
Practical Programming Methodology
(CMPUT-201)

Michael Buro

Lecture 14

Function Pointers

Dynamic Memory Allocation

Part 3 – Object Oriented Programming
C++ Classes

Lecture 14 : Overview 1 / 19

Function Pointers

// pointer to function without parameter returning int
int (*pf)(void);

// pointer to function with 2 int params returning nothing
void (*pf)(int, int);

In C/C++ there is no function data type
But it is possible to declare pointers to functions
that point to the first byte of the code
These pointers can be used to call functions
They also can be stored like any other types (e.g. in
arrays) or used as parameters
Declaration: Like function declaration. Pointer
name prefixed by * and enclosed in ()

Lecture 14 : Function Pointers 2 / 19

Calling Functions Via Pointers

Syntax: (*<function-pointer>)(<parameters>)

Semantics:

Evaluate parameter expressions

Push values on stack

Call function the pointer is pointing to

Return the value to the calling environment

int foo(int x) { return x; }

int (*pf)(int);

pf = foo;

cout << (*pf)(10); // calls foo with argument 10

Lecture 14 : Function Pointers 3 / 19

Function Pointer Example (1)

#include <iostream>
// pointer to function mapping (int,int) to int
typedef int (*BinIntOp)(int, int);

int plus (int x, int y) { return x+y; }
int minus(int x, int y) { return x-y; }
int mult (int x, int y) { return x*y; }
int divi (int x, int y) { return x/y; }

int main()
{
// f stores 4 function pointers
BinIntOp f[] = { plus, minus, mult, divi };

for (int i=0; i < sizeof(f)/sizeof(f[0]); ++i)
std::cout << (*f[i])(7,3) << " ";

return 0;
}
// Output: 10 4 21 2

Lecture 14 : Function Pointers 4 / 19

Function Pointer Example (2)

Library function qsort (“Quicksort”)

Generic sorting routine

Average time complexity C · n · log n

Worst case time complexity C ′ · n2

man qsort:

#include <cstdlib>

void qsort(void *base, size_t nmemb, size_t size,

int(*compar)(const void *, const void *));

Huh?

Lecture 14 : Function Pointers 5 / 19

void qsort(

void *base,

size_t nmemb,

size_t size,

int (*compar)(const void *, const void *)

);

void * : Generic pointer type. Variables of all pointer
types can be assigned to void * pointers without cast

size_t size type (usually unsigned int)
base start address of array to be sorted
nmemb number of elements
size size of an element (in bytes)
compar function that compares two elements

Lecture 14 : Function Pointers 6 / 19

#include <cstdlib>
#include <iostream>
// a points to a char pointer, so does b
// returns 0 if strings *a and *b are equal
// return <0 if string *a < string *b, >0 otherwise

int my_strcmp(const void *a, const void *b) {
return strcmp(*(char**)a, *(char **)b);

}

void sort_strings(char *A[], int n) {
qsort(A, n, sizeof(A[0]), my_strcmp);

}

int main() {
char *A[] = { "b", "c", "ccc", "a" }; // array of pointers
const int N = sizeof(A)/sizeof(A[0]);
sort_strings(A, N);
for (int i=0; i < N; ++i) std::cout << A[i] << " ";

}

Lecture 14 : Function Pointers 7 / 19

Dynamic Memory Allocation: new and delete

Local variables and functions parameters are located
on the stack (LIFO data structure)

Dynamic memory is allocated from a different part
of memory called heap

Operator new dynamically allocates memory

Operator delete is used to release it when no
longer needed – can be done later, even in a
different function

As always, YOU are in control because the compiler
cannot know when memory is no longer needed and
can be deleted

C/C++ does not have a garbage collector

Lecture 14 : Dynamic Memory Allocation 8 / 19

Operator new

int *p = new int; // allocates space
// for an int
// p now points to it

if (!p) { cerr << "out of memory" << endl; exit(1); }

*p = 0; // use allocated memory

Syntax: new <type>

Allocates space for a variable of type <type> on the
heap and returns a pointer to it
No initialization if <type> is a basic C – plain old
data (“POD”) – type
Calls C++ class constructor (later)
If no memory is available new returns 0

Lecture 14 : Dynamic Memory Allocation 9 / 19

Operator delete (1)

int *p = new int;

...

// free memory when *p is no longer used

delete p;

p = 0; // safeguard

Lecture 14 : Dynamic Memory Allocation 10 / 19

Operator delete (2)

Frees memory when it is no longer used

Calls class destructor for non-PODs (later)

Syntax: delete <pointer-to-allocated-mem>

Good practice: set pointer to 0 after delete to
prevent further access of this address through this
pointer

Also: make sure each heap object has exactly one
owner who is responsible for its deletion

0 special pointer value: can be assigned to any
pointer variable regardless of type

0 not part of process memory. Can indicate no
memory, invalid pointer, no successor, etc.

Lecture 14 : Dynamic Memory Allocation 11 / 19

Dynamic Arrays

float *p = new float[100];

if (!p) { exit(1); } // out of memory

...

for (int i=0; i < 100; ++i) p[i] = 0.0;

...

// free memory when *p is no longer used

delete [] p;

p = 0; // safeguard

Syntax: new <type>[<num-of-elements>]

Allocates an array of elements of type <type>

Elements are not initialized for basic C types
When no longer used free memory with
delete [] <pointer-to-dynamic-array>

Lecture 14 : Dynamic Memory Allocation 12 / 19

new/delete Match

new/delete come in pairs: for every new there
should be a delete in your program
More specifically:

I For every new at least one corresponding delete
I For every new[] at least one corresponding delete[]

If mixed, result of computation is undefined!

Lecture 14 : Dynamic Memory Allocation 13 / 19

Speed / Memory Issues

Allocating dynamic memory is SLOW

Program has to maintain list of available memory
blocks

If speed is important try to minimize new/delete.
E.g. by reusing arrays

new allocates more memory than you think
(overhead usually 4 or 8 bytes per call, getting
smaller with better implementations)

Allocating arrays is therefore more efficient than
single variables

You can roll your own memory allocation by
overloading the new/delete operators (later)

Lecture 14 : Dynamic Memory Allocation 14 / 19

Memory Allocation in C

float *p = (float*) malloc(100*sizeof(float));

if (!p) { exit(1); } // out of memory

...

for (int i=0; i < 100; ++i) p[i] = 0.0;

...

// free memory when *p is no longer used

free(p);

p = 0; // safeguard

There are no new/delete operators in C

Use library function calls
void *malloc(size_t n); : allocates n bytes
void free(void *p); : releases memory

To learn about them: man malloc
Lecture 14 : Dynamic Memory Allocation 15 / 19

Abstract Data Types in C

C-structs can only have data members

Global functions act on structs; usually pointer to struct
as first argument

Abstract Data Types = struct + global functions

struct Foo

{

...

};

void Foo_init(struct Foo *p);

bool Foo_write(struct Foo *p, FILE *fp);

bool Foo_read(struct Foo *p, FILE *fp);

...

Lecture 14 : Abstract Data Types 16 / 19

Part 3: Object Oriented Programming

Lecture 14 : Abstract Data Types 17 / 19

C-structs vs. C++ classes

Structures are special cases of classes

Structures don’t impose any overhead

Structures are not initialized

Manual structure clean-up when no longer needed

Lecture 14 : C++ Classes 18 / 19

C++ Classes

Provide additional functionality (some introduce run-time
overhead):

Member functions

Automatic initialization, destruction

Access restrictions

Separation of interface and implementation

Public inheritance (modeling is-a relationship)

Multiple inheritance

Classes are also called “objects” = data + member
functions

Object-oriented programming makes it possible to
maintain large software projects

Lecture 14 : C++ Classes 19 / 19

