
Single-Agent Optimization Through Policy Iteration Using Monte-Carlo Tree
Search

Arta Seify and Michael Buro
University of Alberta
Edmonton, Canada

{seify,mburo}@ualberta.ca

Abstract

The combination of Monte-Carlo Tree Search (MCTS) and
deep reinforcement learning is state-of-the-art in two-player
perfect-information games. In this paper, we describe a search
algorithm that uses a variant of MCTS which we enhanced by
1) a novel action value normalization mechanism for games
with potentially unbounded rewards (which is the case in
many optimization problems), 2) defining a virtual loss func-
tion that enables effective search parallelization, and 3) a
policy network, trained by generations of self-play, to guide
the search. We gauge the effectiveness of our method in
“SameGame”—a popular single-player test domain. Our ex-
perimental results indicate that our method outperforms base-
line algorithms on several board sizes. Additionally, it is com-
petitive with state-of-the-art search algorithms on a public set
of positions.

Introduction
Single-agent optimization problems have been an active
field of research for decades. Such problems include any
domain with an agent whose goal is to maximize an objec-
tive function(s), without interference from any other agents.
NP-hard problems such as the Travelling Salesman Problem
(TSP) can be framed as a single-agent optimization problem.
Algorithms for solving TSP have many practical uses, such
as computer chip design and order-picking in warehouses
(Theys et al. 2010). Single-agent optimization problems can
be represented as (deterministic) single-player games. This
is the term used throughout this paper to better present our
contribution in relation to previous work.

Most state-of-the-art heuristic search algorithms for
single-player games use Monte-Carlo simulations (Schadd
et al. 2012), (Cazenave 2009), (Rosin 2011). These meth-
ods estimate the values of states using random simulations.
The generality of these methods makes them applicable to
a wider variety of domains. Examples include two-player
board games such as Go (Gelly et al. 2012) and Hex (Arne-
son, Hayward, and Henderson 2010), (Huang et al. 2013),
real-time domains such as Ms. Pac-Man (Pepels, Winands,
and Lanctot 2014), general video game playing (Perez et al.
2019).

A recently proposed enhancement is to combine MCTS
with deep reinforcement learning (Silver et al. 2018), (An-
thony, Tian, and Barber 2017). These algorithms have
achieved state-of-the-art performance in deterministic two-
player perfect-information zero-sum games. MCTS pro-

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

vides the agent with the ability to look ahead, while policy
and value networks are used to decrease the width and depth
of the search tree, respectively. Additionally, the trained pol-
icy networks can be surprisingly strong by themselves. For
instance, AlphaZero’s Go policy plays at human expert level
without the need for forward search.

In this paper, our goal is to bring the ideas of these al-
gorithms to single-player optimization problems. There are
multiple differences between the two settings that make
this task non-trivial. In zero-sum two-player games, the re-
ward seen by the agent is often one of {−1, 0, 1}, for loss,
tie, or win, whereas in single-player games, the reward are
unknown. Furthermore, values found during search are a
lower-bound on the optimal value. Therefore, the action se-
lection strategy, as well as the policy target, have to be ad-
justed.

To address these problems, after a discussion of related
work, we first introduce our policy-guided MCTS algorithm
for single-agent optimization problems, then describe how
we train our policy networks, and finally measure the perfor-
mance of our methods in the NP-hard SameGame—a pop-
ular single-agent optimization domain—before closing with
concluding remarks and suggestions for future work.

Related Work
We begin by introducing several state-of-the-art search al-
gorithms for single-player games. Then, pioneer works on
combining MCTS and deep reinforcement learning for two-
player games are presented. Lastly, we discuss similar work
on single-player games.

MCTS in Single-Player Games
Schadd et al. introduced Single-Player MCTS (SP-MCTS)
(Schadd et al. 2012), which was the first successful appli-
cation of MCTS to a single-player game with a large state
and action space. Two contributions which we also use in
our work are creating a tree-per-move rather than tree-per-
game by playing the highest valued action, and a few value
normalization methods.

Cazenave developed a recursive variant of MCTS called
Nested Monte-Carlo Search (NMCS) (Cazenave 2009).
NMCS estimates the values of states at level k using a re-
cursive call of level k − 1, where a level 1 recursion is a
Monte-Carlo rollout.

Rosin’s Nested Rollout Policy Adaptation (NRPA) (Rosin
2011) combines NMCS with online policy learning. NRPA’s
rollouts are guided by a policy, which is slowly adapted to-
wards the moves with the highest return. An efficient en-

coding of states, which transforms similar states to the same
value, is required for the algorithm to perform well.

MCTS and Deep Reinforcement Learning
The combination of MCTS and deep reinforcement learning
has been successfully applied to two-player games. One of
the major contributions is the work on AlphaZero (Silver
et al. 2018), which reached superhuman performance in the
games of Go, Chess, and Shogi. The algorithm uses a single
two-headed network, which outputs both a policy and value
of a state. The policy is used during the selection step of
MCTS, and the simulation phase is replaced by the value
prediction. The network is trained from scratch using self-
play, without the use of any human generated data.

A similar work to AlphaZero is Expert Iteration (Anthony,
Tian, and Barber 2017). Expert Iteration trains a new neural
network at each generation, starting with only a policy net-
work, which is used in a similar way as AlphaZero. Once
the generated data is of sufficient quality, the policy network
is replaced by a two-headed network. The value prediction
of the network is combined with the rollout result using a
mixing parameter, which further improves the agent.

We are not the first to combine MCTS with deep rein-
forcement learning for single-player games. The work of
(McAleer et al. 2018) trains a two-headed network to solve
the Rubik’s cube, using a training procedure called Autodi-
dactic Iteration (ADI). ADI is only suitable for problems in
which there is a single known goal state. This is in contrast
to our algorithm, which—as we will see—does not have this
requirement.

Laterre et al. introduce Ranked-Rewards (R2 (Laterre et
al. 2018)), a general algorithm that enables self-play for
single-player games. This is accomplished by setting the re-
wards seen by the agent to a value of either 1 or−1, depend-
ing on whether the actual value of the state is higher or lower
than a given percentile of previously seen rewards. This pits
the agent against itself, forcing it to continuously outperform
previous generations. Our algorithm does not make use of
this self-play scheme.

Policy-Guided MCTS for Single-Agent
Optimization

Our work is based on the belief that combining MCTS and
deep reinforcement learning can also lead to state-of-the-art
performance in single-player games. Therefore, our objec-
tives are threefold: 1) develop an effective variant of MCTS
for single-agent domains, 2) establish a suitable learning tar-
get for the policy network, and 3) create a training procedure
similar to the self-play regime for two-player games.

Integrating Policies into MCTS
Our initial task is to develop a policy-guided MCTS algo-
rithm for single-player domains. To this end, we first intro-
duce a normalization strategy that is applied during the se-
lection stage of MCTS. Having normalized values allows us
to use the standard Predictor + Upper Confidence Bound For
Trees (PUCT) (Silver et al. 2018) selection strategy, which
we introduce in Eq. 3. We additionally use the policy for
the initial action selection in expanded nodes, as well as

to guide the rollouts. Using a neural network during search
is expensive however, so we define a virtual loss function
that enables tree parallelization (Chaslot, Winands, and van
Den Herik 2008). Parallelization allows us to do batch pre-
diction, which increases GPU efficiency, thereby increasing
the speed of the search.

Value Normalization To use the PUCT selection strategy,
the rewards need to be in the range of [−1, 1]. In single-
player games however, the range of rewards is often differ-
ent, and unknown. Therefore, we require a robust method
for normalizing the values.

Several normalization techniques have been introduced in
previous work (Schadd et al. 2012), (Klein 2015) . In SP-
MCTS, the values are not normalized, instead larger param-
eters are used in the selection strategy, which increases the
upper confidence bound (UCB) term. The work of (Klein
2015) uses the highest score achievable in any SameGame
board to normalize the values. The main problem with both
strategies is that they are domain specific, and require either
extensive experiments or domain knowledge to set properly.

We propose a more general normalization method—max-
min scaling—that is applied locally at the node level as fol-
lows:

Qnorm(s, a) =
2(Q(s, a)−mina′Q(s, a′))

maxa′Q(s, a′)−mina′Q(s, a′)
−1. (1)

When no action has been taken in state s (i.e., max and
min values are not yet defined), or they are equal, we set
Qnorm(s, a) to 1—being optimistic. The highest and low-
est values can be stored in a node directly, or calculated by
looping over all edges. This approach does not require any
assumptions about the lowest or highest achievable values in
the domain. Furthermore, it does not require the tracking of
standard deviations to relate average values and UCB explo-
ration terms (Schadd et al. 2012). Lastly, since Q is defined
locally, action values of one node do not impact other nodes,
which is a desirable property.

Note that max-min normalization maximizes the spread
of mapped action values: we can expect at least one action
with a value of 1, and after several simulations, at least one
action with a value of -1. Assuming a scenario where the
maximum and minimum values are very similar, and the re-
ward bounds are known, max-min normalization can lead
to a higher level of exploitation than standard UCT (Kocsis
and Szepesvári 2006). One method for reducing the spread
of mapped action values is to use max-min normalization
with the actual rewards, rather than average state-action val-
ues. Since both methods normalize values to range [−1, 1],
we can expect UCB-based selection strategies to converge
to the globally optimal solution.

MCTS Stages In what follows, we describe the four
stages of our MCTS algorithm that uses max-min scaling,
PUCT, and virtual loss enabling effective parallelization:

1. Selection. The selection strategy is applied recursively
until an edge of a leaf node or an edge leading to a terminal
node is selected. At each node, the, the action with the high-
est sum of value and upper confidence bound, corrected for
virtual loss, is selected:
a′ = argmaxa ((Q(s, a)− L(s, a))norm + U(s, a)) , (2)

where the upper bound U(s, a) is given by PUCT, which is
calculated as follows:

U(s, a) = cpuctπθ(s, a)

√
N(s)

1 +N(s, a)
. (3)

This selection strategy is initially focused on actions with
high prior probability and low visit count, but asymptotically
prefers actions with high values. When an edge is selected,
the virtual loss count (which is described below) and visit
count are increased: W (s, a) ← W (s, a) + 1, N(s, a) ←
N(s, a) + 1.

2. Expansion. A leaf node nL is expanded on the first
visit and added to the tree. All child edges, one per le-
gal action a, are created and initialized to {N(sL, a) =
W (sL, a) = Q(sL, a) = Qtotal(sL, a) = 0}, where sL is
the state of node nL. The prior probability is also stored in
the edge, which is the re-normalized output of the network
after filtering out illegal actions. We lock the node and put
the thread to sleep until the network is finished evaluating
the state.

3. Simulation. The edge with the highest prior probability
is selected from the newly expanded node nL as the first
action in the simulation. The rest of the simulation is either
uniformly random among all valid actions, or is guided by
the current policy. The policy-based rollout selects an action
in state s by sampling from the policy. The simulation is
finished once a terminal state is reached.

Right after the first rollout is finished, the Q value of all
the edges is set to the value of the simulation. This gives the
other edges the opportunity to be selected independently of
the success of the first simulation. This initialization strategy
is “optimistic”, as the greedy action is selected in a newly
expanded node . Another option for optimistic initialization
is to give edges that have not yet been tried a normalized
value of 1.

The policy-based rollout is far more informed, but is much
slower than the random counterpart, since a network predic-
tion is required at each step of the simulation. We use policy
guided simulations for training, and compare the two simu-
lation strategies when testing the strength of the final policy.

4. Backpropagation. The result R of the rollout is prop-
agated to the root, updating edge statistics along the way
as follows: Qtotal(s, a) ← Qtotal(s, a) + R,Q(s, a) ←
Qtotal(s, a)/N(s, a),W (s, a)←W (s, a)− 1.

Tree Parallelization and Virtual Loss The speed of
Policy-MCTS is considerably lower than plain MCTS, since
it requires a prediction from the policy network at each ex-
panded node, and potentially at every step of the rollout. The
slowdown caused by the network can be reduced by using
batch predictions, which requires a parallel version of the
algorithm. Common parallelization strategies for MCTS are
root, leaf, and tree parallelization (Chaslot, Winands, and
van Den Herik 2008). In our implementation, we use tree
parallelization with node and edge mutexes, and virtual loss.

In our tree parallelization, all search threads work on
the same tree, with mutexes used to avoid data corruption.
However, given that both UCT and PUCT are deterministic,
we can expect the majority of threads to take similar paths
down the search tree. To discourage this behaviour, we can

add a temporary virtual loss to actions as they are selected
(Chaslot, Winands, and van Den Herik 2008). In two-player
games, virtual loss corresponds to virtual rollouts that re-
sulted in a loss. However, in our setting, we have a score with
unknown bounds, so we have to define what a “loss” means.
We define virtual loss as L(s, a) = wW (s, a)|Q(s, a)|,
where W (s, a) is the virtual loss count stored in the edges
of the tree, and w is the global virtual loss weight, which is
subject to optimization. Therefore, the loss is relative to the
current state-action value. A benefit of this approach is that
it requires no knowledge about the bound of rewards.

We optimized w with respect to the final average score
obtained. The experiments used plain MCTS on 100 ran-
domly generated 15 × 15 boards, with 5 runs per board. We
discovered that a value of 0.01 provided the highest search
speed, and was within a few points of the best average (not
statistically significant); we fixed w = 0.01 in all of our ex-
periments.

Policy Training Target
In two-player adversarial games, assuming a limited search
time budget for MCTS, the edge with the highest visit
count—as opposed to the highest valued edge—is often se-
lected as the action to play (e.g., (Silver et al. 2018) and
(Anthony, Tian, and Barber 2017)). Actions with higher visit
counts are considered more robust, as they guard against the
case in which a newly analyzed move with higher value, but
much fewer simulations, is overconfidently chosen.

By contrast, in single-player games, which are non-
adversarial, the values of simulations starting in a state are a
lower bound on the maximum achievable value. This means
that the action with the highest simulation value is currently
the best action, regardless of how often other actions were
attempted. In the limit, the action with the highest visit count
will also have the highest value (Kocsis and Szepesvári
2006). However, this might not be the case when given a
limited search budget.

Given the above observation, we set the target for the pol-
icy as follows, with ties between equal valued actions being
broken randomly: π(st, a) = 1 if a = at and 0, otherwise.

Using this policy target, training reduces to a supervised
learning task that seeks to minimize the average cross-
entropy loss between the target policy π and its approxima-
tion πθ, for all training samples. I.e., for a mini-batch of size
B, its loss L is given by: L = − 1

B

∑B
i=1 π(si)

T log πθ(si).

Data Generation
In many single-player games, the initial actions have a large
impact on the final score the agent can obtain. An intuitive
choice, then, is to let the agent spend the majority, if not the
entire MCTS budget, on determining the best initial move.
This would allow the agent to come up with the best first
move it possibly can. However, once the search budget is
spent, the entire sequence, and not just the first move, is re-
ported. Since the entire search budget has been spent, there
is no opportunity to optimize the rest of these moves further.
It has been shown in (Schadd et al. 2012), as well as con-
firmed by our own experiments, that committing to an action

after a fraction of the search budget is spent, thereby allow-
ing the search to optimize the remaining move sequence, can
produce better results.

Committing to actions corresponds to playing a game;
once a decision has been made, it cannot be reversed. This
allows MCTS to spend more time in deeper sections of the
search tree, meaning actions near the middle and end of the
game receive more of the search budget than they would
otherwise. Therefore, we can expect the resulting action se-
quences to be better.

Inspired by this observation, our agent interleaves plan-
ning and playing. In each state, the agent receives a constant
planning budget of k MCTS simulations. Once the plan-
ning budget is spent, the best action, which is the one with
the highest value, is taken. Although this forces the agent
to commit to earlier actions, it opens up the opportunity to
better optimize subsequent moves. This process is repeated
until a terminal state is reached. Then, all state-action pairs
taken to reach the final state are returned, to be used as train-
ing data.

While training, we add Dirichlet noise to the prior prob-
ability of all actions a at the root of the tree — using
(1− ε)πθ(sroot) + εDir(α) instead of πθ(sroot). Dir(α) is a
random vector with L1-norm of 1. Using a low α value will
add a high value of noise to a few moves, whereas a higher
value will add a more uniform amount of noise to a larger
number of moves. The added noise has the potential to in-
crease the UCB value of actions the current policy believes
to be bad, which encourages exploration.

The value of α was chosen experimentally. We used ε =
0.25, as proposed in (Silver et al. 2018), and tried a variety
of α values during training. These experiments were run for
a few generations, and the α that produced the highest av-
erage value during training was selected for the experiments
presented in the experiments section. The value of α is de-
pendent on the average number of legal moves per game: for
the 7 × 7 board, we tried the following values {0.5, 0.75,
1.0, 1.25}, whereas for the 15 × 15 board we tried {0.15,
0.25, 0.4}. From these, we extrapolated a value for the 10 ×
10 board. These parameters are presented in Table 1.

Training Procedure
Our training procedure alternates between policy evaluation
and policy improvement, in a process known as policy itera-
tion. Policy iteration is guaranteed to converge to an optimal
policy in the tabular case. This guarantee no longer holds
in the function approximation case. In spite of this, deep
neural networks trained by policy iteration have surpassed
human players in multiple games (Silver et al. 2018), (An-
thony, Tian, and Barber 2017).

Using MCTS in conjunction with the current policy to
play complete games constitutes the policy evaluation step.
Because MCTS helps the agent to find better moves than
what is suggested by the policy alone, it acts as an policy
improvement operator. MCTS is integral to the process: the
strength of the trained policy is correlated with the effective-
ness of MCTS as the policy improvement operator.

Our policy is trained in generations, with the data from
previous generations used to train the next generation’s pol-
icy network. The training of each generation is synchronous,

and constitutes a complete policy iteration step. The first
policy network is trained using data generated by MCTS
using the uniform random policy. Subsequent generations
combine MCTS and the current iteration of the policy to
generate data. To jump-start the learning process, the first
generation is run using more simulations per step; since no
policy network is used, there is not a large run-time cost to
this.

The training procedure (Algorithm 1) works as follows:
We use two queues, Btraining and Bvalidation, for train-
ing which store state-action pairs (st, at). As each run fin-
ishes, the resulting pairs are stored in a temporary buffer,
which only contains data produced in the current generation.
Once all runs in a generation are finished, the pairs stored
in the temporary buffer are shuffled and split (e.g., 90-to-
10), and appended to both buffers, respectively. This ensures
that both buffers will contain data from multiple generations.
Note that using a single buffer and randomly splitting it be-
fore training is not equivalent to this procedure.

The sizes of the buffers determine the amount of data
that is kept from older generations; given more data, we can
expect the policy to be better (Anthony, Tian, and Barber
2017), but the training time will be longer. The size of the
buffers is also directly related to the amount of data gener-
ated per run. We use the validation buffer to avoid overfitting
by early stopping.

Experimental Setup
SameGame
SameGame is a tile-matching game with the goal of max-
imizing the final score. In each move, the player can clear
horizontally or vertically connected groups of size two or
more of equal colour. The blocks above created holes will
always fall down and then move left, if possible. When an
entire column is cleared, the columns to the right are moved
to the left. Each move scores (#BlocksCleared −2)2. The

Algorithm 1: Policy training procedure
1 Input: #generations G, #runs N , training/validation buffer

lengths lt, lv , training-validation split percentage λ
2 Output: Trained policy network
3 π0 ∼ Uniform-Over-Valid-Actions()
4 Btraining = queue(len=lt)
5 Bvalidation = queue(len=lv)
6 for g = 1, ..., G do
7 B = []
8 for r = 1, ..., N do
9 s← Generate-Random-State()

10 [(s1, a1), ..., (sT, aT)]←
Policy-MCTS(s, πg−1)

11 B ← B + [(s1, a1), ..., (sT, aT)]
12 end
13 Shuffle(B)
14 T, V ← Split(B, λ)
15 Btraining ← Btraining + T
16 Bvalidation ← Bvalidation + V
17 πg ← πθ=random
18 Train(πg, Btraining, Bvalidation)
19 end
20 Return: πG

game is over when the player cannot take an action anymore.
In addition, if the board is cleared, the player is awarded
an additional 1, 000 points. Otherwise, the player receives a
penalty based on the total number of colours of blocks left,
which is calculated as follows:

∑
c(#BlocksLeftc − 2)2.

Deciding whether a general SameGame instance with at
least five colours and two columns can be fully cleared has
been shown to be NP-complete (Schadd et al. 2008). We use
boards of size 7×7, 10×10, and 15×15, with five different
block colours. All boards used for training and testing are
randomly generated. We slightly simplify the action space
by only allowing the agent to select the lowest left block in
a group; in the actual game, a player can click on any of the
blocks in a group to clear it.

Policy Network Architecture
We use the same network architecture for all of the experi-
ments to limit its impact on the results. The complexity of
the network makes it suitable for the 15 × 15 boards, but it
is likely too deep for the simple 7 × 7 boards.

Our architecture is similar to the one used by (Anthony,
Tian, and Barber 2017). In particular, the input to the net-
work is an “image” of size d × d × (c + 1), where d is the
dimension of the board and c is the number of block colours,
and 1 is added to encode empty tiles. That is, the board is
represented as c+ 1 binary layers to one-hot-encode the tile
state. The input is padded by 1 on all four sides, increasing
the dimension to (d+2)×(d+2)×(c+1). This ensures that
the information at the edges of the board is not lost during
convolutions. The padded input is passed to 13 convolution
layers, all of which have 64 filters, stride of 1, and ELU ac-
tivation (Clevert, Unterthiner, and Hochreiter 2015). Layers
11 and 13 have a kernel size of 1 × 1, and all others have
size 3 × 3. The dimension of the input is kept for layers 1-
8 and 12, and reduced in layers 9-11 and 13. The output of
the final convolution layer is flattened and passed to a linear
layer with softmax activation, which represents the policy.

We use Adam as the optimizer, with a learning rate of
5e−4. Data is fed to the network in mini-batches of size
256. For regularization, early stopping on the validation loss
is used. The early stopping point is the first epoch after
which the validation errors do not decrease for 3 consec-
utive epochs. We set the size of the buffers Btraining and
Bvalidation to 1.5M and 150K, respectively, for all experi-
ments. Given the number of runs per generation, as provided
in Table 1, the buffers contain data from roughly 3 to 5 pre-
vious generations.

Experiments
In this section we will validate our contributions with several
experiments in the SameGame domain. The first compares
the performance of Policy-MCTS against plain MCTS,
which is MCTS with a uniform random policy among all
valid actions. Our experiments are run on three different
board sizes using several time budgets. To demonstrate the
effectiveness of our parallelization method, we also com-
pare the performance of single and multi-threaded vari-
ants of both algorithms. To put our results into perspec-
tive, we also use Policy-MCTS to solve a standard set of 20

Table 1: Parameters used for training for each board size.
Parameter 7 × 7 10 × 10 15 × 15

Generations 50 50 66
Runs/Generation 20,000 10,000 5,000
Simulations/Move 100 50 25
cpuct 30 4 2
Threads/Run 1 1 1
Dirichlet Noise 0.75 0.40 0.25
Training Time 3 days 3.5 days 6.5 days
CPU Intel Intel 2 x Intel
- Type i7-7700K i7-8700K Xeon 6148
- Cores/Speed 4/4.2 GHz 6/3.7 GHz 20/2.4 GHz
GPU Nvidia Nvidia 4 x Nvidia
- Type/RAM 1070/8GB 1070/8GB V100/16GB

Figure 1: The average score of the 15 × 15 policy at each
generation of training.

SameGame test positions. These boards are commonly used
to benchmark state-of-the-art search algorithms for single-
player games. We demonstrate that a policy trained using
only 25 simulations per move is competitive with these
methods.

Comparing with Plain MCTS
We use our algorithm to train policy networks for board sizes
7 × 7, 10 × 10, and 15 × 15. The 7 × 7 board is small
and relatively simple. The other two sizes are increasingly
more complex, with the 15× 15 board often used as bench-
mark problem in the literature. The average solution length
of 10 × 10 board games is roughly twice that of 7 × 7, and
half of 15 × 15 games. To keep training time manageable,
we decrease both the number of runs and simulations as the
board size increases.

The parameters we used for training is shown in Table 1.
Note that while we put effort into optimizing the parame-
ters, they are most likely not optimal. This is because each
experiment takes several days to run, making a grid search
over these parameters not feasible, given our computation
budget. Training on 7 × 7 and 10 × 10 boards converged,
but the 15 × 15 policy did not (Figure 1).

Given the same node budget, we can expect Policy-MCTS
to outperform plain MCTS. However, using a GPU incurs a
large cost on the speed of the search. Therefore, to make a
more fair comparison, we use wall-clock time for all of our

Figure 2: Average score of single and multi-threaded MCTS, Policy-MCTS with random rollouts, and Policy-MCTS with
informed rollouts, as a function of search time in seconds. Each experiment is performed on a test set of 500 randomly generated
boards, with 5 runs per board. Darker shades represent the same algorithm running for a longer period of time. The shaded area
represents the 99% confidence interval.

Table 2: Number of simulations, node expansions, and leaf node expansions for single-threaded and multi-threaded experiments
on the 15 × 15 boards.

Single-Threaded
Parameter 1 Second 5 Seconds 15 Seconds

MCTS P-MCTS P-MCTS MCTS P-MCTS P-MCTS MCTS P-MCTS P-MCTS
Random Informed Random Informed Random Informed

Simulations 20,106 1,274 27 127,504 13,748 131 403,243 80,580 398
Expansions 12,074 1,261 27 27,089 6,128 131 46,480 16,426 398
Leaf Expansions 155 1 0 809 150 0 1,731 628 0

Multi-Threaded
Simulations 95,335 9,652 201 697,810 49,538 864 2,297,200 376,698 2,575
Expansions 91,140 9,652 201 310,313 46,295 864 572,556 137,509 2,575
Leaf Expansions 148 0 0 5,522 110 0 15,524 2,691 0

experiments. We use the same computer for all experiments,
and optimized both MCTS and the GPU queue implementa-
tion.

Since we are using wall-clock time, we also present the
averages of simulation count, terminal node expansions, and
node expansions for the experiments on the 15 × 15 boards
in Table 2. The simulation count also contains simulations
starting (and ending) at terminal leaf nodes, i.e., terminal
states that are part of the search tree. The number of terminal
node expansions is included in the node expansions count.

We use a test set of 500 randomly generated boards for
each size, to compare Policy-MCTS with plain MCTS. We
do 5 runs per board, for a total of 2,500 runs in each experi-
ment. Results at three different time settings of 1, 5, and 15
seconds are shown for plain MCTS, and Policy-MCTS with
random and policy guided simulations, respectively.

The same parameters are used for both the single-threaded
and multi-threaded experiments. Additionally, the cpuct
value used during training is kept for all runs. The number
of threads used by MCTS is 16, which maximizes CPU us-
age, and Policy-MCTS uses 100 threads, which is sufficient
to keep the GPU fully loaded. By using such a high number
of threads, we are assuming that the extra exploration caused

by virtual loss is mitigated by the policy network.
All experiments were run using the same computer that

was used to train the 10 × 10 network. The experimental
results are shown in Figure 2. We observe that the multi-
threaded versions of all three algorithms outperform their
single-threaded counter-parts; for the 15 × 15 board, the
average score of plain MCTS at the 5 second mark rises
from 1,684 to 2,393, an increase of nearly 50%. This pro-
vides some evidence that our parallelization strategy is ef-
fective. Furthermore, we can see that using multiple threads
is more beneficial for both versions of Policy-MCTS. This is
expected, as using many threads allows for batch prediction,
which utilizes the GPU more effectively. We can also clearly
observe the downside of using a neural network when given
a short time limit, with plain MCTS outperforming both ver-
sions of Policy-MCTS at the 1 second mark, in all configu-
rations.

Another important observation is that as the decision
complexity increases, the strength difference between plain
MCTS and Policy-MCTS also increases. Given a simpler
problem and a limited budget, it is probably more benefi-
cial to use plain MCTS. However, as the complexity of the
problem increases, so too does the benefit of using a pol-

icy. This is clearly demonstrated in the 15× 15 graphs, with
Policy-MCTS far outperforming plain MCTS.

A rather surprising result is the weak performance of
multi-threaded Policy-MCTS with informed rollouts, when
compared to plain MCTS, on the 15 × 15 board. This leads
us to speculate that given a limited time budget on a prob-
lem with a large state and action space, creating a deeper
tree by performing many weak rollouts is better than a much
smaller, more informed number of rollouts.

Detailed performance data for these experiments is pro-
vided in Table 2. For the 15 × 15 board, even with multi-
threading, only 2,575 policy guided rollouts were finished,
compared to over 2 million for plain MCTS. Note that in the
single-threaded setting, 400 informed rollouts outperform
over 400k random rollouts from plain MCTS. This provides
evidence that our algorithm has trained a competent policy.
We can also observe that the multi-threaded versions are far
more explorative. For example, for Policy-MCTS with ran-
dom rollouts in the 5 second setting, node expansions per
simulation increases from 0.45 to 0.93.

Comparison to State-of-the-Art Algorithms
In this section, we compare the performance of our paral-
lel MCTS and Policy-MCTS algorithms against published
state-of-the-art search methods on 20 public test positions.
We use the network trained on 15 × 15 boards from the
previous section, and run Policy-MCTS with random and
guided rollouts, respectively; the data for the former is not
presented as it performed worse than the latter. We addition-
ally run our parallel version of MCTS to gain a better per-
spective of the results obtained in the last section. cpuct is
set to 5 and 10 and threads to 120 and 80 for Policy-MCTS
and Parallel-MCTS, respectively. The same machinery that
was used to train the 15 × 15 policy is used. All algorithms
are run only once per position. The results of the experiment
are provided in Table 3.

Note that we give each algorithm only 2 hours total
per position, which is similar to SP-MCTS (Schadd et
al. 2012). The results of Dist-NRPA(5) (Negrevergne and
Cazenave 2017) are also achieved in 2 hours, but they use
160 CPU’s for each position. Algorithms NMCS(4), Sel-
NRPA(4) (Cazenave 2016), and Div-NRPA(4) (Edelkamp
and Cazenave 2016) take more than half a day per position;
the number in the brackets represents the nesting level used
by the algorithm. Most of these algorithms, with the excep-
tion of Div-NRPA(4) and Dist-NRPA(5), also make use of
hand-crafted heuristics to guide the rollouts.

The score can potentially be increased in multiple ways.
We could evenly distribute the time budget over the aver-
age number of moves, as done in SP-MCTS. Additionally,
an implementation capable of using multiple GPUs could
potentially achieve much higher scores with the same pol-
icy. Using a transposition table to store predictions will also
increase the speed of the system. Smaller gains could be ob-
tained by fine-tuning the search parameters; we did not tune
any of the parameters to these positions. Lastly, we can in-
crease the simulation count of MCTS during training. This
greatly increases the training time, but it also strengthens the
policy evaluation and improvement steps, which can lead to
a much better policy.

Table 3: Performance of Parallel-MCTS and Policy-MCTS
with guided rollouts, compared to state-of-the-art search
methods, on 20 public boards.

Po
sit

io
n

SP
-M

CT
S

N
M

CS
(4

)
Se

l-N
RP

A
(4

)
D

iv
-N

RP
A

(4
)

D
ist

-N
RP

A
(5

)
Pa

ra
lle

l-M
CT

S
Po

lic
y-

M
CT

S

1 2,919 3,121 3,179 3,145 3,185 1,859 2,717
2 3,797 3,813 3,985 3,985 3,985 3,003 3,761
3 3,243 3,085 3,635 3,937 3,747 2,413 3,355
4 3,687 3,697 3,913 3,879 3,925 3,213 3,709
5 4,067 4,055 4,309 4,319 4,335 3,009 3,983
6 4,269 4,459 4,809 4,697 4,809 3,481 4,375
7 2,949 2,949 2,651 2,795 2,923 2,473 2,917
8 4,043 3,999 3,879 3,967 4,061 3,577 4,275
9 4,769 4,695 4,807 4,813 4,829 3,629 4,839

10 3,245 3,223 2,831 3,219 3,193 2,715 3,213
11 3,259 3,147 3,317 3,395 3,455 2,405 3,269
12 3,245 3,201 3,315 3,559 3,567 2,793 3,301
13 3,211 3,197 3,399 3,159 3,591 2,343 3,355
14 2,937 2,799 3,097 3,107 3,135 2,473 2,977
15 3,343 3,677 3,559 3,761 3,885 2,825 3,381
16 5,117 4,979 5,025 5,307 5,375 4,191 4,963
17 4,959 4,919 5,043 4,983 5,067 3,124 4,615
18 5,151 5,201 5,407 5,429 5,481 3,829 5,221
19 4,803 4,883 5,065 5,163 5,299 4,559 4,823
20 4,999 4,835 4,805 5,087 5,203 2,977 5,023
Σ 78,012 77,934 80,030 81,706 83,050 60,891 78,072

Conclusion and Future Work
In this paper, we presented three main contributions. We
first introduced a novel action value normalization method,
which is more general and therefore applicable to a wider
range of domains. Then, we defined a general virtual loss
function for the single-player setting, which enabled effec-
tive tree parallelization of MCTS. Lastly, we introduced
a policy training procedure for single-agent optimization
tasks. The process uses a neural network to represent the
policy and MCTS for policy improvement.

In our experiments on SameGame, we demonstrated the
effectiveness of our policy training procedure, with the
trained policy producing competitive results to state-of-the-
art search algorithms on a public test set. Our results demon-
strate a promising direction for future AI research in single-
player optimization domains.

Another potentially fruitful research direction is to replace
the policy network with a two-headed policy and value net-
work. The predicted value can be combined with rollout
results using a mixing parameter or replaced entirely. Our
preliminary work on this subject has produced weaker re-
sults than plain MCTS. Whether it is beneficial to use value
prediction for single-player optimization problems with un-
known score bounds remains an open question. Lastly, we
can look for other suitable search algorithms for policy im-
provement, as MCTS might not be the ideal choice.

References
Anthony, T.; Tian, Z.; and Barber, D. 2017. Thinking fast
and slow with deep learning and tree search. In Advances in
Neural Information Processing Systems, 5360–5370.

Arneson, B.; Hayward, R. B.; and Henderson, P. 2010.
Monte Carlo tree search in Hex. IEEE Transactions on Com-
putational Intelligence and AI in Games 2(4):251–258.
Cazenave, T. 2009. Nested Monte-Carlo search. In Twenty-
First International Joint Conference on Artificial Intelli-
gence.
Cazenave, T. 2016. Nested rollout policy adaptation with
selective policies. In Computer Games. Springer. 44–56.
Chaslot, G. M.-B.; Winands, M. H.; and van Den Herik, H. J.
2008. Parallel Monte-Carlo tree search. In International
Conference on Computers and Games, 60–71. Springer.
Clevert, D.-A.; Unterthiner, T.; and Hochreiter, S. 2015. Fast
and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289.
Edelkamp, S., and Cazenave, T. 2016. Improved diversity in
nested rollout policy adaptation. In Joint German/Austrian
Conference on Artificial Intelligence (Künstliche Intelli-
genz), 43–55. Springer.
Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Silver, D.;
Szepesvári, C.; and Teytaud, O. 2012. The grand challenge
of computer Go: Monte Carlo tree search and extensions.
Communications of the ACM 55(3):106–113.
Huang, S.-C.; Arneson, B.; Hayward, R. B.; Müller, M.;
and Pawlewicz, J. 2013. Mohex 2.0: a pattern-based mcts
hex player. In International Conference on Computers and
Games, 60–71. Springer.
Klein, S. 2015. Attacking samegame using Monte-Carlo
tree search: using randomness as guidance in puzzles.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Laterre, A.; Fu, Y.; Jabri, M. K.; Cohen, A.-S.; Kas,
D.; Hajjar, K.; Dahl, T. S.; Kerkeni, A.; and Beguir, K.
2018. Ranked reward: Enabling self-play reinforcement
learning for combinatorial optimization. arXiv preprint
arXiv:1807.01672.
McAleer, S.; Agostinelli, F.; Shmakov, A.; and Baldi, P.
2018. Solving the Rubik’s Cube without human knowledge.
arXiv preprint arXiv:1805.07470.
Negrevergne, B., and Cazenave, T. 2017. Distributed nested
rollout policy for samegame. In Workshop on Computer
Games, 108–120. Springer.
Pepels, T.; Winands, M. H.; and Lanctot, M. 2014. Real-
time Monte Carlo tree search in Ms Pac-Man. IEEE Trans-
actions on Computational Intelligence and AI in games
6(3):245–257.
Perez, D.; Liu, J.; Abdel Samea Khalifa, A.; Gaina, R. D.;
Togelius, J.; and Lucas, S. M. 2019. General video game
AI: a multi-track framework for evaluating agents, games
and content generation algorithms. IEEE Transactions on
Games.
Rosin, C. D. 2011. Nested rollout policy adaptation for
Monte Carlo tree search. In Twenty-Second International
Joint Conference on Artificial Intelligence.
Schadd, M. P.; Winands, M. H.; Van Den Herik, H. J.; and
Aldewereld, H. 2008. Addressing NP-complete puzzles

with Monte-Carlo methods. In Proceedings of the AISB
2008 Symposium on Logic and the Simulation of Interaction
and Reasoning, volume 9, 55–61.
Schadd, M. P.; Winands, M. H.; Tak, M. J.; and Uiterwijk,
J. W. 2012. Single-player Monte-Carlo tree search for
samegame. Knowledge-Based Systems 34:3–11.
Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel,
T.; et al. 2018. A general reinforcement learning algorithm
that masters Chess, Shogi, and go through self-play. Science
362(6419):1140–1144.
Theys, C.; Bräysy, O.; Dullaert, W.; and Raa, B. 2010. Using
a TSP heuristic for routing order pickers in warehouses. Eu-
ropean Journal of Operational Research 200(3):755–763.

