaviour of tumours that progress
from low-grade to high-grade, and of tumours that have different types of cells (i.e., MOA).
Another useful addition is to incorporate MR spectroscopy data, which helps indicate more
precisely the locations of glioma diffusion into adjacent tissue. Incorporating the patient’s
genetic history, brain anatomy attributes, and other patient-specific data, may also help im-
prove results. In addition, as mentioned in Section 6.2.2, including features from different
MR modalities or other imaging techniques (DTI and PET) can help more accurately define
the abnormal regions and identify occult cell infiltration, in particular, at the tumour pe-
riphery where it is difficult to identify a clear boundary between the tumour and the normal
tissue. Another type of features that has not been yet considered is textural features, which
can be derived by averaging the image intensities or by computing intensity differences be-
tween the images. This can be achieved using several image modalities, spatial priors (e.g.,
the templates and brain mask prior), and different types of brain scans. Other features that
may be worth considering are the attributes of the voxels that are diagonally adjacent to a
training voxel (currently, we only consider attributes of the voxels that are directly adjacent
to training voxels). Also, while we potentially consider using a single growth rate feature
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that describes the diffusion rate of the tumour as a whole, the tumour volume can instead be
partitioned into several volumes near the tumour periphery (in terms of cubic voxels), and
different growth rates can then be computed for each of these partitions. This is because
gliomas do not diffuse at an equal rate in all directions alike, but tumours tend to grow faster
in particular regions given that the action of diffusion is always near the periphery of the
tumour, while the cells at the centre do not proliferate.

In addition to incorporating new features, investigating different feature selection meth-
ods will help identify the best feature combinations; in particular, using an automated fea-
ture selection method can result in performance gains, given that current results show that
combining feature sets does not necessarily improve the model’s accuracy.

The characteristics of the glioma diffusion problem suggest that using classification
based on neighbourhood interdependency would also be a promising future direction. ‘In-
terdependency’ refers to the progressive diffusion of malignant cells into a particular voxel
given the already existing glioma cell masses adjacent to this voxel. To account for voxel
interdependencies, the diffusion algorithm should be implemented in a way that the predic-
tion of the voxels at iteration i depends on the prediction of voxels at iteration i− 1 starting
from the tumour border. In this case, the classifier will not label all the voxels of a new
patient at once prior to running the diffusion algorithm, but it will label the voxels in each
iteration separately starting from voxels at the tumour periphery.

A better option is to use classifiers that account for neighbourhood interdependencies
in the training data, given a properly selected feature set. In order to illustrate the concept
of neighbourhood dependencies in training data, we first describe Markov Random Fields
(MRF), followed by Conditional Random Fields (CRF), and finally Support Vector Random
Fields (SVRF).

MRFs provide a generative approach for modeling local dependencies. Let Y be a set of
random variables, and G(S, E) a graph of S vertices and E edges. Then, Y is called a MRF
on S with respect to a neighbourhood N , if and only if two conditions hold: P (Y ) > 0
and P (yi|yS−{i}) = P (yi|yNi

), where S − {i} denotes the set difference, yS−{i} denotes
random variables in S −{i}, and Ni denotes the neighbouring random variables of random
variable i. The Markov property states that the conditional distribution of a variable is
dependent only on its neighbours [69, 70].

CRFs are discriminative models that maximize the conditional probability of the labels
given the observations P (Y ∗|X) where Y ∗ is the joint class labels, then (X, Y ) is said to
be a CRF if, when conditioned on Y , the random variables yi obey the Markov property
with respect to the graph: P (yi|X, yS−{i}) = P (yi|X, yNi

) [66, 69].
SVRFs are an extension of SVMs and allow the modeling of high-dimensional spatial

dependencies using a CRF framework. The SVRF model has two main components: the
observation-matching function that captures relationships between the observations and the
class labels, and the local-consistency function that models relationships between the labels
of neighbouring data points and the observations at data points [69].

Applying all three classifiers, MRF, CRF and SVRF, to our training data represents
promising research directions, as these algorithms may help model more properly the de-
pendencies between neighbouring voxels in the ‘tumour’ and ‘non-tumour’ classes such as
a voxel is more likely to become tumourous given the properties of its neighbourhood.
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6.2.4 Diffusion Model Improvements

Finally, improvements to the diffusion algorithm include incorporating a brain anatomy
atlas or a highly accurate tissue map that would help identify “barriers” versus “highways”,
i.e., regions where tumour never grow (e.g., the petrous bone) versus regions where gliomas
diffuse at a high rate (e.g., the corpus collasum). It would also be important to compute
the average rates of glioma invasion in the different types of brain tissue, and to account
for tumour-induced pressure on CSF regions (e.g., the ventricles and sulci). In addition,
including a ‘probabilistic tumour map’ represents a promising research direction. This
tumour map will consist of tumour occurrences in different brain locations (many of which
may overlap). The implementation of the tumour map requires access to a significantly
large dataset of a varied population of patients, i.e., patients from different age categories,
different tumour grades, and tumour occurrences at as many as possible brain locations.
This tumour map will help estimate the probability or likelihood of glioma invasion into
an unlabeled voxel when predicting diffusion for this voxel. The implementation of this
map requires designing a significantly large database of glioma instances. This database
can be queried to obtain tumour occurrences at a particular voxel or region in the brain. The
likelihood of malignant occurrence can then be computed for this brain region.

6.3 Summary

This final chapter presented a summary of the contribution in this thesis, and suggested
future research directions at the data processing level, and in the implementation of the
model.

This study concludes that, though glioma diffusion modeling is a very challenging task,
it is feasible to model tumour growth in the brain, with the help of supervised learning ap-
proaches. The problem of glioma diffusion modeling can be solved as a pattern recognition
task where machine learning algorithms predict tumour growth in brain regions of interest
based a large set of features specific to the patient, the tumour, the brain anatomy, and the
tissue adjacent to the tumour. We also conclude that, in order to implement an accurate
diffusion model, the feature combinations involved in the learning task must be selected in
a way that would maximize the information content available to the learning algorithm. The
training data should also be generated in a way that would allow a proper representation of
brain regions of interest in the training. Since the features and the data have a direct role in
the performance of supervised learning systems, a highly expressive feature set will lead to
properly ‘recognizing’ patterns of glioma cell diffusion into the brain regions of interest.
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Glossary of Terms

Abnormality – A subjectively defined characteristic, assigned to brain tissue regions that
may appear diseased on patients’ scans and that may be distinguished from healthy tissue
according to their intensities and textures on the brain image.
Angiogenesis – A clinical term refering to the formation of new blood vessels from pre-
existing vessels, a process essential for growth, and for the transition of tumours from a
dormant to a malignant state.
Anterior – The direction towards the front of the body in an anatomical coordinate system.
Artifact – A feature which appears in an image which is not present in the imaged object.
Artificial Neural Network – A simplified emulation of the processing of information by
the human brain, used in supervised learning tasks.
Astrocytoma – Intracranial tumour that originates from an astrocyte, a type of glial cell.
Axial – A tomographic imaging plane bisecting the body into top and bottom parts.
Benign – A term refering to tumours that do not invade surrounding tissue and do not metas-
tasize to other parts of the body. Some benign tumours may progress into malignancy.
Bias field – See Inhomogeneity field.
Blood-brain barrier – A physical barrier between the blood vessels in the central nervous
system, and most parts of the central nervous system itself. The barrier stops many sub-
stances from traveling across it.
Brain masking – The extraction of the brain from the skull on the patient’s scan.
β-spline – A piecewise polynomial function that can be recursively defined.
C4.5 – A traditional method for learning decision tree classifiers.
CCI – Cross Cancer Institute, Edmonton, Alberta.
CDM – Classification-based Diffusion Model, our proposed model for tumour growth.
Central Nervous System – The brain and the spinal cord.
Cerebral cortex – A brain structure made of grey matter.
Cerebral hemisphere – Forms one half of the human brain. Hemispheres are asymmetrical
with specialized functions.
Cerebrospinal fluid – A clear fluid secreted into the ventricles, and occupies the space
between the skull and the cerebral cortex. Its function is to protect the brain and the spinal
cord against injuries.
CH2 – See Colin Holmes template.
Classification – The task of assigning a class label, after learning from a finite set of exam-
ples, to unlabeled instances based on a set of training features.
Class imbalance – A problem encountered when performing supervised learning tasks,
which results from the difference in the number of training instances that belong to differ-
ent classes.
Clinical Target Volume – The brain volume that includes the GTV as well as tissue imme-
diately adjacent to the GTV and that may reasonably harbour occult cancer cells.
CSF – See Cerebrospinal fluid.
Colin Holmes template – An average brain template of an individual who was imaged 27
times and the images were registered to the same coordinate system.
Computed Tomogrophy – A diagnostic imaging technique in which x-ray measurements
from many angles are combined in an image.
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Conditional Random Fields – A model that formulates Markov Random Fields (MRF)
using a conditional probability distribution, i.e., p(Y |x) over labels Y given a particular
observation sequence x (a set of interacting features and interdependent instances), rather
than a joint probability over both Y and x. A Conditional Random Field is represented as
an undirected graph, it labels a new observation sequence x∗ by the label y∗ that maximizes
the conditional probability p(y∗|x∗), and has the advantage of relaxing independence as-
sumptions required by MRFs.
Contrast – An agent or substance given to the patient prior to scanning in order to enhance
the visualization of particular tissue regions with specific properties, e.g., it enhances leaky
blood vessels in tumour regions.
Coronal – A tomographic imaging plane bisecting the body into front and back parts.
Corpus callosum – The largest white matter structure in the brain, connecting the left and
right cerebral hemispheres.
CRF – See Conditional Random Fields.
CT – See Computed Tomogrophy.
CTV – See Clinical Target Volume.
FLAIR – Fluid Attenuated Inversion Recovery, an MR imaging technique that produces
images similar to T2-weighted images, but with free water suppressed.
Decision Tree – A rooted graph where each node denotes a decision. Classification with
Decision Trees is performed starting from the root to a leaf node that will contain a class
label.
Diffusion – The process of migration and infiltration of cancer cells from a primary tumour
through surrounding tissue.
DTI – Diffusion Tensor Imaging, a method for imaging the white fibres in the brain using
the diffusivity of water. DTI is a development of diffusion-weighted imaging.
DWI – Diffusion-Weighted Imaging, a specific MRI modality that produces in vivo images
of biological tissues weighted with the local microstructural characteristics of water diffu-
sion.
Edema – Swelling of any organ or tissue due to the accumulation of excess fluid.
Entropy – An information content measure that considers the likelihoods of individual
events occuring.
Feature selection – A method of weighting and selecting the features such that only the
most relevant subset of a feature set is used.
GBM – Glioblastoma Multiforme, the most common and aggressive, grade IV glioma.
Glial cell – A major cell type, in the Central Nervous System, that functions as supporting
cells to maintain the signalling ability of the neurons.
Glioblastoma – Refers to the most invasive, grade IV glioma.
Glioma – A primary brain tumour originating from a glial cell.
Gompertzian growth – A growth model that views the tumour as a population of two cell
classes, proliferating versus inactive cells, and describes the growth as a process in which
these two classes of cells interact.
Grey matter – A category of brain tissue with many nerve cell bodies and few myelinated
fibres.
GTV – See Gross Tumour Volume.
Gross Tumour Volume – The tumour volume detected on the patient’s scan, subject to
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radiologist’s judgment of abnormal tissue regions.
GW – A glioma diffusion model we developed based on the different motility rates of
glioma cells in the grey versus the white matter.
High-grade tumour – Invasive tumours that aggressively grow in a relatively short period
of time, leading to the patient’s death.
Histology – The study of tissue sectioned as a thin slice, using a microscope, which helps
identify the tumour grade based on the type of cells in the tumour.
ICBM – International Consortium for Brain Mapping, a project whose goal is the continu-
ing development of a probabilistic reference system for the human brain:
http://www.loni.ucla.edu/ICBM/
Information gain attribute selection – A method that evaluates the worth of an attribute
in a feature set by measuring the information gain with respect to a class of instances, given
a number of data examples.
Inhomogeneity field – A field that varies spatially across an image and that describes the
deviation at each pixel from its corrputed intensity value.
Intensity standardization – The processing of MRI scans to reduce the variability in the
intensities of similar tissue types across the image volumes of different patients.
KPS – Karnofsky Performance Scale is a numerical value that quantifies the health status
of the patient. Higher KPS values may be associated with prolonged survival times.
Least squares – A regression method that minimizes the sum of the squared distance from
the model to the training data.
LGT – See Logistic Regression.
Linear Regression – A statistical technique used to find the best-fitting linear relationship
between a target (dependent) variable and its predictors (independent variables).
Logistic Regression – A statistical, linear regression method that predicts the proportions
of a categorical target variable, given a dataset of labeled examples.
Low-grade tumour – Slow-growing, benign tumours.
Magnetic Resonance Imaging – An imaging technique based on the principles of NMR.
Malignant – A clinical term applied to aggressive tumours that lead to patient’s death.
Markov Random Fields – A statistical model that takes into account dependencies in the
labels of neighbouring instances, in addition to the factorized likelihood under the assump-
tion of conditional independence over labels, i.e., given a label, features are independent.
Metastasis – The spread of cancer cells from the original tumour location to other parts of
the body.
Mixture model – A distribution constructured from multiple, often Gaussian, distributions.
MNI – Montreal Neurological Institute.
MNI305 – A dataset of 305 spatially registered normal individuals used in the construction
of templates and prior probabilities.
MOA – Mixed Oligo-Astrocytomas, grade II gliomas that have two histologically different
types of cells, astrocytes and oligodendroglia.
Modality – Refers to the imaging method used in acquiring an image volume, e.g., T1-
weighted versus T2-weighted image volumes.
MRI – See Magnetic Resonance Imaging.
Mutation – A permanent change to the genetic material of a cell.
Naı̈ve Bayes – A classification algorithm that assumes that attribute values in a dataset are
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conditionally independent, given the class label, and that estimates the maximum likelihood
of model parameters based on their frequencies over the training data.
NB – See Naı̈ve Bayes.
NMR – Nuclear Magnetic Resonance, a spectroscopic technique used by scientists to elu-
cidate chemical structure and molecular dynamics.
Neoplasm – Abnormal, disorganized growth in a tissue, forming a distinct mass that can be
either benign or malignant.
Neural Networks – see Artificial Neural Network.
Necrosis – Death of cells in an organ or tissue, due to injury, treatment side effects, or lack
of nutrients – e.g., cells at the centre of large tumours become necrotic due to the lack of
nutrients.
Occult cells – Invisible malignant cells that infiltrated from a primary tumour through sur-
rounding normal tissue, and that remain undetectable with current imaging techniques.
PET – See Positron Emission Tomography.
Planning Target Volume – The treatment volume for irradiating tumours, which includes
the CTV as well as an additional margin for setup variation, e.g., for patient movement dur-
ing irradiation.
Positron Emission Tomography – A nuclear medical imaging technique which produces
a three dimensional image or map of functional processes in the body.
Posterior – The direction towards the back in an anatomical coordinate system.
Prediction – Refers to the output of tumour growth algorithms, which model the tumour at
a future time given an initial tumour volume and some parameters that describe the tumour.
In this thesis, prediction refers to CDM’s output, which models tumour growth at a future
time, based on learning a classifier, from labeled brain volumes, and using it in labeling the
voxels of an unlabeled brain.
PTV – See Planning Target Volume.
Pulse – A short burst of energy which has a specific shape.
Radiotherapy – The medical use of radiation as part of cancer treatment to control malig-
nant cells.
Sagittal – A tomographic imaging plane bisecting the body into left and right parts.
Series – A set of slices that range over one axis, and that are imaged using the same MRI
acquisition protocol.
Scan – See Study.
Slice – An orthogonal view of an organ or tissue that can be visualized using imaging tech-
niques, e.g., with CT or MRI.
SPM – Statistical Parametric Mapping, the construction of spatially extended statistical
processes used in testing hypotheses about functional imaging data sequences. In this the-
sis, we use SPM2 (the most recent version of SPM) to process the MRI brain scans.
Spatial interpolation – The estimation of unknown values in a spatial environment from
known values in the same environment, e.g., filling inter-slice gaps in an image volume.
Spatial registration – The spatial alignment of one or more images.
Spectroscopy – The study of the electromagnetic radiation frequencies absorbed by matter.
Spin-Lattice Relaxation – The return of the longitudinal magnitization to its equilibrium
value along the +Z axis.
Spin-Lattice Relaxation Time (T1) – The time to reduce the difference between the lon-
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gitudinal magnitization and its equilibrium magnetization by a factor of e.
Spin-Spin Relaxation – The return of the transverse magnitization to its equilibrium value,
zero.
Spin-Spin Relaxation Time (T2) – The time to reduce the transverse magnetization by a
factor of e.
Skull stripping – See Brain masking.
Study – A collection of MRI series of a patient, that includes axial, sagittal and coronal
images taken on the same day.
Sulci – Grooves on the surface of the brain creating its characteristic appearance.
Supervised learning – A task that utilizes a set of attributes and labeled training examples
to learn a model from these examples, given the correspondence between their attributes
and their labels. The learned model can then be used in classifying unlabeled instances
based on their attribute values.
Support Vector Machines – A set of related supervised learning methods. When used
for classification, the SVM algorithm creates a hyperplane that separates the data into two
classes with the maximum-margin, given labeled training examples, such that the distance
from the closest examples (the margin) to the hyperplane is maximized.
SVM – See Support Vector Machines.
T1-weighted – A magnetic resonance image where the contrast is predominantly depen-
dent on T1.
T2-weighted – A magnetic resonance image where the contrast is predominantly depen-
dent on T2.
Template registration – The spatial alignment of an image volume to a template image
volume.
Temporal interpolation – A method of modeling an intermediate volume between two
time points, given an initial and a final volume corresponding to these time points respec-
tively.
Tissue segmentation – The differentiation between tissue regions in an organ, e.g., the sep-
aration of each of white matter, grey matter, and CSF in the brain.
Tumour – A swelling or an abnormal growth that can be either benign or malignant.
Tumour segmentation – The manual or automatic delineation of the GTV detected on the
patient’s scan.
UG – Uniform Growth, a model we developed and that assumes radial uniform growth
around the tumour.
Ventricles – Cavities in the brain filled with cerebrospinal fluid.
Volume Imaging – Imaging which produces a three-dimensional image of an object.
Voxel – Volume element (the representation of a pixel in 3D).
Weighted least squares – A formulation of the Least Squares method that weights the error
associated with individual training instances.
White matter – One of the two main components (or tissue types) of the Central Nervous
System. It forms the bulk of the deep parts of the brain and the superficial parts of the spinal
cord.
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