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Abstract
This chapter arises from the discussions of an experienced international group of researchers
interested in the potential for creative application of algorithms for searching finite discrete
graphs, which have been highly successful in a wide range of application areas, to address a
broad range of problems arising in video games. The chapter first summarises the state of
the art in search algorithms for games. It then considers the challenges in implementing these
algorithms in video games (particularly real time strategy and first-person games) and ways of
creating searchable discrete representations of video game decisions (for example as state-action
graphs). Finally the chapter looks forward to promising techniques which might bring some of
the success achieved in games such as Go and Chess, to real-time video games. For simplicity, we
will consider primarily the objective of maximising playing strength, and consider games where
this is a challenging task, which results in interesting gameplay.

1998 ACM Subject Classification I.2.8 Problem Solving, Control Methods, and Search

Keywords and phrases search algorithms, real-time video games, Monte Carlo tree search, min-
imax search, game theory

Digital Object Identifier 10.4230/DFU.Vol6.12191.1

© Peter I. Cowling, Michael Buro, Michal Bida, Adi Botea, Bruno Bouzy, Martin V. Butz,
Philip Hingston, Héctor Muñoz-Avila, Dana Nau, and Moshe Sipper;
licensed under Creative Commons License CC-BY

Artificial and Computational Intelligence in Games. Dagstuhl Follow-Ups, Volume 6, ISBN 978-3-939897-62-0.
Editors: Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian Togelius; pp. 1–19

Dagstuhl Publishing
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany

http://dx.doi.org/10.4230/DFU.Vol6.12191.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/dagpub/978-3-939897-62-0


2 Search in Real-Time Video Games

1 Introduction

Search algorithms have achieved massive success across a very wide range of domains, and
particular success in board and card games such as Go, chess, checkers, bridge and poker.
In each of these games there is a reasonably well-defined state-action graph (possibly with
information sets in the games of imperfect information games such as bridge and poker). The
success and generality of search for producing apparently strategic and human-competitive
behaviours points to the possibility that search might be a powerful tool in finding strategies
in video game AI. This remains true in multiplayer online strategy games where AI players
need to consistently make effective decisions to provide player fun, for example in the role of
supporting non-player character. Search is already very well embedded in the AI of most
video games, with A* pathfinding present in most games, and ideas such as procedural
content generation [78] gaining traction.

However, video games provide a new level of challenge when it comes to thinking about
the sort of strategic behaviours where search has worked so well in board and card games.
Principally this challenge is that the complexity of the naïvely defined state-action graph has
both a branching factor and a depth that is orders of magnitude greater than that for even
the most complex board games (e.g. Go), since we must make sometimes complex decisions
(such as choice of animation and path) for a large number of agents at a rate of anything
up to 60 times per second. Currently these problems are overcome using painstakingly
hand-designed rule-based systems which may result in rich gameplay, but which scale rather
poorly with game complexity and are inflexible when dealing with situations not foreseen by
the designer.

In this article, we point towards the possibility that power and ubiquity of search
algorithms for card and board games (and a massive number of other applications) might be
used to search for strategic behaviours in video games, if only we can find sensible, general
ways of abstracting the complexity of states and actions, for example by aggregation and
hierarchical ideas. In some ways, we are drawing a parallel with the early work on chess,
where it was felt that capturing expert knowledge via rules was likely to be the most effective
high-level method. While capturing expert rules is currently the best way to build decision
AI in games, we can see a bright future where search may become a powerful tool of choice
for video game strategy.

In order to provide a coherent treatment of this wide area, we have focussed on those
video games which have the most in common strategically with board and card games,
particularly Real Time Strategy (RTS) and to a lesser extent First Person games. For these
games a challenging, strong AI which assumes rational play from all players is a goal which
is beyond the grasp of current research (although closer than for other video games where
speech and emotion are needed), but which would likely be of interest to the games industry
while providing a measurable outcome (playing strength) to facilitate research developments.

The paper is structured as follows: in section 2 we consider the current state of the art in
relevant research areas, in section 3 we point to some of the research challenges posed by
video games, and in section 4 we discuss promising approaches to tackling them. We conclude
in section 5. The paper arose from the extensive, wide ranging and frank discussions of a
group of thought leaders at the Artificial and Computational Intelligence in Games summit
at Schloss Dagstuhl, Germany, in May 2012. We hope it may provide some inspiration and
interesting directions for future research.
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2 State of the Art

2.1 Search
Alpha Beta Minimax Search
Alpha-beta is a very famous tree search algorithm in computer games. Its history is strongly
linked with the successes obtained in Computer Chess between 1950, with the Shannon’s
original paper [65], and 1997 when Deep Blue surpassed Gary Kasparov, the human world
champion [1], [17], or indeed when Shaeffer and co-workers showed that with perfect play
the game of Checkers is a draw [63], which is one of the largest computational problems
ever solved. Alpha-beta [35] is an enhancement over Minimax which is a fixed-depth tree
search algorithm [81]. At fixed depth d, Minimax evaluates nonterminal game positions with
a domain-dependent evaluation function. It backs up the minimax values with either a min
rule at odd depths or a max rule at even depths, and obtains a minimax value at the root.
Minimax explores bd nodes, where b is the search tree branching factor.

At each node, alpha-beta uses two values, alpha and beta. Without entering into the
details, alpha is the current best value found until now, and beta is the maximal value that
cannot be surpassed. During the exploration of the branches below a given node, when the
value returned by a branch is superior to the beta value of the node, the algorithm safely cuts
the other branches in the search tree, and stops the exploration below the node. Alpha-beta
keeps minimax optimality [35]. Its efficiency depends mainly on move ordering. Alpha-beta
explores at least approximately 2bd/2 nodes to find the minimax value, and consumes a
memory space linear in d. Furthermore, in practice, the efficiency of alpha-beta depends
on various enhancements. Transposition tables with Zobrist hashing [86] enables the tree
search to reuse results when encountering a node already searched. Iterative deepening
[68] iteratively searches at increasing depth enabling the program to approach an any time
behaviour [39]. Minimal window search such as MTD(f) [56] uses the fact that many cuts
are performed when the alpha-beta window is narrow. Principal variation search assumes
that move ordering is right and that the moves of the principal variation can be searched
with a minimal window [55]. The history heuristic gathers the results of moves obtained in
previous searches and re-use them for dynamical move ordering [62].

Monte Carlo Tree Search (MCTS)
Monte Carlo Tree Search (MCTS) has revolutionised Computer Go since it was introduced by
Coulom [20], Chaslot et al. [19] and Kocsis and Szepesvári [36]. It combines game tree search
with Monte Carlo sampling. As for minimax tree search, MCTS builds and searches a partial
game tree in order to select high quality moves. However, rather than relying on a domain-
dependent evaluation function, Monte Carlo simulations (rollouts) are performed starting
from each nonterminal game position to the end of the game, and statistics summarising the
outcomes are used to estimate the strength of each position. Another key part of its success is
the use of UCT (Upper Confidence Bounds for Trees) to manage the exploration/exploitation
trade-off in the search, often resulting in highly asymmetric partial trees, and a large increase
in move quality for a given computational cost. The resulting algorithm is an any-time
method, where move quality increases with the available time, and which, in its pure form,
does not require any a priori domain knowledge. Researchers have been exploring its use in
many games (with notable success in general game playing [6]), as well as in other domains.

The basic algorithm can be enhanced in various ways, to different effect in different
applications. One common enhancement is the use of transposition tables, and a related
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4 Search in Real-Time Video Games

idea: Rapid Action Value Estimation (RAVE) [24], which uses the all-moves-as-first (AMAF)
heuristic [13]. Another common enhancement is to use domain knowledge to bias rollouts
[9, 25]. This must be used with care, as stronger moves in rollouts do not always lead to
better quality move selections. A recent survey [12] provides an extremely thorough summary
of the current state of the art in MCTS.

A* Search
A* [29] is one of the most popular search algorithms not only in games (e.g., pathfinding),
but also in other single-agent search problems, such as AI planning. It explores a search
graph in a best-first manner, growing an exploration area from the root node until a solution
is found. Every exploration step expands a node by generating its successors. A* is guided
using a heuristic function h(n), which estimates the cost to go from a current node n to a
(closest) goal node. Nodes scheduled for expansion, that are kept in a so-called open list, are
ordered according to a function f(n) = g(n) + h(n), where g(n) is the cost from the root
node to the current node n. Nodes with a smaller f value are seen as more promising, being
considered more likely to belong to a solution with an optimal cost. When h is admissible
(i.e., h(n) never overestimates the true cost between n and the nearest goal, h∗(n)), A*
returns optimal solutions.

A* remembers all visited nodes, to be able to prune duplicate states and to reconstruct a
solution path to the goal node. Both the memory and the running time can be one important
bottlenecks for A*, especially in large search problems. Iterative Deepening A* (IDA*) [38]
reduces the memory needs down to an amount linear in the depth of the exploration path, at
the price of repeatedly expanding parts of the state space by iterative deepening. Weighted
A* [58] can provide a significant speed-up at the price of a bounded solution sub-optimality.
There are many other search methods that build on A*, including methods for hierarchical
pathfinding, and methods for optimal search on multiple CPU cores.

Multi-Player Search
Less research has been done on game-tree search in multi-player games than in two-player
zero-sum games, partly because results are harder to obtain. The original tree-search
algorithm for multi-player games, Max-n [47], is based on the game-theoretic backward
induction algorithm [54] for computing a subgame-perfect equilibrium (in which each player
maximizes its return under the assumption of game-theoretic rationality). To this, Max-n
adds game-tree pruning and bounded-depth search. Prob-max-n is an extension of Max-n
with probabilities [75]. The results on pruning in Max-n are very weak: shallow pruning
occurs at depth one, but deeper pruning does not occur except in the last branch, which
is not effective when the branching factor is high [40]. Greater pruning can be achieved by
replacing the assumption of game-theoretic rationality with a “paranoid” assumption that
all of the other players are trying to minimize one’s own return. This assumption reduces
the multi-player game to a two-player game, on which one can use a two-player game-tree
search algorithm [74] to compute a maximin strategy for the multi-player game. In terms
of game-playing performance, neither the paranoid algorithm nor the Max-n assumption of
game-theoretic rationality have been especially successful in producing strong AI players, and
more sophisticated ways are needed to model human interactions in multiplayer games [83].
As in two-player games in which MCTS surpassed alpha-beta, MCTS also surpassed Max-n
in multi-player games [73] with enhancements or not [53] and has become the reference
algorithm.
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2.2 Abstraction
Hierarchical Task Networks (HTNs) and Behaviour Trees
HTN planning is a technique for generating sequences of actions to perform tasks (complex
activities). In a game environment, these might be activities to be performed by an computer-
controlled agent. For each kind of task there are methods that provide alternative ways to
decompose the task into subtasks (simpler tasks). Usually each method contains preconditions
or constraints that restrict when it can be used. Planning proceeds by decomposing tasks
recursively into simpler and simpler subtasks, until actions are reached that the agent can
perform directly. Any time a task t is produced for which none of the available methods is
applicable, the planner backtracks to look for other ways to decompose the tasks above t.

Some HTN planners are custom-built for particular application domains. Others (e.g.,
SIPE-2 [82], O-PLAN [22, 77], and SHOP2 [51]) are domain-configurable, i.e., the planning
engine is independent of any particular application domain, but the HTN methods in the
planner’s input are specific to the planning domain at hand. Most HTN planners are built
to do offline planning, i.e., to generate the entire plan before beginning to execute it. But in
video game environments where there are strict time constraints and where the outcomes of
the planned actions may depend on many unpredictable factors (e.g., other agents), planning
is often done online (concurrently with plan execution) (e.g., [44]). To create believable
sequences of actions for virtual agents in Killzone 2, an HTN planner generates single-agent
plans as if the world were static, and replans continually as the world changes [80, 18].

In the context of game programming, a behavior tree is a tree structure that interleaves
calls to code executing some gaming behavior (e.g., harvest gold in an RTS game) and the
conditions under which each of these code calls should be made. In this sense, they are
closer to hierarchical FSMs [32] than to HTN planning. At each node there are lists of pairs
(cond, child) where cond is a condition to be evaluated in the current state of the game and
child is either a code call or a pointer to another node. In current practice, behavior trees
generally are constructed by hand. In principle, HTN planning could be used to generate
behavior trees; but most existing HTN planners incorporate an assumption of a single-agent
environment with actions that have deterministic outcomes (in which case the tree is simply
a single path). A few HTN planners can reason explicitly about environments that are
multi-agent and/or nondeterministic [41, 43, 42], including a well-known application of HTN
planning to the game of bridge [52, 70]. Furthermore, the online HTN planning used in some
video games can be viewed an on-the-fly generation of a path through a behavior tree.

Temporal Abstraction
The abstraction of time in real-time video games provides unique challenges for the use of
approaches which search a directed graph, where the nodes represent states and the arcs
represent transitions between states. Note that here we interpret “state” loosely – the states
themselves will usually be rather abstract representations of the state of the game, and the
transitions will usually only represent a small subset of possible transitions. If we introduce
continuous time, then a naive state transition graph has infinite depth, since we may make
a transition at any time. There are two primary methods for overcoming this problem:
time-slicing and event-based approaches. When using time-slicing we divide time into even
segments, and use algorithms which are guaranteed to respond within the given time, or
consider applications where a non-response is not problematic. There are many examples in
pathfinding (e.g. Björnsson [5]). Another time-slicing approach is given in Powley et al. [60]
where macro-actions are used to plan large-scale actions which are then executed frame by
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6 Search in Real-Time Video Games

frame, where each transition corresponds to a macro-action executed over several frames.
Event-based approaches consider an abstraction of the tree where branching is only possible
following some significant event. Zagal and Mateas [85] has further discussion of abstract
time in video games.

Level of Detail AI
One of the main challenges of creating high-fidelity game AI is the many levels of behaviour
that are needed: low level actions, agent operations, tactics, unit coordination, high-level
strategy etc. For example, real-time strategy games require multiple levels of detail. The
AI needs to control tasks at different levels including creating and maintaining an economy,
planning a high-level strategy, executing the strategy, dealing with contingencies, controlling
hundreds of units, among many others. To deal with this problem, so-called managers are
often used to take care of different gaming tasks [64]. Managers are programs specialized in
controlling one of the tasks in the real-time strategy game such as the economy. In games
such as role-playing games and first-person shooters, a lot of CPU and memory resources are
spent in the area where the player-controlled character is located whereas little or no CPU
time is spent in other areas [10]. This is often referred to as level-of-detail AI. One possible
approach is to use AI techniques such as AI planning to generate high-level strategies while
using traditional programming techniques such as FSMs to deal with low-level control.

Hierarchical Pathfinding
Pathfinding remains one of the most important search applications in games. Computation
speed is crucial in pathfinding, as paths have to be computed in real-time, sometimes with
scarce CPU and memory resources. Abstraction is a successful approach to speeding up more
traditional methods, such as running A* on a flat, low-level graph representation of a map.

Hierarchical Pathfinding A* (HPA*) [7] decomposes a map into rectangular blocks called
clusters. In an abstract path, a move traverses an entire cluster at a time. Abstract moves are
refined into low-level moves on demand, with a search restricted to one cluster. Hierarchical
Annotated A* (HAA*) [28] extends the idea to units with variable sizes and terrain traversal
capabilities. Partial Refinement A* (PRA*) [76] builds a multi-level hierarchical graph by
abstracting a clique at level k into a single node at level k + 1. After computing an abstract
path at a given level, PRA* refines it level by level. A refinement search is restricted to a
narrow corridor at the level at hand. Block A* [84] uses a database with all possible obstacle
configurations in blocks of a fixed size. Each entry caches optimal traversal distances between
any two points on the block boundary. Block A* processes an entire block at a time, instead
of exploring the map node by node. Besides abstractions based on gridmaps, triangulation is
another successful approach to building a search graph on a map [23].

Dynamic Scripting
Scripts, programs that use game-specific commands to control the game AI, are frequently
used because it gives the game flexibility by decoupling the game engine from the program
that controls the AI [4]. This allows gamers to modify the NPC’s behaviour [59]. Carefully
crafted scripts provide the potential for a compelling gaming experience. The flip side of this
potential is that scripts provide little flexibility which reduces replayability. To deal with this
issue, researchers have proposed dynamic scripting, which uses machine learning techniques
to generate new scripts or modify existing ones [71]. Using a feedback mechanism such as
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the one used in reinforcement learning, scripts are modified towards improving some signal
from the environment (e.g., score of the game).

Learning Action Hierarchies
Various research directions have acknowledged that an hierarchical organization of actions
can be highly beneficial for optimizing search, for more effective planning, and even for
goal-directed behavioral control in robotics [8]. Psychological research points out that the
brain is highly modularly organized, partitioning tasks and representations hierarchically
and selectively combining representation on different levels for realizing effective behavioral
control [16, 30, 57]. While thus the importance of hierarchies is without question, how such
hierarchical representations may be learned robustly and generally is still a hard challenge
although some research exists studying this problem [31].

“Black Box” Strategy Selection
An intuitive approach to applying adversarial search to video games is to start off with
a collection of action scripts that are capable of playing entire games and then – while
playing – select the one executed next by a look-ahead procedure. In [61], for instance, this
idea has been applied to base-defense scenarios in which two players could choose among
scripts ranging from concentrating forces to spreading out and attacking bases simultaneously.
To choose the script to execute in the next time frame, the RTSplan algorithm simulates
games for each script pair faster than real-time, fill a payoff matrix with the results, and
then solves the simultaneous-move games- in which actions now refer to selecting scripts
– using linear programming. Actions are then sampled according to the resulting action
probabilities. Equipped with an efficient fast-forwarding script simulator and an opponent
modelling module that monitors opponent actions to maintain a set of likely scripts the
opponent is currently executing, RTSplan was able to defeat any individual script in its
script collection.

3 Challenges

3.1 Search
Massive branching factor / depth. MCTS has been successfully applied to trees
with large branching factor and depth in games such as Go or Amazons. However,
video games branching factor and depth in generally several order of magnitudes greater.
Furthermore, the action space and the time can be continuous leading to much more
complexity. MCTS has been studied in continuous action space leading to Hierarchical
Optimistic Optimization applied to Trees (HOOT) [48]. HOO [14] is an extension of
UCB addressing the case of a continuous set of actions. However, HOOT is a very general
approach which is unlikely to work in complex video games.
Often, the massive branching factor is caused by the high number of characters acting in
the game. One character may have a continuous set of actions. But even with a reduced
set of actions, i.e. north, west, south, east, wait, the number of characters yields an
action space complexity that is finite but that is huge and not tractable with general
tools such as HOOT. The problem of the huge action set in video games cannot be dealt
with MCTS approach alone. A partial solution could be grouping sibling moves, but it
will probably not be sufficient. Some abstraction scheme must be found to divide the
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8 Search in Real-Time Video Games

number of actions drastically. There is some promise for macro-action techniques such as
[60] but to date these have been considered only in rather simple video games.
The length of simulated video games is the second obstacle. With many characters acting
randomly, a mechanism must lead the game to its end. Assuming the game ends, it should
do it quickly enough, and the game tree developed should go deeply enough to bring
about relevant decisions at the top level. A first solution to encompass the huge depth or
the time continuity, is to deal with abstract sequences grouping consecutive moves. A
sequence of moves would correspond to a certain level of task with a domain-dependent
meaning, e.g. a fight between two armies, or an army moving from a starting area to
another. Tree search should consider these tasks as actions in the tree.
Automatically finding abstractions. Learning abstractions has been a recurrent
topic in the literature. Works include learning abstraction plans and hierarchical task
networks from a collection of plan traces. Abstracted plans represent high-level steps that
encompass several concrete steps from the input trace. In a similar vein, learning HTNs
enables the automated acquisition of task hierarchies. These hierarchies can capture
strategic knowledge to solve problems in the target domain.
Despite some successes, there are a number of challenges that remain on this topic
that are of particular interest in the context of games: existing work usually assumes a
symbolic representation based on first-order logic. But RTS games frequently require
reasoning with resources, hence the capability to abstract numerical information is
needed. In addition, algorithms for automated abstraction need to incorporate spatial
analysis whereby suitable abstraction from spatial elements is elicited. For example, if
the game-play map includes choke points it will be natural to group activities by regions
as separated by those choke points. Also, abstraction algorithms must deal with time
considerations because well-laid out game playing strategies frequently consider timing
issues. Last but not least, such abstractions need to be made dependent upon the actual
behavioural capabilities available in the game. Choke points may thus not necessarily
be spatially determined in an Euclidean sense, but may rather be behavior-dependent.
For example, a flying agent does not care about bridges, but land units do. Thus, a
significant challenge seems to make abstraction dependent on the capabilities of the agent
considered. Learning such abstractions automatically clearly remains an open challenge
at this point.
Capturing manually-designed abstraction. Related to the previous point, rep-
resentation mechanisms are needed to capture manually-created abstractions. Such
representation mechanisms should enable the representation of game-playing strategies at
different levels of granularity and incorporate knowledge about numerical information,
spatial information and time. A challenge here is to avoid creating a cumbersome rep-
resentation that is either very difficult to understand or for which adequate reasoning
mechanisms are difficult to create.
1-player vs 2-player vs multiplayer. One of the biggest reasons why game-tree search
has worked well in two-player zero-sum games is that the game-theoretic assumption of
a “rational agent” is a relatively good model of how human experts play such games,
hence algorithms such as minimax game-tree search can produce reasonably accurate
predictions of future play. In multiplayer games, the “rational agent” model is arguably
less accurate. Each player’s notion of what states are preferable may depend not only
on his/her game score but on a variety of social and psychological factors: cameraderie
with friends, rivalries with old enemies, loyalties to a team, the impetus to “gang up on
the winner,” and so forth. Consequently, the players’ true utility values are likely to be
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nonzero-sum, and evaluation functions based solely on the game score will not produce
correct approximations of those utilities. Consequently, an important challenge is how
to build and maintain accurate models of players’ social preferences. Some preliminary
work has been done on this topic [83], but much more remains to be done.
Hidden information / uncertainty. Asymmetric access to information among players
gives rise to rich gameplay possibilities such as bluffing, hiding, feinting, surprise moves,
information gathering / hiding, etc. In many (indeed most) card and board games
asymmetric hidden information is central to interesting gameplay. Information asymmetry
is equally important for many video games, including the real-time strategy and first-
person games which are the primary focus of this article. When played between human
players, much of the gameplay interest arises through gathering / hiding information, or
exploiting gaps in opponents’ knowledge. Creating AI which deals with hidden information
is more challenging than for perfect information, with the result that many AI players
effectively “cheat” by having access to information which should be hidden. In some
cases this is rather blatant, with computer players making anticipatory moves which
would be impossible for a human player without perfect information, in a way which
feels unsatisfactory to human opponents. In other cases, there is a simulation of limited
access to information. Ideally computer characters should have access to similar levels of
sensory information as their human counterparts. The problems of hidden information
in discrete domains is well-studied in game theory (see e.g. Myerson [50]), where the
hidden information is captured very neatly by the information set idea. Here we have a
state-action graph as usual, but each player is generally not aware of the precise state of
the game, but the player’s partial information allows the player to know which subset of
possible states he is in (which is an information set from his point of view). Searching
trees of information sets causes a new combinatorial explosion to be handled. This is a
challenging new area for research, with some promise shown in complex discrete-time
domains by the Information Set Monte Carlo Tree Search approach of Cowling et al. [21].
Simulating the video game world forward in time. Rapid forward models could
provide a glimpse of the world’s future via simulation. This would allow researchers to
use techniques based on state space search (e.g. Monte Carlo Tree Search, HTN, classical
planning) more effectively either for offline or online AIs. However, modern games often
feature complex 3D worlds with rich physics and hence limited capability to speed-up a
simulation (there are hardware limitations of CPUs and GPUs). Moreover, games are
real-time environments that can feature non-deterministic mechanisms, including actions
of opponents, which might not be always reliably simulated. Opponent modelling [79] and
level-of-detail AI [11] approach may provide a partial solution to these issues. However,
these features are not always present in current games, and the design and development
of forward models provides an interesting research challenge.
Explainability. Explanation is an important component in computer gaming envir-
onments for two reasons. First, it can help developers understand the reason behind
decisions made by the AI, which is very important particularly during debugging. Second,
it can be useful to introduce game elements to new players. This is particularly crucial in
the context of complex strategic games such as the civilization game series.
Generating such explanations must deal with two main challenges. First, explanations
must be meaningful. That is, the explanation must be understandable by the player
and/or developer and the context of the explanation must also be understood. Possible
snapshots from the game GUI could help to produce such explanations, highlighting the
explanatory context. Second, explanations must be timely in the sense that they must be
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10 Search in Real-Time Video Games

rapidly generated and be shown at the right time. The latter point is crucial particularly
if explanations occur during game play. They should not increase the cognitive load of
the player, since this might result in the player losing interest in the game.
It seems important to distinguish between preconditions and consequences when auto-
matically generating explanations. Preconditions are the subset of relevant aspects of the
game that must be in a certain state for the offered explanation (of what the bot has
done) to hold. Consequences are those the bot expected to occur when it executes a par-
ticular behavior in a the specified context. In order to generate meaningful explanations,
preconditions and consequences must thus be automatically identified and presented in
an accessible format to ensure the generation of meaningful explanations.
Robustness. Video games must continue to work whatever the state of the game world
and action of the players. hence any algorithm to which uses search to enhance strategy
or other aspects of gameplay must always yield acceptable results (as well as usually
yielding better results than current approaches). Explainability (discussed in the previous
paragraph) allows for better debugging and greatly improves the chances for robustness.
Robustness may be achieved by techniques such as formal proofs of correctness and
algorithm complexity, or by having simple methods working alongside more complex
search methods so that acceptable results are always available.
Non-smooth trees. Many games (chess is a prime example) have trees which are
non-smooth in the sense that sibling nodes at significant depth in the tree (or leaf nodes)
often have different game theoretic values. This behaviour makes tree search difficult,
and is arguably a reason why MCTS, while effective at chess AI, cannot compete with
minimax/alphabeta. It seems likely and possible that game trees for some video games
will have this pathology. While this makes heuristic search approaches that do not explore
all siblings perform unreliably, one possible source of comfort here is that for complex
game trees made up of highly aggregated states and actions, smoothness is quite close
to the property that makes such a game playable (since otherwise a game becomes too
erratic to have coherent strategies for a human player). While we raise this as a challenge
and a consideration, successful resolution of some of the other challenges in this section
may give rise to relatively smooth trees.
Red teaming, Real-World Problems. Red Teaming is a concept that originated in
military planning, in which a “Red Team” is charged with putting itself in the role of
the enemy, in order to test the plans of the friendly force – the “Blue Team”. The term
Computational Red Teaming (CRT) has been coined to describe the use of computational
tools and models to assist with this planning process. A technology review on CRT was
recently carried out for the Australian Department of Defence [26]. One application
domain for CRT is tactical battle planning, in which battles are simulated to test the
effectiveness of candidate strategies for each side, and a search is overlaid to search for
strong Red and/or Blue strategies. The task has a great deal in common with the search
for tactics and strategies in Real Time Strategy games, and shares many of the same
challenges: the strategy space is huge, involving coordinated movements and actions
of many agents; the domain is continuous, both spatially and temporally; the “fog of
war” ensures that much information is hidden or uncertain. It may be that approaches
that have been developed to address these issues in CRT will also be helpful in RTS and
similar games, and vice-versa.
Memory / CPU constraints. CPU and Memory consumption and management
represents a key issue in respect to computer game speed and scalability, even against a
background of increasing parallel processing capability. State of the art game development
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is primarily focused on the quality of the graphical presentation of the game environment.
As a result, game engines tend to consume and constrain the computational power
available for AI computations [15]. Therefore, an AI subsystem responsible for hundreds
of active agents has to scale well, due to the resource demand in question. Even proven
generic techniques like A* often need to be tweaked in respect to the game engine to
be used effectively in real-time [27]. This makes the use of computationally intensive
techniques, like classical planning or simulating decision outcomes, very problematic.
General Purpose Methods: Transfer learning. Many of the above techniques have
the aim of being generally applicable in whole sets or classes of game environments. Once
a particular behavioral strategy of an agent has been established in one environment,
the same strategy might also be useful in others. One approach to tackle such tasks
is to abstract from the concrete scenario, producing a more general scheme. If such
abstractions are available, then transfer learning will be possible. However, clearly the
hard challenge, which does not seem to be answerable in the general sense, is how to
abstract. Abstractions in time for transferring timing techniques may be as valuable as
abstractions in space, such as exploration patterns, or abstraction on the representational
format, for example, generalizing from one object to another. General definitions for useful
abstractions and formalizations for the utility of general purpose methods are missing at
the moment. Even more so, the challenge of producing a successful implementation of a
general purpose AI, which, for example, may benefit from playing one RTS game when
then being tested in another, related RTS game is still wide open.

4 Promising Research Directions and Techniques

4.1 Abstract Strategy Trees
The RTSplan “black box” strategy selection algorithm described earlier requires domain
knowledge implemented in form of action scripts. Moreover, its look-ahead is limited in the
sense that its simulations assume that players stick to scripts chosen in the root position. An
adhoc solution to this problem is to add decision points in each simulation, e.g.. driven by
game events such as combat encounters, and apply RTSplan recursively. This, however, can
slow down the search considerably. Another serious problem is that switching game-playing
scripts in the course of a game simulation episode may be inadequate to improve local
behaviours. As an example, consider two pairs of squads fighting in different areas of an
RTS game map, requiring different combat strategies. Switching the global game playing
script may change both local strategies, and we therefore will not be able to optimize them
independently. To address this problem, we may want to consider a search hierarchy in which
game units optimize their actions independent from peers at the same level of the command
hierarchy. As an example, consider a commander in charge of two squads. The local tasks
given to them are decided by the commander who needs to ensure that the objectives can be
accomplished without outside interference. If this is the case, the squads are independent of
each other and their actions can be optimized locally. This hierarchical organization can be
mapped to a recursive search procedure that on different command levels considers multiple
action sequences for friendly and enemy units and groups of units, all subject to spatial
and temporal constraints. Because the independence of sibling groups speeds up the search
considerably, we speculate that this kind of search approach could be made computationally
efficient.

As a starting point we propose to devise a 2-level tactical search for mid-sized RTS
combat scenarios with dozens of units that are positioned semi-randomly on a small map
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region. The objective is to destroy all enemy units. The low-level search is concerned with
small-scale combat in which effective targeting order and moving into weapon range is the
major concern when executing the top-level commands given to it. The high-level search
needs to consider unit group partitions and group actions such as movement and attacking
other groups. As there are quite a few high-level moves to consider, it may be worthwhile
investigating unit clustering algorithms and promising target locations for groups. Now the
challenge is to intertwine the search at both levels and to speed it up so that it can be
executed in real-time to generate game actions for all units. Once two-level search works,
it will be conceptually easy to extend it to more than two levels and – hopefully – provide
interesting gameplay which challenges human supremacy in multi-level adversarial planning.

4.2 Monte Carlo Tree Search
Video games have a massive branching factor and a very high depth due to a large number
of game agents, each with many actions, and the requirement to make a decision each frame.
Since abstraction is a promising technique for video games that replaces the raw states by
abstract states, the concrete actions by abstract actions or sequences of actions, the challenge
is to use these abstractions in a tree search algorithm. This will give an anticipation skill to
the artificial player. Instead of developing a tree whose nodes are raw states and arcs are
actions, MCTS might be adapted such that nodes would correspond to abstract states and
arcs to a group of actions or a sequence of actions, or even to a sequence of groups of actions.
The strength of MCTS is to develop trees whose nodes contain simple statistics such as the
number of visits and the number of successes. Therefore nothing forbids MCTS to build
these statistics on abstract entities. To this extent MCTS combined with abstractions is a
very promising technique for designing artificial agents playing video games.

4.3 Game Theoretic Approaches
Designing artificial players using abstraction and tree search for video games raises the
question of backing up the information from child nodes to parent nodes when the nodes
and the arcs are abstract. An abstract arc may correspond to a joint sequence of actions
between the players such as: let army A fight against army B until the outcome is known.
Given a parent node with many kinds of sequences completing with different outcomes, the
parent node could gather the information in a matrix of outcomes. This matrix could be
processed by using game theoretic tools to find out a Nash equilibrium and to back up the set
of best moves. The following question would be then how to integrate such a game theoretic
approach within a minimax tree search or a MCTS approach.

4.4 Learning from Replays
Learning in real-time games features a mixture of strong potential advantages and practical
barriers. Benefits include the possibility to adapt to a new environment or a new opponent,
increasing the gaming experience of users. Learning can reduce the game development time,
adding more automation to the process and creating intelligent AI bots more quickly. On the
other hand, a system that learns often involves the existence of a large space of parameter
combinations that gets explored during learning. A large number of parameter combinations
makes a thorough game testing very difficult.

An important challenge is making industry developers more receptive to learning, identify-
ing cases where potential disadvantages are kept within acceptable limits. Competitions can
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facilitate the development and the promotion of learning in real-time games, as a stepping
stone between the academia and the industry.

Learning from replays is particularly appealing because game traces are a natural source of
input data which exists in high volumes from network data of human vs human games. There
are many parts of a game that can benefit from learning, and multiple learning techniques
to consider. Reinforcement learning has been used to learn team policies in first-person
shooter games [69]. In domain-independent planning, sample plans have been used to learn
structures such as macro-operators and HTNs which can greatly speed up a search.

4.5 Partitioning States
Partitioning states into regions, subareas, choke points, and other relevant clusters is often
related to spatial and temporal constraints that are associated with these partitionings. In
the reinforcement learning domain, state partitionings have been automatically identified to
improve hierarchical reinforcement learning [66]. The main idea behind this approach is to
focus state partitionings on particular states which separate different subareas, thus focusing
on choke points. However, the automatic detection depends on the behavioral capabilities
of the reinforcement learning agent, thus offering a more general purpose approach to the
problem. With respect to factored Markov Decision Processes, Variable Influence Structure
Analysis (VISA) has been proposed to develop hierarchical state decomposition by means
of Bayesian networks [33]. With respect to skills and skill learning, hierarchical state
partitionings have been successfully developed by automatically selecting skill-respective
abstractions [37].

While it might not be straight-forward, these techniques stemming from the reinforcement
learning and AI planning literature, seem ready to be employed in RTS games. The exact
technical transfer, however, still needs to be determined. In the future, intelligent partitioning
of states brings may bring closer the prospect of developing autonomously learning, self-
developing agents.

4.6 Evolutionary Approaches
It is interesting to speculate as to whether evolutionary approaches which have been used
successfully by authors such as Sipper [67] might be used in video games. Evolutionary
algorithms have also been used in RTS-like domains with some success. For example,
Stanley et al. [72] use real-time neuroevolution to evolve agents for simulated battle games,
demonstrating that human-guided evolution can be successful at evolving complex behaviours.
In another example, Louis and Miles [45] used a combination of case-based reasoning and
genetic algorithms to evolve strategies, and later [49] combined this to co-evolve players for
a tactical game by evolving influence maps, and combining these with A∗ search. Genetic
programming was used in [34] to evolve behavior trees of characters playing FPS game
capturing basic reactive concepts of the tasks. In a light survey of evolution in games, Lucas
and Kendall [46] discuss many applications of evolutionary search in games, including video
games.

More recently, a number of researchers have been using evolutionary or co-evolutionary
search in the context of Red Teaming (as mentioned in Subsection 3.1). In this approach,
the evolutionary algorithm (or similar, such as a Particle Swarm Optimisation algorithm) is
used to search over a space of possible strategies for a given scenario. These strategies are
represented at a high level, for example as a set of paths to be followed by agents representing
the resources available to each side, organised into squads. Strategies are then evaluated
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using low-fidelity agent-based simulations, called distillations, in which these orders provide
the overall goals of the agents, and simple rules determine their movements and other actions.
The outcomes of these simulations provide fitness values to drive the evolutionary search.

The idea of organising agents into a heirarchical command structure is similar to the
Level of detail AI abstraction discussed in Subsection 2.2. Another possible hybrid approach
is to use temporal abstraction to subdivide the planning period, a coevolutionary search
to simultaneously identify sets of strong strategies for each side at each decision point, and
MCTS to select from these the strongest lines of play. An initial investigation of an idea on
these lines, on a small example scenario, can be found in [2].

4.7 Competitions and Software Platforms

In recent years numerous competitions have emerged presenting researchers with a good
opportunity to compare their AI approaches in specific games and scenarios – BotPrize,
Starcraft, Simulated Car Racing and Demolition Derby, and ORTS to name only a few.

The drawback of some of these competitions is the narrow universe of the respective
games. As a result, AI players are created specifically for the game and the competition’s
aim – e.g. AI in StarCraft exploits game mechanics for micromanagement to win unit on
unit combat, but are too specialised for other RTSs let alone other game genres. Thus the
challenge of generating a general purpose AI is lost.

To overcome this drawback, it is necessary to introduce a conceptual and technical layer
between the designed AI and the used game. This could provide the capability to compare AI
designs across various games and scenarios. Deeper understanding of the common problems
and technical details of games (e.g. RTS, FPS) and AIs is necessary to produce platforms,
tools, techniques, and methodologies for AI creation for games without limiting them to
specific virtual environment. An interesting development here is the Atari 2600 simulator
(see [3]) which allows precise simulation of 1980s arcade games at thousands of times normal
speed due to increases in hardware performance.

The first possible approach is to actually create a layer providing game abstractions for
all games of a certain genre and develop AIs on top of it, like the state of the art software
platforms xAitment, Havok AI, AI-Implant, and Recast. The second approach is to create a
configurable proto-game capable of reflecting the most important mechanics of all games in
a respective field (e.g. ORTS aims to provide a description of game mechanics for RTSs),
which would be build using the state of the art design patterns of the present games. The
third possible approach is to create a multi-game competition utilizing multiple games of the
same type where AIs cannot exploit a certain game. Finally, since solving open AI problems
(e.g. pathfinding) is one of the main issues within the gaming industry, it would be beneficial
to create competitions aimed at solving problems posed by the video games industry. This
could draw the game industry’s attention and help to establish a bridge between industry
and academia.

5 Conclusion

Search algorithms are already integral to video game AI, with A* pathfinding used in a
huge number of games. This paper has reflected upon the wider applications of search in
games, particularly the use of search in operational, tactical and strategic decision making in
order to provide a more interesting gameplay experience. It seems that there are many rich
research directions here, as well as many opportunities for academics to work together with
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those from the games industry and to build more interesting and repayable games in the
future.

In this paper we have considered how we may combine advances in search algorithms
(such as Monte Carlo Tree Search, minimax search and heuristically guided search) with
effective tools for abstraction (such as Hierarchical Task Networks, dynamic scripting, “black
box” strategy selection, player modelling and learning approaches) to yield a new generation
of search-based AI approaches for video games. Continuing advances in CPU speed and
memory capacity make computationally intensive search approaches increasingly available
to video games that need to run in real time. We have discussed the challenges that new
techniques must face, as well as promising directions to tackle some of these issues.

We expect to see many advances in search-based video game AI in the next few years.
It is difficult to predict where the most important advances will come, although we hope
that this paper may provide some insight into the current state of the art, and fruitful
future research directions as foreseen by a range of leading researchers in AI for search and
abstraction in games.
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