
Global State Evaluation in StarCraft

Graham Erickson and Michael Buro
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada, T6G 2E8
{gkericks|mburo}@ualberta.ca

Abstract

State evaluation and opponent modelling are important areas
to consider when designing game-playing Artificial Intelli-
gence. This paper presents a model for predicting which
player will win in the real-time strategy game StarCraft.
Model weights are learned from replays using logistic regres-
sion. We also present some metrics for estimating player skill
which can be used a features in the predictive model, includ-
ing using a battle simulation as a baseline to compare player
performance against.

1 Introduction
Purpose
Real-Time Strategy (RTS) games are a type of video game
in which players compete against each other to gather re-
sources, build armies and structures, and ultimately defeat
each other in combat. RTS games provide an interest-
ing domain for Artificial Intelligence (AI) research because
they combine several difficult areas for computational in-
telligence and are implementations of dynamic, adversar-
ial systems (Buro 2003). The research community is cur-
rently focusing on developing bots to play against each
other, since RTS AI still preforms quite poorly against hu-
man players (Buro and Churchill 2012). The RTS game
StarCraft (en.wikipedia.org/wiki/StarCraft) is currently the
most common game used by the research community, and
is chosen for this work because of the online availabil-
ity of replay files and the open-source interface BWAPI
(code.google.com/p/bwapi).

When human players are playing RTS games, they have a
sense of when they are winning or losing the game. Certain
aspects of the game which can be observed by the player
are used to tell players if they are ahead or behind the other
player. The goal of a match is to get the other player to give
up or to destroy all that player’s units and structures, and
achieving that includes but isn’t limited to having a steady
income of resources, building a large and diverse army, con-
trolling the map, and outperforming the other player in com-
bat. Human players have a good sense of how such features
contribute to their chances of winning the game, and will ad-
just their strategies accordingly. They also have a good sense

Copyright c© 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of determining the skill of their opponent, based on deci-
sions the other player made and their proficiency at combat.
We want to enable a bot to do similar. The purpose of our
work is to identify quantifiable aspects of a game which can
be used to determine 1) if a particular game-state is advan-
tageous to the player or not; and 2) the relative skill level of
the opponent.

Motivation

Search algorithms have been used successfully to play the
combat aspect of RTS games (Churchill and Buro 2013).
Classical tree search algorithms require some sort of eval-
uation technique; that is, search algorithms require an effi-
cient way of determining if a state is advantageous for the
player or not. Currently, there is work being done to cre-
ate a tree search framework that can be used for playing full
RTS game (Ontañón 2012). Evaluation can be done via sim-
ulation (Churchill, Saffidine, and Buro 2012) for combat,
but for the full game different techniques will be needed.
Also, in the context of a complex search framework that
uses simulations, state evaluation could be used to prune
search branches which are considered strongly disadvanta-
geous. As we will show in Section 4, the type of evaluation
we are proposing can be computed much faster than per-
forming a game simulation.

The most successful RTS bots still use hard coded rules
as parts of their decision making processes (Ontañón et al.
2013). Which policies are used can be determined by ma-
king the bot aware of certain aspects of the opponent. For
example, if you have determined that the opponent is imple-
menting strategy A, and you have previously determined that
strategy B is a good counter to A, then you can start running
strategy B (Dereszynski et al. 2011). Likewise, UAlbertaBot
(code.google.com/p/ualbertabot), which won last year’s AI-
IDE StarCraft AI competition, currently uses simulation re-
sults to determine if it should engage the opponent in com-
bat scenarios or not. This is based on the assumption that the
opponent is proficient at the combat portion of StarCraft. If
there is evidence that the opponent is not skilled at com-
bat, one might be willing to engage the opponent even when
their army composition is superior (or if they are strong, not
engage the opponent unless the player has a large army com-
position advantage).

Objective

The primary objective of this work is to present a model
for evaluating RTS game states. More specifically, we are
providing a possible solution to the game result predic-
tion problem: given a game state predict which player will
go on to win the game. Our model uses logistic regres-
sion (en.wikipedia.org/wiki/Logistic regression/) to give a
response or probability of the player winning (which can
be looked at as a value of the state for the player). Pre-
senting our model will then come down to describing the
features we compute from a given game state. The features
come in two distinct types: features that represent attributes
of the state itself (which can be correlated with win status),
and features which represent the players skill (which is a
much more abstract notion). Our model assumes perfect in-
formation; StarCraft is an imperfect information game, but
for the purposes of preliminary investigation we assume that
the complete game-state is known.

The next section presents background on machine learn-
ing in RTS games. In Section 3 we describe the data set we
developed the model on, and how we parsed and processed
the data set. Then in Section 4 we present the features we
use in the model. Section 5 presents our experiments that we
used to evaluate the approach, and shows the results along
with a discussion of the findings. Limitations of the model,
along with future plans are discussed in Section 6.

2 Background
1) Although there has been a recent trend of using Star-
Craft replays as data for machine learning tasks (Weber and
Mateas 2009) (Synnaeve and Bessière 2011) (Dereszynski
et al. 2011), little work has been regarding state evalua-
tion in RTS games. (Yang, Harrison, and Roberts 2014)
tries to predict game outcomes in Massively Online Bat-
tle Arena (MOBA) games, a different but similar genre of
game to RTS. They represent battles as graphs and extract
patterns that they use to make decisions about which team
will win. Opponent modelling has also seen little work, with
(Schadd, Bakkes, and Spronck 2007) being the notable ex-
ception (their work was not with StarCraft though). (Avon-
tuur, Spronck, and van Zaanen 2013) extracted features from
StarCraft II replays and showed that they can be used to pre-
dict the league a player is in.

2) As presented in (Davidson, Archibald, and Bowling
2013), a control variate is a way reducing the error of an
estimate of a random variable. They apply control variates
(in conjunction with a baseline scripted player) to Poker, as
a way of estimating a player’s skill. We apply the idea to
the combat portion of StarCraft. We use a StarCraft com-
bat simulator to replay battles with a baseline player, and
the control variate technique to reduce the variance of the
resulting skill feature estimate.

3) This project uses logistic regression. The data is repre-
sented as a matrix X with n examples (rows) and k features
(columns). Each row has a corresponding target value, 1 for
a player win 0 for a player loss, shown in the column vec-
tor Y . The logistic regression algorithm takes X and Y and

gives a column vector K of k weights such that

X ·K = Y ′

T (g(Y ′)) ≈ Y

g(s) =
1

1 + e−s

Y ′ predicts Y and the weights K can be used to predict
new targets given new examples by applying the weights to
the features as a linear combination and then putting those
sums through a sigmoid function (g). The result is a re-
sponse value for each example, i.e., a real number between
0 and 1 that can be thresholded (e.g., T = Heaviside step
function) to act as a prediction for the new examples.

3 Data
For our data set, we used a collection of replays col-
lected by Gabriel Synnaeve (Synnaeve and Bessiere 2012).
Since professional tournaments usually only release videos
of matches and not the replay files themselves, the
replays were taken from amateur ladders (GosuGamer
(www.gosugamers.net), ICCUP (iccup.com/en/starcraft),
and TeamLiquid (www.teamliquid.net)). Synnaeve et al. re-
leased both the replay files themselves and parsed text
files (http://emotion.inrialpes.fr/people/synnaeve/), but we
decided to write our own parser (github.com/toBeRevealed),
because of the specific nature of our task and to reduce the
possible sources of error. Synnaeve et al. collected ∼8000
replays of all different faction match-ups, but we decided to
focus on just the ∼400 Protoss versus Protoss matches be-
cause the Protoss faction is the most popular faction among
bots and our in-house StarCraft bot plays Protoss.

We wrote our replay parser in C++ and it uses BWAPI
to extract information from replay file which use a compact
representation that needs to be interpreted by the StarCraft
engine itself. BWAPI then lets one inject a program like our
parser into the StarCraft process. The parser outputs two text
files: one with feature values for every player and one with
information about the different battles that happened. The
first file also includes information about the end of the game,
including information about who won the game (which is
not always available from the replays) and the final game
score, which is computed by the StarCraft game engine. The
exact way that the game score is computed is obfuscated by
the engine, and the score could not be computed for the op-
ponent in a real game, because of the imperfect information
nature of StarCraft, so the game score itself is not a viable
feature. In the first file, feature values are extracted for each
player according to some period of frames, which is an ad-
justable parameter in the program.

Battles
Our technique for identifying battles, as shown by Algo-
rithm 1, is very similar to one presented in (Synnaeve and
Bessiere 2012). The main difference is what information
is logged. Synnaeve et al. were concerned with analyz-
ing army compositions, but we want to be able to actually
recreate the battles (the details of which are explained in
Section 4). In Algorithm 1, ON ATTACK is function that

Algorithm 1 Technique for extracting battles from replays.
Note that UPDATE is called every frame and ON ATTACK
is called when a unit is found to be in an attacking state.

Global: List CurrentBattles = []
Global Output: List Battles = []
function ON ATTACK(Unit u)

if u in radius of a current battle then
return

end if
U ← Units in MIN RAD of u.position
B ← Buildings in MIN RAD of u.position
if U does not contain Units from both players then

return
end if
Battle b
b.units← U ∪ B
UPDATE BATTLE(b, U)
CurrentBattles.add(b)

end function
function UPDATE

for all b in CurrentBattles do
U ← getUnitsInRadius(b.center, b.radius)
if U = ∅ then

end(b); continue
end if
b.units← U . also log unit info
if ∃ u ∈ U such that ATTACK(u) then

UPDATE BATTLE(b,U)
end if
if b.timestamp−CurrentTime() ≥ ∆ then

end(b); continue;
end if

end for
move ended battles from CurrentBattles to Battles

end function

gets called when a unit is executing an attack (during a re-
play) and UPDATE is a function called every frame. All
ON ATTACK instances for a single frame are called before
UPDATE is called. When a new unit is encountered in both
the ON ATTACK and UPDATE functions, the unit’s abso-
lute position, health, shield, and the time the unit entered
the battle are recorded. When the battle is found to be over
(which happens when one side is out of units or no attack ac-
tions have happened for some threshold time ∆), the health
and shields are recorded for each unit, as well as the time
that the battle ended at. Another significant difference is that
we start battles based on attacks actions happening (whereas
Synnaeve et al. start battles only when a unit is destroyed).

Preprocessing
From viewing the replays themselves, it became apparent
that some of the replays would be problematic for our type of
analysis. Some games contained endings where the players
would appear to be away from their computers, or where
one player was obviously winning but appeared to give up.
Such discrepancies could cause mis-labelling of our data (in
terms of who won each game), so we chose to filter the data

Algorithm 1 continued
function UPDATE BATTLE(Battle b, UnitSet U)

center ← average(u.position : u ∈ U)
maxRad← 0
for u ∈ U do

rad← distance(u, center) + range(u)
if rad ≥maxRad then

maxRad← rad
end if

end for
b.center← center
b.radius← maxRad
b.timestamp← CurrentTime()

end function

Games Number of Games
Original 447

Kept 391
No Status Close Score 30

Conflict Type A 24
Conflict Type B 1

Corrupt 1

Table 1: A breakdown of how many games were discarded

based on a set of rules. Table 1 shows how many replays
were discarded in each step.

When extracting the features from the replays BWAPI
has two flags (of interest) that can be true or false for each
player: isWinner and playerLeft. If isWinner is present the
game is kept and that player is marked as the winner. If
isWinner is not present, then two things are considered: the
playerLeft flags (which come with a time-stamp denoting
when the player left) and the game score. The game score is
a positive number computed by the StarCraft engine. If nei-
ther player has a playerLeft flag, then we look at the game
score. If the game score is close (determined by an arbi-
trary threshold; for this work, we used a value of 5000), the
game is discarded. We chose a relatively large threshold be-
cause we want to be confident that the player we picked to
be the winner is actually the winner. Otherwise, the player
with the larger score is selected as the winner. If there is
one playerLeft flag, the opposite player is taken as the win-
ner, unless that conflicts with the winner as suggested by the
game score, in which case the game is discarded (Conflict
Type A). If there are two playerLeft flags, the player that
left second is taken as the winner unless that conflicts with
the winner as suggested by the game score, in which case
the game is discarded (Conflict Type B). If a replay file was
corrupted (i.e., caused StarCraft to crash at some point) we
discarded it as well.

4 Features
After the replays are parsed and preprocessed, we represent
the data in the form of a machine learning problem. For our
matrix X the examples come from the sample states from
the games in the Protoss versus Protoss data set. States were
taken every 10 seconds for each replay, so each game gave

several examples. Since the match-up is symmetric, we let
the features be in terms of the difference between feature
values for each player and put in two examples for every
game state. For example, if player A has DA Dragoons and
player B has DB Dragoons and player A wins the game,
then one example will haveDA−DB as the number of Dra-
goons and a target value of 1 and the other example will have
DB−DA as the number of Dragoons and a target value of 0.
This ensures that the number of 1s and 0s in Y is equal and
the learned model is not biased towards either target value.

Economic
Economic features are features that relate to a player’s re-
sources. In StarCraft there are two types of resources, min-
erals and gas. For both resource types we include the cur-
rent amount that the player has Rcur (unspent). A forum
post on TeamLiquid (www.teamliquid.net/forum/starcraft-
2/266019-do-you-macro-like-a-pro) showed that the ladder
StarCraft 2 players were in was correlated with both average
unspent resources U and income I . We included both quan-
tities as features in our model. Average unspent resources
is computed by taking the current resources a player has at
each frame, and dividing that total by the number of frames.
Income is a rate of the in-flow of resources and can be com-
puted as simply the total resources Rtot divided by the time
passed (T). We stress that it is important that these features
are included together because an ideal player will keep their
unspent resources low (showing that they spend quickly) and
keep their income high (showing that they have a good econ-
omy).

U = (
∑
t≤T

Rcur)/T

I =
Rtot
T

Military
Every unit and building type has its own feature in the
model. As discussed previously, these features are differ-
ences between the counts of that unit type for each player.
Features for the Scarab and Interceptor unit types were not
included, as those units are used as ammo by Reavers and
Carriers respectively and the information gained by their ex-
istence would already be captured by the existence of the
units that produce them. In an earlier version of the model
features for research and upgrades were included as well,
but we decided to remove them from the final version due to
scarcity and the balanced nature of the match-up. The set of
all unit count features is UC.

Map Coverage
We chose a simple way of computing map coverage, as a
way of approximating the amount of the map that is visible
to each player. Each map is divided into a grid, where tiles
contain 4 build tiles (build tiles are the largest in-game tile).
A tile is considered occupied by a player if the player has
a unit on the tile. Tiles can be occupied by both players.
Our map coverage score is then a ratio of the total number
of occupied tiles to the total number of tiles. For the feature

included in the final version of the model, we just count units
(not buildings) and only consider tiles that have walkable
space (so the score is map specific). This score can then be
computed for each player at a given state, and the included
feature, MC, is the difference of those two scores. If P is
the set of walkable tiles, then for player p MC can also be
formalized as:

MC(p) =
∑
pos∈P

f(pos, p)

f(pos, p) =

{
1 if pos is occupied by p
0 otherwise

Micro Skill
Skill is an abstract concept and different aspects of a player’s
skill can be seen by observing different aspects of a game.
The combat portion of the game (also known as micro-
managing) takes a very specific type of skill. We devised
a feature to capture the skill of a player at the micro por-
tion of the game. The feature makes use of the ideas in
(Davidson, Archibald, and Bowling 2013), where a scripted
player is used as a baseline to compare a player’s perfor-
mance against. We grab battles (as shown in Section 3), play
them out using a StarCraft battle simulator (SparCraft, de-
veloped by David Churchill (code.google.com/p/sparcraft),
and compare the results of the scripts to the real battle out-
comes. We use a version of SparCraft edited to support
buildings as obstacles, as well as units entering the battle
at varying times.

We used a scripted player as the baseline. For this work,
we use the NOK-AV (No-OverKill-Attack-Value) script and
a version of the LTD2 evaluation function to get a value from
a battle (Churchill, Saffidine, and Buro 2012). NOK-AV has
units attack an enemy in range with the highest damage-per-
frame / hit-points, and has units switch targets if the current
target has been assigned a lethal amount of damage already.
Note that although we include buildings in the battles, build-
ings are not acknowledged explicitly by the script policy,
and thus are just used as obstacles.

We need a way of comparing the outcome of the real battle
to that of the baseline, in a way that can be used as a feature
in our model. For a single player, with a set of units U ,
the Life-Time-Damage-2 (LTD2) (Kovarsky and Buro 2005)
score is:

LTD2start(U) =
∑
u∈U

√
HP(u) · DMG(u)

LTD2 is an evaluation function which favours having mul-
tiple units to single units given equal summed health and
rewards keeping units alive that can deal greater damage
quicker. LTD2 is sufficient for calculating the army value
at the end of the battle, but since units can enter the battle
at varying times, we need a way of weighting the value of
each unit. Let T be the length of the battle and st(u) be the
time unit u entered the battle (which can take values from 0
to T). Then:

LTD2end(U) =
∑
u∈U

T − st(u)

T
·
√

HP(u) · DMG(u)

Let one of the players be the player (P) and the other to
be the opponent (O). Which player is which is arbitrary, as
there are two examples for each state (where both possible
assignments of player and opponent are represented). Let
Pout and Ps be the player’s units at the end and the start of
the battle respectively, andOout andOs to be the opponent’s
units at the end and the start of the battle respectively. The
value for the battle is then:

V P = (LTD2end(Pout)− LTD2end(Oout))
− (LTD2start(Ps)− LTD2start(Os))

To get a baseline value for the battle, we take the initial army
configuration for each player (including unit positions and
health) and play out the battle in the simulator until time T
has passed. At that point, let Pβ and Oβ be the remaining
units for both player and opponent respectively. Then the
value given by the baseline player is:

V β = (LTD2end(Pβ)− LTD2end(Oβ))

− (LTD2start(Ps)− LTD2start(Os))

For a particular state in a game where there have
been n battles with values V P1 , V

P
2 , . . . , V

P
i , . . . , V

P
n and

V β1 , V
β
2 , . . . , V

β
i , . . . , V

β
n , we can get a total battle score (β)

by:

βtot =

n∑
i=1

(V Pi − V
β
i)

βavg =
βtot
n

Note that βtot the (LTD2start(Ps) − LTD2start(Os)) parts
for each Vi will cancel out. They are left in the definitions
above because we can also represent the feature as a baseline
control variate (Davidson, Archibald, and Bowling 2013):

βvar =
1

n

n∑
i=1

(V Pi −
Ĉov[V Pi , V

β
i]

V̂ar[V Pi]
· V βi)

We then use βvar as a feature in our model. We also devise
βavg and βvar as estimates of a player’s skill at the micro
game. Although we do not explore the idea experimentally
here, we maintain that βvar could be used in an RTS bot’s
decision making process: for high values (showing that op-
ponent is skilled) the bot would be conservative about which
battles it engaged in, and for low values (showing that the
opponent is not skilled) the bot would take more risks in
hopes to exploit the opponent’s poor micro abilities.

Macro Skill
In contrast to the micro game, the macro game refers to
high-level decision making, usually affecting economy and
unit production. The macro game is much more complicated
(and it encompasses the micro game) and we do not have a
scripted player for the macro game, so the baseline approach
to skill estimation does not apply. Instead, we have identi-
fied features that suggest how good a player is at managing
the macro game. The first, inspired by (Belcher, Ekins, and
Wang 2013) is the number of frames that supply is maxed

out for SF . Supply is an in-game cap on how many units a
player can build. They must construct additional structures
to increase the supply cap (Smax). Thus, if a player has a
large amount of frames where their supply Scur was maxed
out, it shows that the player is bad at planning ahead.

SF =
∑
t≤T

f(t)

f(t) =

{
1 if Scur = Smax at time t
0 otherwise

The other feature is the number of idle production facil-
ities PF . A production facility is any structure that pro-
duces units and if a player has a large amount of produc-
tion facilities which are not actively producing anything, it
suggests that the player is poor at managing their unit pro-
duction. A third feature is the number of units a player
has queued Q. Production facilities have queues that units
can be loaded into, and it is considered skillful to keep the
queues small (since a player must pay for the unit the mo-
ment it is queued). However, both PF andQ could never be
used as part of a state evaluation tool, since that information
is not known even with a perfect information assumption.

5 Evaluation and Results
For the purposes of experimentation, we did 10-fold cross
validation on games. Recall that our example matrix X is
made up of examples from game states from different games
at different times. If we permuted all the examples and did
cross validation we would be training and testing on states
that are from the same games (which introduces a bias). So
instead we chose to split the games into 10 different folds.
When we leave a particular fold out for testing, we are leav-
ing out all the states that were taken from the games in that
fold. So for each fold, logistic regression is ran on all the
other folds giving a set of feature weights. Those feature
weights can then be used as the weights for a linear combi-
nation of the features of each of the examples in the testing
fold and then putting those sums through a squashing func-
tion (sigmoid function). The result is a response value for
each example i.e., a real number between 0 and 1 that acts
as a prediction for the test examples.

We report two different metrics for showing the quality of
our model. The first is accuracy, which is just the proportion
of correct predictions (on the test folds) to the total number
of examples. Predictions are taken from the response values
by thresholding them. We used a threshold value of 0.5,
which is standard. The second is the average log-likelihood
(Glickman 1999). For a single test example, whose actual
target value is given by y and whose response value is r, the
log-likelihood is defined as follows:

L(y, r) = y · log(r) + (1− y) · log(1− r)

We report the average log-likelihood across examples.
Values closer to zero indicate a better fit.

Through experimentation we want to answer the follow-
ing questions: 1) Can our model be used to accurately pre-
dict game outcomes? 2) Does adding the skill features to our

Features 0-5 5-10 10-15 15-
Rcur,I ,U 54.42 (-0.686) 57.76 (-0.672) 62.98 (-0.647) 64.17 (-0.625)
UC 51.96 (-0.712) 57.84 (-0.682) 66.67 (-0.705) 66.46 (-0.644)
MC 51.27 (-0.693) 55.20 (-0.685) 61.45 (-0.657) 71.39 (-0.561)
βvar 50.23 (-0.693) 53.25 (-0.690) 55.09 (-0.690) 52.82 (-0.690)

SF , PF , Q 51.26 (-0.695) 49.96 (-0.695) 51.75 (-0.694) 54.97 (-0.709)
A 53.91 (-0.708) 58.81 (-0.680) 66.36 (-0.712) 69.22 (-0.613)
B 54.05 (-0.708) 58.66 (-0.681) 66.44 (-0.712) 69.87 (-0.608)
C 53.81 (-0.710) 58.72 (-0.681) 66.41 (-0.708) 72.59 (-0.587)

Table 2: Individual feature (group) and feature set prediction performance reported as accuracy(%) (avg L) in each game
time period; A = economic/military features Rcur, I, U, UC; B = A + map control feature MC; C = B + skill features
βvar, SF, PF,Q

Feature Set 0-5 5-10 10-15 15-20
Rcur,I ,U 53.75 (-0.6875) 58.85 (-0.6708) 62.82 (-0.6510) 60.23 (-0.6562)
UC 52.03 (-0.6936) 58.43 (-0.6735) 65.76 (-0.6329) 63.96 (-0.6516)
MC 51.27 (-0.6943) 55.20 (-0.6872) 61.45 (-0.6588) 64.02 (-0.6385)
βvar 50.23 (-0.6931) 53.25 (-0.6896) 55.24 (-0.6899) 56.14 (-0.6868)

SF , PF , Q 52.02 (-0.6925) 50.74 (-0.6939) 52.82 (-0.6916) 55.21 (-0.6857)
A 53.19 (-0.6917) 58.74 (-0.6726) 65.28 (-0.6367) 63.58 (-0.6612)
B 52.60 (-0.6916) 58.56 (-0.6727) 64.89 (-0.6377) 63.99 (-0.6617)
C 52.73 (-0.6914) 58.70 (-0.6669) 65.77 (-0.6267) 65.23 (-0.6510)

Table 3: Feature set prediction performance [accuracy(%) (avg L)]; If time interval is [k,l] training is done on examples in
[k,∞) and tested on examples in [k,l]

Time (min) Games Examples
0-5 391 23418

5-10 386 22616
10-15 364 19836
15-20 289 14996

20- 211 31060

Table 4: A breakdown of how examples were split by time-
stamp

model improve the accuracy? 3) What times during a game
is our model most applicable to?

To explore these questions we tested a few different fea-
ture subsets on examples from different times in the games.
Especially in the early game, result prediction is a very noisy
problem because there is little evidence in the early game as
to who is going to win because the important events of the
game have not happened yet. We decided to experiment by
running separate cross validation tests just using examples
that fall within certain time intervals. For time intervals, we
use 5 minute stretches and just include any example with a
time-stamp greater than 15 minutes together. Note that not
all games are the same length, so for the later time intervals
not all games are included. 5 minute interval lengths were
chosen because we wanted to have a reasonable amount of
examples in each interval while still doing a fine-grained
analysis. Table 4 shows how examples were divided based
on time-stamps.

Table 2 shows the performance of using the feature sets
individually. The map coverage feature MC preforms very
well in the late game because a good MC value near the
end of the game is the result of having a good economy ear-

lier in the game and having a strong army. In general, pre-
diction rates improve in the later game stages. βvar has a
drop in accuracy in the late game because many of the bat-
tles at that stage of the game include unit types which our
simulator does not support and so late game battles (which
are important to the game outcome) are ignored. Table 2
also shows feature sets being added, culminating in the full
model in line C. Notice that the skill features make a differ-
ence in the late game, due to there being differences in skill
being more noticeable as the game progresses (SF takes to
grow, as players need to make mistakes for it to be useful).
When choosing intervals we had problems with overfitting.
UC especially is prone to overfitting if the training set is
too small. Table 3 shows how we tested with larger training
sets to avoid overfitting. Results are overall a little lower be-
cause the early intervals are trained with all or most of the
timestamps, and examples from 20- are never tested on.

6 Conclusions and Future Work
Our results show that prediction of the game winner in an
RTS game domain is possible, although the problem is noisy.
Prediction is most promising in later game stages. This gives
hope for quick evaluation in future search algorithms. Also
promising is the use of a baseline to estimate player skill,
although work is still needed to improve its performance as
a state evaluator. Future work includes extending our sim-
ulator to support more unit types, improving our baseline
player to get a closer player skill estimate, reproducing our
experiments on a larger data set, and altering our model to
work with the imperfect information game.

References
Avontuur, T.; Spronck, P.; and van Zaanen, M. 2013. Player
skill modeling in starcraft ii. In Ninth Artificial Intelligence
and Interactive Digital Entertainment Conference.
Belcher, J.; Ekins, D.; and Wang, A. 2013. Star-
craft 2 oracle. University of Utah CS6350 Project.
http://www.eng.utah.edu/ cs5350/ucml2013/proceedings.html.
Buro, M., and Churchill, D. 2012. Real-time strategy game
competitions. AI Magazine 33(3):106–108.
Buro, M. 2003. Real-time strategy games: A new AI re-
search challenge. In IJCAI 2003, 1534–1535. International
Joint Conferences on Artificial Intelligence.
Churchill, D., and Buro, M. 2013. Portfolio greedy search
and simulation for large-scale combat in StarCraft. In IEEE
Conference on Computational Intelligence in Games (CIG),
1–8. IEEE.
Churchill, D.; Saffidine, A.; and Buro, M. 2012. Fast heuris-
tic search for RTS game combat scenarios. In AI and In-
teractive Digital Entertainment Conference, AIIDE (AAAI),
112–117.
Davidson, J.; Archibald, C.; and Bowling, M. 2013. Base-
line: practical control variates for agent evaluation in zero-
sum domains. In Proceedings of the 2013 international
conference on Autonomous agents and multi-agent sys-
tems, 1005–1012. International Foundation for Autonomous
Agents and Multiagent Systems.
Dereszynski, E.; Hostetler, J.; Fern, A.; Hoang, T. D. T.-
T.; and Udarbe, M. 2011. Learning probabilistic behavior
models in real-time strategy games. In AAAI., ed., Artificial
Intelligence and Interactive Digital Entertainment (AIIDE).
Glickman, M. E. 1999. Parameter estimation in large dy-
namic paired comparison experiments. Journal of the Royal
Statistical Society: Series C (Applied Statistics) 48(3):377–
394.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. Advances in Artificial Intelligence
66–78.
Ontañón, S.; Synnaeve, G.; Uriarte, A.; Richoux, F.;
Churchill, D.; and Preuss, M. 2013. A survey of real-
time strategy game AI research and competition in StarCraft.
TCIAIG.
Ontañón, S. 2012. Experiments with game tree search in
real-time strategy games. arXiv preprint arXiv:1208.1940.
Schadd, F.; Bakkes, S.; and Spronck, P. 2007. Opponent
modeling in real-time strategy games. In GAMEON, 61–70.
Synnaeve, G., and Bessière, P. 2011. A Bayesian model
for plan recognition in RTS games applied to StarCraft.
In AAAI., ed., Proceedings of the Seventh Artificial Intel-
ligence and Interactive Digital Entertainment Conference
(AIIDE 2011), Proceedings of AIIDE, 79–84.
Synnaeve, G., and Bessiere, P. 2012. A dataset for StarCraft
AI & an example of armies clustering. In AIIDE Workshop
on AI in Adversarial Real-time games 2012.
Weber, B. G., and Mateas, M. 2009. A data mining ap-
proach to strategy prediction. In IEEE Symposium on Com-
putational Intelligence and Games (CIG).

Yang, P.; Harrison, B.; and Roberts, D. L. 2014. Identifying
patterns in combat that are predictive of success in moba
games. Proceedings of Foundations of Digital Games 2014
to appear.

