
IEEE INTERNET OF THINGS JOURNAL 1

Online Multiple-Pedestrian Tracking with
Detection-Pair-Based Graph Convolutional

Networks
Weijiang Feng, Long Lan (Member, IEEE), Michael Buro, and Zhigang Luo (Member, IEEE)

Abstract—The typical Internet of Things application, unat-
tended driving systems, will need the ability to recognize relevant
traffic participants and detect dangerous situations ahead of time.
An important component of these systems is one that is able to
distinguish pedestrians and track their motion to make intelligent
driving decisions. This paper develops a high accuracy multiple
pedestrian tracking algorithm which is vital for intelligent trans-
portation. Here, we use the off-the-shelf detectors and explore
the benefits of modeling pedestrian interactions, such as the
interaction of two pedestrians simultaneously matched to two
pedestrians in another frame, for robust detection association.
Explicitly studying interactions is non-trivial. Previous works
often manually selected interacting detections (or “tracklets”) to
simplify the association process. In this paper, we propose a novel
association method based on Deep Graph Convolutional Affinity
Networks (DGCANs) and extend detection-level interactions to
the association-level, which treats a potential association of a
detection pair as a node in the graph, and explicitly modeling
the interactions among potential associations. Specifically, with
the novel node, two corresponding edges are readily designed
to model the compatible and colliding interactions between
related associations. Our proposed method, by redefining nodes
and edges, enables us to blend sufficient interaction cues from
appearance and motion, and learns a robust affinity measure
in an end-to-end fashion. Using the Hungarian algorithm as an
online tracker, our method archives state-of-the-art performance
on benchmark datasets 2D MOT15, MOT16, and MOT17.

Index Terms—multiple pedestrian tracking, graph convolu-
tional network, online tracking, intelligent transportation

I. INTRODUCTION

INTERNET of Things (IoT) is a smart network that provides
connections among nearly everything around us to enable a

vast number of applications. With the advance of IoT, massive
number of IoT devices (sensors, processors, actuators, etc.)

This work was partially supported by the National Natural Science Foun-
dation of China (No. 61906210), National Grand R&D Plan (Grant No.
2020AAA0103501). Corresponding author: Long Lan.

W. Feng is with The PLA Information Engineering University, Zhengzhou
450001, China and College of Computer Science and Technology, National
University of Defense Technology, Changsha 410073, China (email: fengwei-
jiang14@nudt.edu.cn).

L. Lan is with Institute for Quantum Information & State Key Laboratory of
High Performance Computing, College of Computer Science and Technology,
National University of Defense Technology, Changsha 410073, China (email:
long.lan@nudt.edu.cn).

Z. Luo is with College of Computer Science and Technology, Na-
tional University of Defense Technology, Changsha 410073, China (email:
zgluo@nudt.edu.cn).

M. Buro is with Department of Computing Science, University of Alberta,
Edmonton, Alberta, T6G 2E8, Canada (email: mburo@ualberta.ca).

are deployed to enable the monitoring and manipulation of
things under minor or no human intervention. Intelligent urban
surveillance systems for smart cities, and unattended driving
systems for smart transportation are typical IoT applications
that both involve multiple pedestrian tracking as the key
technology. Here is an example of the usage of multiple
pedestrian tracking for an unattended driving system: self-
driving cars for smart transportation need to react to external
factors in real-time. The moving pedestrians always bring
considerable uncertainty to the autonomous vehicle system.
If a self-driving car can track the trajectories of moving
pedestrians on the road, it will perceive both normal and
sudden movements of its surroundings, and take proper actions
accordingly. Therefore, developing a high accuracy multiple
pedestrian tracking algorithm for one of the typical IoT
applications, i.e., smart transportation, is important. Multi-
pedestrian tracking, a very important visual perception and
analysis technology, will provide a more comprehensive and
accurate scene understanding and certainly boost the smartness
and advance of IoT.

Multiple-pedestrian tracking aims at estimating the locations
of all pedestrians in a scene and maintaining their identities
across consecutive frames to generate their trajectories. Recent
advances in object detection [1], [2] make it possible to gener-
ate high-quality detection responses of pedestrians in the form
of bounding boxes. Using these bounding boxes, the current
predominant methods follow the paradigm of “tracking-by-
detection”, which studies how to associate bounding boxes
in different frames to produce a complete trajectory for each
individual. Through this kind of data association formulation,
the multiple-pedestrian tracking community has made signif-
icant progress. However, real world applications face many
difficulties including frequent object occlusions, interactions
among objects, missing or inaccurate detections, and false
positive detections. Therefore, the multi-pedestrian tracking
task is still challenging.

Depending on the frame processing method, existing
multiple-pedestrian tracking methods can be categorized into
online and offline methods. Online methods [3]–[6] only uti-
lize the current and previous frame, which makes them suitable
for real-time tasks. However, due to their incremental nature,
they are prone to identity switching, especially in environments
in which pedestrians frequently interact with each other. On
the other hand, offline methods [7]–[11] can analyze the

Copyright ©2022 IEEE. Personal use of this material is permitted. However, permission to use this material for
any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

2 IEEE INTERNET OF THINGS JOURNAL

entire frame sequence, and therefore have the opportunity to
perform better than online methods. However, the more global
optimization task is often computational expensive and not
suitable for time-critical applications. Therefore, one current
research focus is on reducing identity switches in online
tracking systems.

A typical online multiple-pedestrian tracking pipeline is
shown in Fig. 1(a). Assume that there are two detections d1, d2
in frame t and two detections d3, d4 in frame t + 1, where
d1, d4 share the same identity, as to d2 and d3. The first step
is to generate all pairs containing one detection dit in frame
t and one detection djt+1 in frame t + 1. (In this paper, we
call a pair of detections from two different frames a potential
association. We use detection-detection pair and potential
association interchangeably. If the two detections of a potential
association share the same identity, the potential association is
true, otherwise it is false.) In the second step, each detection-
detection pair (dit, d

j
t+1) is fed into a feature extraction model,

such as a Siamese Convolutional Neural Network [12], to
compute feature representations of the detected pedestrians.
The third step is estimating the affinity s(dit, d

j
t+1) of every

potential association based on their individual representations,
e.g., by applying the cosine-similarity between the represen-
tation vectors. The resulting similarity matrix can then be fed
into a bipartite matching algorithm, such as the Hungarian
method [13], to determine which potential association is true.
This online multiple-pedestrian tracking computation pipeline
is easy to implement and has achieved competitive tracking
performance [14].

(b)(a)

p1 p2

p3 p4

Individual

Representation

Similarity score of

detection pairs

d1 d2

d3 d4

Graph Representation

Similarity score of edges

of graph

Graph Representation

Similarity score of nodes

of graph

(c)

collision edge

of associations

compatible edge

of associations

normal edge

of detections

d3
d4

d1

d2

t

t+1

Fig. 1. Illustration of three multiple-pedestrian tracking pipelines based
on two adjacent image frames with provided detection responses (shown
on the left). (a) The pipeline used by conventional methods in which the
pairwise interactions between different detection-detection pairs are ignored.
(b) Previous graph-based representation model that represents detections as
nodes and encodes interactions between detections. (c) Our proposed method
that represents potential associations as nodes. Interactions between different
detection-detection pairs, including compatible interactions (green edges) and
collision interactions (red edges), are incorporated in the graph representation
to allow more robust and accurate affinity estimation.

Interaction information among detection-detection pairs has
been shown to be beneficial in robust affinity estimation [15],
[16]. An interaction between two potential associations may
be compatible, meaning that both potential associations can be
true associations, such as the interaction between associations
p2 and p3, and the interaction between associations p1 and
p4 in the left sub-figure of Fig 1; it may also be mutually
exclusive (or conflicting), meaning that at most one of the

two potential associations can be true, such as the interaction
between associations p1 and p2, and the interaction between
associations p3 and p4 in the left sub-figure of Fig 1. Associa-
tions p2 and p3 are similar in the sense that the two detections
of each association share the same identity, i.e., detections d1t
and d4t+1 of association p2 share the same identity, detections
d2t and d3t+1 of association p3 share the same identity as
well. Besides, associations p1 and p4 are similar in the sense
that the two detections of each association have different
identities, i.e., detections d1t and d3t+1 of association p1 have
different identities, detections d2t and d4t+1 of association p4
have different identities as well. As a result, both the two
associations connected by a compatible interaction should have
high similarity scores (e.g., both associations p2 and p3 should
have high similarity scores) or low similarity scores (e.g., both
associations p1 and p4 should have low similarity scores).
Thus, the similarity score of each of the two compatible
associations can be inferred from each other, and we can learn
better similarity scores for the two compatible associations
by utilizing the interaction information between them. On the
contrary, associations p1 and p2 are conflicting, i.e., at most
one of these two associations can have a high similarity score,
since at most one detections at frame t+ 1 can be associated
to the detection d1t . The high similarity score of association
p1 indicates that we should have a low similarity score for
association p2, and vice versa. Thus we can estimate better
similarity scores for conflicting associations by taking their
mutually exclusive interaction information into consideration.

However, conventional methods only estimate the affinity of
potential associations of detection-detection pairs individually,
and ignore the pairwise interactions among detection-detection
pairs. For instance, when we estimate the affinity between
detection d1t in frame t and detection d4t+1 in frame t + 1,
conventional methods only consider the single (d1t , d

4
t+1)

pair. The interactions among detection-detection pairs, like
the compatible interaction between (d1t , d

4
t+1) and (d2t , d

3
t+1),

colliding interaction between (d1t , d
4
t+1) and (d1t , d

3
t+1), and

the colliding interaction between (d1t , d
4
t+1) and (d2t , d

4
t+1), are

ignored. In this case, some true associations (e.g., associations
of two detections from the same pedestrian that have different
pose, orientation, illumination, etc.) may have smaller simi-
larity scores than some false associations (e.g., associations
of two detections from different pedestrians that have similar
appearance and are close to each other), making it difficult for
the bipartite matching algorithm to find good associations.

Recently, researchers have tried to address the above prob-
lem using graph neural networks (GNNs), since GNNs pro-
vide a natural way of modeling the associations of separate
detections. For example, Brasó et al. [9] relate MOT to the
classical network flow framework. They treat each detection
as a node in a graph, and each pair of detections as an
edge of the graph. Binary flow variables for every edge in
the graph are predicted by a novel graph message-passing
network that is able to capture the graph structure of the MOT
problem. However, as shown in Fig. 1(b), these methods regard
detections as nodes and potential associations of detections as
edges, making it difficult to explicitly explore the interactions
between associations of pedestrians. The definition of nodes

FENG et al.: ONLINE MULTIPLE-PEDESTRIAN TRACKING WITH DETECTION-PAIR-BASED GRAPH CONVOLUTIONAL NETWORKS 3

and edges in all aforementioned methods only allows them
to consider the association between two detections implicitly
through graph operations.

Inspired by the importance of interactions among detection-
detection pairs and the limitation of previous graph repre-
sentation models, in this paper we propose to utilize the
graph convolutional network (GCN), a kind of GNN, to
explicitly encode the interactions between potential associ-
ations of pedestrian-pedestrian pairs in a learning manner.
GCNs process graph-structured data—generalizing CNNs. In
GCNs, the representation of a node is correlated with those
of its neighbors by the graph convolution operation. Laplacian
smoothing graph convolution enforces the features of nodes to
be similar to those of their neighbors, while Laplacian sharp-
ening graph convolution pushes the features of nodes away
from those of their neighbors [17]. As shown in Fig. 1(c), by
considering each association pi as a node in a graph and then
separately computing compatible edges and colliding edges,
both the compatible and the collision interactions among these
associations are naturally encoded by graph convolution for the
purpose of affinity estimation.

Different from previous GNN based models which take
detections as nodes and potential associations as edges of a
graph, our proposed method takes the potential associations as
nodes and potential interactions among potential associations
as edges, i.e., our method takes the ‘edges’ of previous GNN
based models as ‘nodes’ of our graph, and explicitly encode
the interaction information among detection-detection pairs
into the edges of our graph, making our model better utilize
the interaction information among detection-detection pairs,
such as compatible and mutually exclusive interaction infor-
mation. Besides, the edges of previous GNN based models
are homogeneous, meaning that they only consider one kind
of interaction between detections. However, the edges of our
proposed graph representation model have two different types,
and therefore we consider both compatible interaction and
mutually exclusive interaction between associations through
Laplacian smoothing operation and Laplacian sharpening op-
eration, respectively.

Specifically, in this paper we design a novel Deep Graph
Convolutional Affinity Network (DGCAN) for multiple-
pedestrian tracking. A DGCAN jointly learns the pedestrian
representation and the affinity in end-to-end fashion. It utilizes
the Laplacian smoothing graph convolution with compatible
edges to account for compatible interactions among associa-
tions of detections from two different frames and applies the
Laplacian sharpening graph convolution to collision edges to
account for mutually exclusive interactions. Both appearance
features and motion information is encoded in the constructed
graph to encourage discriminative representation of detec-
tions and robust affinity estimation of associations. Based
on this efficient affinity computation network, we associate
pedestrians in the current video frame to the pedestrians
in multiple previous frames to generate reliable trajectories
using the Hungarian method. The proposed online tracking
method achieves state-of-the-art performance on the popular
2D MOT15, MOT16, and MOT17 challenge datasets.

The main contributions of this paper are as follows:

1) We identify a weakness of conventional tracking-by-
detection methods that they fail to sufficiently model the
interactions between detection-detection pairs, and pro-
pose a GCN-based scheme of encoding the compatible
and mutually exclusive interactions between associations
for affinity learning.

2) We formulate a joint learning process of the pedestrian
representation and the affinity based on appearance and
motion. The learning process is performed in an end-to-
end manner that can alleviate the limitation of manual
interaction definitions.

3) Extensive experimental results on benchmarks demon-
strate the superior performance of the proposed tracker
compared to state-of-the-art methods.

The rest of the paper is organized as follows: First, related
work is discussed in more detail. Second, the proposed method
and major contributions are explained. Third, implementation
details, comparisons with state-of-the-art trackers, and ablation
results are presented and discussed. Lastly, we conclude the
paper by summarizing our contributions and describing future
research directions.

II. RELATED WORK

Our work is related to traditional methods that use inter-
actions among pairs of detections and graph neural networks
(GNNs), which we will review in turn.

Traditional methods that use interactions among pairs
of detections: Yang et al. [18] regarded interactive tracklets
as pairwise terms of a Conditional Random Field (CRF)
model and redefined the data association cost. Shi et al. [15]
combined individual temporal energy (the similarity score) of
association hypotheses (i.e., detection-detection pairs) and spa-
tial interaction energy between two association hypotheses into
a unified optimization framework. Lan et al. [16] incorporated
two kinds of pairwise interactions into a quadratic pseudo 0-
1 optimization framework, in which the collision interactions
distinguished the closely positioned similar-looking objects,
and the overlapping interactions (heavily overlapping tracks
that originate from the same objects) suppressed the over-
lapped trackers that were assumed to originate from the same
object. Lan et al. [7] introduced two kinds of edges to explic-
itly model the interactions between tracklets: “close edges” im-
posing physical constraints between two temporally overlap-
ping tracklets and “distant edges” accounting for higher-order
motion and appearance consistency between two temporally
isolated tracklets. Although these methods successfully utilize
the interactions between pedestrian associations, we found that
manually defined interactions limit the performance and using
combination-optimizing methods, such as quadratic pseudo-
Boolean optimization, are computationally expensive.

Graph Neural Networks for Multi-Pedestrian Tracking:
Recently, GNNs have been introduced for multi-pedestrian
tracking in order to incorporate object interactions. Ma et
al. [19] take individual detections as nodes, and use a GNN
to update node features. The updated node features are then
used to compute an adjacency matrix based on their cosine
similarity for data association. MPNTracker [9] exploits the

4 IEEE INTERNET OF THINGS JOURNAL

classical network flow formulation, and model the tracking
problem with an undirected graph where each node represents
a unique detection. They cast the tracking problem into a
binary classification problem over edges, and perform learning
directly with a message passing network (MPN) to account for
global interactions among detections. Li et al. [20] propose to
use two separate GNNs, one for learning appearance features,
and the other for learning motion features. In their graph
networks, they also introduce a global variable to capture the
global relationship among all nodes and edges. Liu et al. [21]
utilized the idea of graph representation and leveraged the
relations among objects to improve robustness of the similarity
model. They regard each object as an anchor and build a
directed local graph, taking both the feature of individual
objects and the relations among objects into account, and
design a graph-matching module for the proposed graph repre-
sentation to alleviate the impact of unreliable relations among
objects. GCNNMatch [22] models each detection as a node
and feasible connections between detections from previous
frame and new detections at the current frame as edges of
a graph. Then it uses a graph convolutional neural network
to update node features, and utilizes Sinkhorn normalization
to enforce bipartite matching constraints. Different from all
the aforementioned GNN based models which take detections
as nodes and potential associations as edges, our proposed
method takes the potential associations as nodes and potential
interactions among potential associations as edges to explicitly
encode the interaction information among detection-detection
pairs.

III. METHOD

Multiple-pedestrian tracking using the tracking-by-detection
paradigm is a challenging problem that involves feature ex-
traction, affinity estimation, and adaptation to changes in the
number of pedestrians. In this work, we jointly model pedes-
trian representation and affinity estimation across two different
frames for online tracking. In conventional approaches, differ-
ent detection-detection pairs are evaluated individually, i.e., the
affinity estimation between a pair of detections does not influ-
ence other pairs. However, the interaction information between
detection-detection pairs is valuable for refining the affinity
estimation for each detection-detection pair. To implement
this idea, we developed a Deep Graph Convolutional network
(GCN)-based Affinity Network (DGCAN), which models the
interaction of associations to improve representation learning
and affinity estimation. As illustrated in Fig. 2, a DGCAN
takes two images It, It+n that are n frames apart and their
corresponding detection sets BBt = (d1t , d

2
t · · · d

p
t), BBt+n =

(d1t+n, d
2
t+n · · · d

q
t+n) as input, and creates a graph with each

node representing a detection-detection pair (dit, d
j
t+n), i ∈

[1, p], j ∈ [1, q]. The DGCAN then computes the similarity
score s(dit, d

j
t+n) for each detection-detection pair by Lapla-

cian smoothing graph convolution using compatible edges
(green edges in Fig. 2, where we only show compatible edges
that link to node (d1t , d

2
t+n), and Laplacian sharpening graph

convolution using colliding edges (a subset marked red in
Fig. 2). The proposed tracker uses the estimated affinities com-
puted by the DGCAN to generate trajectories by associating

pedestrians in the current frame to those in previous frames.
While the proposed model is deployed to track pedestrians
online, we do not strictly limit the considered frames to be
consecutive during training. Instead, we allow them to be n
time-stamps apart to increase the robustness of the proposed
network. Here, n is a random number between 1 and NV ,
where NV is the maximum allowed distance between two
input frames.

A. Graph Convolutional Network Operations

Basic notation. Consider an undirected graph G = (V, E)
with N nodes, a set of edges E , an adjacency matrix A ∈
RN×N , and a degree matrix Dii =

∑
j Aij . The off-diagonal

elements of D are zero. The symmetric graph Laplacian Lsys
and random walk graph Laplacian Lrw are defined by Lsys =

IN −D−
1
2AD−

1
2 and Lrw = IN −D−1A, respectively, where

IN ∈ RN×N denotes an identity matrix. Both Lsys and Lrw
are positive semi-definite matrices.

Propagation rule of GCN. The layer-wise propagation rule
of a typical multi-layer GCN is:

H(l+1) = σ
(
D̃−

1
2 ÃD̃−

1
2H(l)W (l)

)
. (1)

Here, Ã = A+ IN is the adjacency matrix of the undirected
graph G with added self-loops, D̃ii =

∑
j Ãij , W

(l) is a layer-
specific trainable weight matrix, σ(·) denotes an activation
function like ReLU(·) = max(0, ·), H(l) ∈ RN×d is the
activation matrix in the lth layer, and H(0) is the feature matrix
of the input nodes.

Laplacian smoothing. Li et al. [23] showed that the graph
convolution operation in GCNs is actually a special form of
Laplacian smoothing which computes a new representation
of a node as a weighted local average of the node’s and its
neighbors’ values, i.e.:

H(l+1) = (1− γ)H(l) + γD̃−1ÃH(l)

= H(l) − γ(IN − D̃−1Ã)H(l)

= H(l) − γL̃rwH
(l),

(2)

where γ (0 < γ ≤ 1) is a regularization parameter that
balances the importance between the node and its neighbors.
If we set γ = 1 and replace L̃rw with L̃sys, Eq. 2 becomes
H(l+1) = D̃−

1
2 ÃD̃−

1
2H(l) which is identical to the graph

convolution in Eq. 1. Based on this interpretation, Li et al. [23]
explain the reason why GCN works well for semi-supervised
node classification: the smoothing operation of GCN enforces
the features of nodes in the same cluster to be similar, thus
greatly easing the classification task. Inspired by this insight,
we use GCNs to ease the classification of compatible nodes
(i.e., detection-detection pairs) by designing compatible edges
that model compatible interactions.

Laplacian sharpening. If a deep GCN is constructed by
many Laplacian smoothing layers, the output features may
be excessively smoothed, resulting in indistinguishable nodes
[23], which is undesirable. This over-smoothing issue will
make the features of vertices indistinguishable. To alleviate
the undesirable over-smoothing issue, we propose to incorpo-
rate the Laplacian sharpening based graph convolution [17].
Laplacian sharpening, which is the counterpart of Laplacian

FENG et al.: ONLINE MULTIPLE-PEDESTRIAN TRACKING WITH DETECTION-PAIR-BASED GRAPH CONVOLUTIONAL NETWORKS 5

It+n

It

d
t
1 d

t
2 d

t
3

d
t+n
1

dt+n
2 dt+n

3

dt+n
4

(a) Input (f) Output

Deep Graph Convolutional network based Affinity Network

(b) Feature

Encoding

(c) Graph

Construction

(d) Graph

Convolution (e) Bi-partite

Matching

...

...

S(1,1) S(1,5)...

S(3,1) S(3,5)...
(

(

f
2,2

m2,2

f
2,3

m2,3

f
3,1

m3,1

f
3,4

m3,4

Laplacian

smoothing

Laplacian

sharpening

f
1,2

m1,2

f
1,3

m1,3

h
1,2

h
2,3

h
2,2

h
3,1 h

3,4

h
1,3

h
1,2

h
2,3

h
2,2

h
3,1 h

3,4

h
1,3

C
N

N f
t
1

f
t
2

C
N

N

f
t
3

C
N

N

f
t+n
1

C
N

N

f
t+n
2

C
N

N

f
t+n
3

C
N

N

f
t+n

4

C
N

N

Fig. 2. The pipeline of the proposed tracker. The central part is a deep graph convolutional network-based affinity network (b-d) which explores the relationship
information between detection-detection pairs. A pair of n-frame-apart images It, It+n are fed to the network along with the sets of detection responses in
these images. All detections are processed by the same CNN for feature encoding. For graph construction, we take each detection in the first set of detections
and its top K (here K = 2) most similar detections in the second set of detections as detection-detection pairs, and take these detection-detection pairs
as nodes. Then, the Laplacian smoothing graph convolution with compatible edges and Laplacian sharpening graph convolution with colliding edges are
responsible for affinity estimation. We augment the similarity matrix with an extra column to account for pedestrians leaving the scene. Finally, bipartite
matching is performed based on the augmented matching probability matrix to obtain tracking results.

smoothing, encourages the output features of each node to be
distant from the features of centroid of its neighbors. This
property of Laplacian sharpening is exactly desired to deal
with mutually exclusive nodes of our graph. Thus. We in-
corporate mutual exclusion constraints by applying Laplacian
sharpening to colliding edges like so:

H(l+1) = (1 + γ)H(l) − γD−1AH(l)

= H(l) + γ(IN −D−1A)H(l)

= H(l) + γLrwH
(l).

(3)

If we set γ = 1 and replace Lrw with Lsys, Laplacian
sharpening is expressed as

H(l+1) = (2IN −D−
1
2AD−

1
2)H(l). (4)

Since the spectral radius of 2IN − D−
1
2AD−

1
2 is 3 [17],

repeated application of this operator could result in numerical
instability. Following [17], we employ a numerically stable
form of Laplacian sharpening with spectral radius of 1, which
is

H(l+1) = σ
(
D̂−

1
2 ÂD̂−

1
2H(l)W (l)

)
, (5)

where Â = 2IN −A and D̂ = 2IN +D.

B. Feature Encoding

We employ the powerful “feature extraction” sub-network of
DAN [14] to extract a dim1-dimensional appearance feature
descriptor for each detection. The feature extractor passes a
pair of video frames and detection centers through two streams
of convolutional layers, and concatenates features at different
levels of abstraction to generate the final feature description. In
the following, we denote Ft = (f1t , f

2
t · · · f

p
t) ∈ Rdim1×p and

Ft+n = (f1t+n, f
2
t+n · · · f

q
t+n) ∈ Rdim1×q as the collections of

appearance features for two sets of detections, respectively.

C. Graph Construction

In this paper, we take advantage of GCNs to utilize the
interaction information among detection-detection pairs from

two different frames and the relative spatial position informa-
tion between detections in the same frame. We define nodes
and edges of the weighted graph as follows.

Node construction. Node set V consists of nodes vi,j rep-
resenting detection-detection pair (dit, d

j
t+n), with dit ∈ BBt

and djt+n ∈ BBt+n. In order to reduce the computation cost,
we do not take every detection-detection pair

(
dit, d

j
t+n

)
as a

potential association. Instead, for each detection dit ∈ BBt, we
only select its top K (K � q) most similar detections (here
we use the cosine distance of normalized appearance features
of two detections to estimate their similarity) in frame t + n
to construct potential associations. The number of nodes N is
therefore p×K. The appearance feature representation fi,j for
node vi,j is defined as the absolute difference between the ap-
pearance features of dit and djt+n, i.e., fi,j = |f it − f

j
t+n|. We

also take the motion information of the detection-detection pair
(dit, d

j
t+n) into account. Given the bounding box [xit, y

i
t, w

i
t, h

i
t]

of detection dit and [xjt+n, y
j
t+n, w

j
t+n, h

j
t+n] of djt+n, we

project the 4-dimensional vector

[
|xit − x

j
t+n|

wjt+n
,
|yit − y

j
t+n|

hjt+n
,
|wit − w

j
t+n|

wjt+n
,
|hit − h

j
t+n|

hjt+n
]

into a dim2-dimensional vector mi,j by a single-layer fully
connected network. We concatenate batch normalized fi,j and
mi,j to obtain the final feature representation gi,j of node vi,j :

gi,j = [BN(fi,j) || BN(mi,j)] ∈ Rdim1+dim2 . (6)

Edge construction. The adjacency matrix element
A(i1,j1),(i2,j2) of the weighted graph that quantifies the in-
teraction between vi1,j1 and vi2,j2 not only depends on the
similarity between detections di1t and di2t in frame t, but
also on the similarity between detections dj1t+n and dj2t+n
in frame t + n. So we first learn the pairwise relation-
ship At(i1, i2) = φ(f i1t , f

i2
t ; θt) between detections di1t

and di2t with parameters θt, and the pairwise relationship
At+n(j1, j2) = φ(f j1t+n, f

j2
t+n; θt+n) between detections dj1t+n

and dj2t+n with parameters θt+n. The topological structure

6 IEEE INTERNET OF THINGS JOURNAL

between detections in the same frame, which is crucial for
affinity estimation, is incorporated in the pairwise relationship
learning process.

By considering each detection set as a graph with each
detection as its one node, we adopt Delaunay Triangula-
tion, which is a widely adopted strategy to produce sparsely
connected graph, to compute two initial adjacency matrices
At
′, At+n

′ for encoding the relative spatial position informa-
tion of the corresponding detection sets. Note that we do not
consider self-loops, which means that all diagonal elements of
At
′ and At+n′ are zero. Then, we implement φ via a single-

layer network:

At(i1, i2) = φ(f i1t , f
i2
t , At

′; θt)

=
At

′(i1,i2) exp(σ(θTt [f
i1
t ||f

i2
t]))∑p

k=1 At
′(i1,k) exp(σ(θTt [f

i1
t ||fk

t]))
,

(7)

where || denotes concatenation. At+n can be computed anal-
ogously.

Compatible edges. If (i1 6= i2) and (j1 6= j2), nodes vi1,j1
and vi2,j2 are considered compatible (i.e., both nodes can
be classified to 1, meaning that di1t can be connected to
dj1t+n and di2t can be connected to dj2t+n simultaneously).
Intuitively, if the detection response pair i1 and i2 in the n-
th frame has similar relative position with detection pair j1
and j2 in the (n + t)-th frame, the nodes vi1,j1 and vi2,j2
have a larger possibility to both take 1. Thus we define the
element Acomp((i1, j1), (i2, j2)) as the product of At(i1, i2)
and At+n(j1, j2). The compatible edge weight is defined as
follows:

Acomp((i1, j1), (i2, j2)) ={
At(i1, i2) ·At+n(j1, j2), if i1 6= i2 and j1 6= j2;

0, otherwise.
(8)

It can be written in the following matrix form:

Acomp = At ⊗At+n, (9)

where ⊗ denotes the Kronecker product.
Colliding edges. If (i1 = i2) or (j1 = j2), nodes vi1,j1 and

vi2,j2 are mutually exclusive (i.e. at most one node can be
classified to 1, meaning that if di1t is connected to dj1t+n, di2t
cannot be connected to dj2t+n, and vice versa). Our Acoll only
works in the situations of i1 = i2 or j1 = j2. The intuition
is that we heavily punish the situation that two distanced
detections in one frame suddenly merge into an identical
individual in another frame (large punishment value), and relax
the case that two very close detections in one frame may come
from the same pedestrian because of the detector failure and
allow to merge (small punishment value). Thus, we define the
collision edge weight as follows:

Acoll((i1, j1), (i2, j2)) =

At+n(j1, j2), if i1 = i2;

At(i1, i2), if j1 = j2;
0, otherwise.

(10)
It can be written in the following matrix form:

Acoll = Ip ⊗At+n +At ⊗ Iq, (11)

where Ip, Iq are identity matrices of size p and q, respectively.

D. Affinity Estimation via Graph Convolution

After graph construction, we obtain an undirected graph
G = (V, E) with one compatibility adjacency matrix Acomp
and one collision adjacency matrix Acoll. The feature repre-
sentation of each node vi,j is denoted by gi,j , and we write
H(0) as:

H(0) = (g1,1 · · · g1,q, · · · , gp,1 · · · gp,q) ∈ R(dim1+dim2)×(p×q).
(12)

To consider compatible interactions, two Laplacian smooth-
ing layers are stacked to process H(0) according to Eq. 1
with Acomp, resulting in H(1) ∈ Rdim3×(p×q) and H(2) ∈
Rdim4×(p×q), respectively. Then, to also consider mutually
exclusive interactions, we use a Laplacian sharpening layer
to process H(2) according to Eq. 5 with Acoll, producing
H(3) ∈ R1×(p×q). H(3) is then reshaped to obtain similarity
matrix Sinit ∈ Rp×q .

Note that similarity matrix Sinit does not account for
pedestrians leaving the scene. To take this into account, we
append an extra column to Sinit, filled with value η, a DGCAN
hyper-parameter, resulting in matrix Saug ∈ Rp×(q+1), i.e., we
fix the score of a pedestrian leaving a scene to η. If the first q
values in the ith row are smaller than η, then the ith tracked
pedestrian is thought to have left the scene (this is achieved
by applying the row-wise softmax operation described below).

E. Matching Prediction and Loss Function

In the above formulation, the ith (1 ≤ i ≤ p) row of the
augmented matrix Saug associates the ith identity in frame t
to q + 1 identities in frame t+ n, which includes the case in
which the ith identity has left the scene in frame t + n. To
construct a matrix S that indicates the association probabilities
between each pedestrian in frame t and all identities in frame
t+ n we apply a row-wise soft-max operation to Saug:

S(i, j) =
exp(Saug(i, j))∑
k exp(Saug(i, k))

. (13)

In order to train DGCAN, we adopt the cross-entropy loss
function. Let Lt,t+n ∈ {0, 1}p×(q+1) denote the ground truth
bipartite matching solution between two detection sets in
frames t and t+n. Similar to the augmented matrix Saug , the
ground truth matching matrix Lt,t+n contains an extra column,
indicating pedestrians leaving the scene between frame t and
t+ n. With this, the cross-entropy loss is defined as

L = −
∑
i,j

Lt,t+n(i, j) log(S(i, j))
+(1− Lt,t+n(i, j)) log(1− S(i, j))

(14)

F. Confidence-Based Deep Track Association

At each time step t, we are able to efficiently compute
the association probability matrix St−n,t (n ∈ [1, NV]) using
DGCAN. In order to obtain a reliable track-to-detection as-
sociation matrix Sttrack−det, we accumulate affinities between
detections in the current frame and those in multiple previous
frames. Specifically, based on multiple association probability
matrices, we propose a confidence-based deep track associa-
tion procedure to construct the track-to-detection association

FENG et al.: ONLINE MULTIPLE-PEDESTRIAN TRACKING WITH DETECTION-PAIR-BASED GRAPH CONVOLUTIONAL NETWORKS 7

matrix Sttrack−det. The (i, j)
th value of association matrix

Sttrack−det is a weighted sum of two association probabilities,
one is between the jth detection and the recent associated
detection of the ith track, and the other is between the jth

detection between the history buffer of the ith track, which
itself is another weighted sum of association probabilities
between the jth detection and associated detections in the
history buffer of the ith track.

The accumulated affinity Sttrack−det(i, j) between the ith

identity in the current track set and the jth identity in the
current frame t is defined as follows:

St
track−det (i, j) =

circnt

λc
St−ni

rcnt,t
(ircnt, j)

+

(
1− circnt

λc

)N(Hisi)∑
l=1

(
wi

l · St−ni
l
,t (il, j)

)
,

(15)

where nircnt and nil denote the frame gap between the recent,
lth historical matched pedestrians in track i and the jth new
pedestrian in the current frame t, respectively. St−ni

rcnt,t
(i, j)

denotes the association probability between the jth new
pedestrian at frame t and the recently matched pedestrian in
track i, which is the ircnt

th pedestrian at frame t − nircnt.
St−ni

l ,t
(il, j) denotes the association probability between the

jth new pedestrian at frame t and the lth historical matched
pedestrian in track i, which is the il

th pedestrian at frame
t − nil . The association probabilities are associated through
matching confidence variables circnt and wil , where circnt is
the matching confidence of the most recent pedestrian and
wil indicates the normalized matching confidence of the lth

historical pedestrian. Hisi is the history buffer that stores
historically matched pedestrians for track i, and N(Hisi)
denotes its length. We use parameter λc to control the effect
of recent match confidence. wil is defined as follows:

wil =
cil∑N(Hisi)

k=1 cik
, (16)

where cil is the matching confidence of the lth historical
pedestrian for track i. Through this deep track association,
association probabilities between the jth new pedestrian at
frame t and historical pedestrians in previous frames are all
considered. The matching confidence is calculated as,

circnt = Strcnt

track−det(i, j
∗), (17)

where j∗ is the recently associated pedestrian index in the
previous frame trcnt for track i. The triplet [trcnt, j∗, circnt] is
added to the history buffer Hisi for track i if the matching
score circnt is larger than τhis score. Each history buffer is a
FIFO buffer with a maximum length of τhis.

In summary, the association matrix is calculated in the form
of weighted combination. The contribution of the recent pedes-
trian is proportional to its matching score circnt. The saved
historical pedestrians are associated through corresponding
matching scores.

After obtaining Sttrack−det, the commonly used Hungarian
algorithm is applied to find a cost-optimal bipartite matching,
which enables online tracking especially in streaming video
applications like autonomous vehicle driving.

IV. EXPERIMENTS

This section presents the experiments to demonstrate the
effectiveness of the proposed method.

A. Implementation Details

The proposed DGCAN is implemented using the PyTorch
machine learning framework [24], and training is conducted
on a server with one NVIDIA Tesla V100 GPU, one AMD
EPYC 7601 CPU, and 256 GB of RAM. We take the “feature
extractor network” of DAN [14] as our feature encoding
network, where the output feature dimension dim1 is 520. The
maximum value of frame gaps for input image pairs NV is set
to 30, the hyper-parameter η stored in the appended column
vector is 0.1, and the score threshold τhis score is set to 0.8.
The initial parameters of the feature encoding network are the
trained parameters of DAN [14], and the parameters of the
motion network, the pairwise relationship learning network,
the Laplacian smoothing layer, and the Laplacian sharpening
layer are initialized using Xavier initialization [25]. We use
the SGD optimizer to train DGCAN. The momentum and
weight decay are set to 0.9 and 5e-4, respectively. We adopt
an initial learning rate of 0.01 which is divided by a factor
of 10 at epochs 20, 30, 40, and 45. The model is trained
for 50 epochs. Since the number of detections (p, q), the
number of nodes, and the dimension of adjacency matrix vary
in different frames, we set the batch size in each iteration
to 1. All hyper-parameters are chosen by small preliminary
experiments, except for some hyper-parameters that may have
great impact on performance. These hyper-parameters are
chosen based on the ablation study results reported below.

B. Datasets and Evaluation Metrics

We conduct experiments on 3 popular multiple-pedestrian
tracking challenge benchmarks including 2D MOT15 [26],
MOT16, and MOT17 [27]. MOT17 includes a total of 7 train-
ing sequences and 7 test sequences each of which is provided
with three sets of public detections, namely DPM [28], Faster
R-CNN [1], and SDP [2]. The MOT16 benchmark contains the
same sequences as MOT17 but only provides DPM detections.
The 2D MOT15 benchmark provides ACF detections [29] for
11 training sequences and 11 test sequences.

For quantitative evaluation, we use the widely adopted
CLEAR MOT Metrics [30] and trajectory-based metrics [31]:
MOTA evaluates the accuracy in the presence of false posi-
tives (FP), false negatives (FN), and identity switches (IDS).
MOTP measures the intersecting area of the tracking output
and the ground truth. IDF1 is the ratio of correctly identified
detections over the average number of ground truth and
computed detections, which indicates the average maximum
consistent tracking rate. MT evaluates the mostly tracked
trajectories, i.e., the ratio of ground-truth trajectories that
are covered by a track hypothesis for at least 80% of their
respective life span. ML evaluates the mostly lost trajectories,
i.e., the ratio of ground-truth trajectories that are covered by a
track hypothesis for at most 20% of their respective lifespan.
IDS counts the total number of identity switches. FRAG

8 IEEE INTERNET OF THINGS JOURNAL

counts the total number of times that a trajectory is interrupted
during tracking. Among these metrics, MOTA and IDF1 are
two comprehensive and important metrics which are widely
recognized in this field.

C. Comparison with the State-of-the-Art

We compare the proposed DGCAN with existing ap-
proaches that use the public detections provided by the bench-
marks as ours. In this section, we evaluate our method in
two settings, DGCAN, which utilizes the original detections,
and DGCAN C, which uses the bounding box regression of
CenterTrack [32], all acting on the public detections provided
by the MOT benchmark datasets.

MOT17 results. In Table I, we summarize the results of
our method and the published state-of-the-art techniques on
MOT17. The table contains both online and offline results.
As can be seen, the proposed DGCAN method is able to
outperform most of the existing offline methods and all online
methods that use the original public detections in terms of
MOTA and IDF1. The proposed DGCAN C that use Cen-
terTrack [32] to refine the public detections outperforms all
the previous methods and sets a new state-of-the-art in terms
of MOTA. Among the compared methods that use the original
public detections, LSST [8] uses a single object tracker to pre-
dict bounding boxes to reduce false negatives. STRN MOT17
[39] combines appearance, location, and topology cues in a
unified spatial-temporal relation network. Our DGCAN uses
the same appearance feature extractor as DAN [14], but a
different affinity estimation module. Both STRN MOT17 and
DAN are similar to our DGCAN method, but in comparison,
our method achieves better MOTA scores (plus 3.5 and 2.0,
respectively).

Some methods uses a high-performance detector “Faster-
RCNN” [1] to refine the provided public detections, such as
Tracktor++ [41], GSM Tracktor [21], GCNNMatch [22], and
MPNTrack [9]. Tracktor++ [41] predicts detections in the next
frame by taking the refined detections in the current frame
as bounding box proposals. Some methods utilize “Center-
Track” [32] to refine the provided public detections, including
CenterTrack [32], UnsupTrack [42], and our DGCAN C.
CenterTrack [32] applied a detection model to localize objects
in the current frame and predict their associations with the
previous frame. UnsupTrack [42] incorporates an unsupervised
re-identification network with CenterTrack [32]. Among all
the methods that use refined detections, our proposed DG-
CAN C achieves 64.4 MOTA, the new state-of-the-art MOTA
score. DGCAN C outperforms the previous best graph neural
network based method (GCNNMatch) by 7.4 MOTA score,
demonstrating the effectiveness of taking associations as nodes
of a graph and explicitly incorporating the interaction infor-
mation among these associations. The proposed DGCAN C
outperforms the previous best online method (UnsupTrack)
that also uses “CenterTrack” for refinement by 2.7 MOTA
score, which further validates the effectiveness of the proposed
method.

Note that our proposed method under-performed in certain
metrics, e.g. FP, IDS, FRAG. Of all the evaluation metrics,

FP and FN are opposite pair that there exists a relation of
“as one falls, another rises”. Specifically, in a similar class
of multiple-pedestrian tracking methods, if a method has a
lower FN, it tends to have a higher FP, because the method
tends to judge more detection responses as real targets, in
which case even false targets may be misjudged as real targets,
resulting in higher FP. When a tracker has a lower FN and a
higher FP, the tracker needs to associate more fake pedestrians,
and the tracker is more easily associated with these spurious
pedestrians, resulting in higher IDS and FRAG. In intelligent
transportation applications, we believe that in order to prevent
car accidents due to missing targets such as pedestrians, the
real target should not be missed even if the tracker generates
more fake targets. That is, the tracker should tend to choose
to have a lower FN and the resulting relatively high FP, rather
than having a lower FP and the resulting relatively high FN.

In Fig. 3 we show the qualitative results of our proposed
DGCAN on the MOT17 challenge test sequence using the
provided SDP detections (three representative images per se-
quence). Consistency of the estimated trajectories is indicated
by bounding boxes with the same color and the same ID
number over time. It can be observed that our tracker yields
visually plausible results even on challenging scenarios with
many pedestrians or occlusions.

MOT16 and 2D MOT15 results. The MOT16 results in
Table II reveal that our proposed tracker outperforms all the
previous trackers by a large margin and sets a new state-of-the-
art. The proposed DGCAN C achieves a 65.4 MOTA score on
the MOT16, outperforming the previous best method by 3.0
MOTA score. Similar results on 2D MOT15 are represented
in Table III. The proposed DGCAN C achieves a 49.2 MOTA
score on the 2D MOT15, outperforming the previous state-of-
the-art online method Tracktor++ by 5.1 MOTA score.

D. Ablation Studies

In this section we validate our proposed method DGCAN
by conducting a series of ablation studies on the MOT17-
SDP training dataset (we also conducted experiments on the
MOT17-DPM and MOT17-FRCNN datasets, and achieved
similar results). First, we determined the value of some im-
portant hyper-parameters:

The number of potential associations K: To reduce
computation cost, we do not take every detection-detection
pair each from a separate frame as a potential association.
Instead, we only select the most similar K detection responses
in the second frame with a detection in the first frame to
construct potential associations. Then we take these potential
associations as vertices. The evaluation metrics for different
K is shown in Table IV, where we show the results of taking
all detection-detection pairs as vertices in the last row. We
show the computation time of graph convolution layers in
the fifth column. In order to validate the usability of taking
associations as vertices, we compare our method with graph
neural network based methods which take detection responses
as vertices. Specifically, we present ratio of the number of
vertices between taking associations as vertices and taking
detection responses as vertices in the sixth column of Table IV,

FENG et al.: ONLINE MULTIPLE-PEDESTRIAN TRACKING WITH DETECTION-PAIR-BASED GRAPH CONVOLUTIONAL NETWORKS 9

TABLE I
MOT17 CHALLENGE TEST SET RESULTS. VALUES IN BOLD HIGHLIGHT THE BEST RESULTS OF online methods. THE SYMBOL ↑ INDICATES THAT HIGHER

VALUES ARE BETTER, AND ↓ IMPLIES LOWER VALUES ARE FAVORED. METHODS WITH + USE “FASTERRCNN” [1] TO REFINE THE PROVIDED PUBLIC
DETECTIONS. METHODS WITH ∗ USE “CENTERTRACK” [32] TO REFINE THE PROVIDED PUBLIC DETECTIONS.

Tracker Type MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓
MHT DAM [33] offline 50.7 47.2 77.5 20.8 36.9 22875 252889 2314 2865
jCC [34] offline 51.2 54.5 75.9 20.9 37.0 25937 247822 1802 2984
FWT [35] offline 51.3 47.6 77.0 21.4 35.3 24101 247921 2648 4279
eTC17 [36] offline 51.9 58.1 76.3 23.1 35.5 36164 232783 2288 3071
JBNOT [37] offline 52.6 50.8 77.1 19.7 35.8 31572 232659 3050 3792
LSST17 [8] offline 54.7 62.3 75.9 20.4 40.1 26091 228434 1243 3726
MPNTrack+ [9] offline 58.8 61.7 78.6 28.8 33.5 17413 213594 1185 2265
MOTDT17 [38] online 50.9 52.7 76.6 17.5 35.7 24069 250768 2474 5317
STRN MOT17 [39] online 50.9 56.0 75.6 18.9 33.8 25295 249365 2397 9363
FAMNet [40] online 52.0 48.7 76.5 19.1 33.4 14138 253616 3072 5318
DAN [14] online 52.4 49.5 76.9 21.4 30.7 25423 234592 8431 14797
LSST17O [8] online 52.7 57.9 76.2 20.4 40.1 22512 241936 2167 7443
DGCAN (ours) online 54.4 54.1 77.4 17.8 37.4 12655 241868 2660 3991
Tracktor+++ [41] online 56.3 55.1 78.8 21.1 35.3 8866 235449 1987 3763
GSM Tracktor+ [21] online 56.4 57.8 77.9 22.2 34.5 14379 230174 1485 2763
GCNNMatch+ [22] online 57.0 56.1 78.7 23.3 34.6 12283 228242 1957 2798
CenterTrack∗ [32] online 61.5 59.6 78.9 26.4 31.9 14076 200672 2583 4965
UnsupTrack∗ [42] online 61.7 58.1 78.3 27.2 32.4 16872 197632 1864 4213
DGCAN C∗ (ours) online 64.4 58.4 78.1 28.3 29.6 15071 179148 6500 7199

TABLE II
MOT16 CHALLENGE TEST SET RESULTS. VALUES IN BOLD HIGHLIGHT THE BEST RESULTS OF online methods. THE SYMBOL ↑ INDICATES THAT HIGHER

VALUES ARE BETTER, AND ↓ IMPLIES LOWER VALUES ARE FAVORED. METHODS WITH + USE “FASTERRCNN” [1] TO REFINE THE PROVIDED PUBLIC
DETECTIONS. METHODS WITH ∗ USE “CENTERTRACK” [32] TO REFINE THE PROVIDED PUBLIC DETECTIONS.

Tracker Type MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓
NOMT [43] offline 46.4 53.3 76.6 18.3 41.4 9753 87565 359 504
FWT [35] offline 47.8 44.3 75.5 19.1 38.2 8886 85487 852 1534
eTC [44] offline 49.2 56.1 75.5 17.3 40.3 8400 83702 606 882
HCC [45] offline 49.3 50.7 79.0 17.8 39.9 5333 86795 391 535
NOTA [46] offline 49.8 55.3 74.5 17.9 37.7 7248 83614 614 1372
MPNTrack+ [9] offline 58.6 61.7 78.9 27.3 34.0 4949 70252 354 684
MOTDT16 [38] online 47.6 50.9 74.8 15.2 38.3 9253 85431 792 1858
STRN MOT16 [39] online 48.5 53.9 73.7 17.0 34.9 9038 84178 747 2919
LSST16O [8] online 49.2 56.5 74.0 13.4 41.4 7187 84875 606 2497
DGCAN (ours) online 53.9 53.7 77.0 16.7 39.4 2514 80892 631 894
Tracktor+++ [41] online 54.4 52.5 78.2 19.0 36.9 3280 79149 682 1068
GCNNMatch+ [22] online 56.9 55.9 79.1 22.3 35.3 3235 74784 564 818
GSM Tracktor+ [21] online 57.0 58.2 79.1 22.0 34.5 4332 73573 550 772
UnsupTrack∗ [42] online 62.4 58.5 78.3 27.0 31.9 5909 61981 588 1361
DGCAN C∗ (ours) online 65.4 59.4 78.0 28.3 29.6 5007 55940 2069 2309

TABLE III
2D MOT15 CHALLENGE TEST SET RESULTS. VALUES IN BOLD HIGHLIGHT THE BEST RESULTS OF online methods. THE SYMBOL ↑ INDICATES THAT

HIGHER VALUES ARE BETTER, AND ↓ IMPLIES LOWER VALUES ARE FAVORED. METHODS WITH + USE “FASTERRCNN” [1] TO REFINE THE PROVIDED
PUBLIC DETECTIONS. METHODS WITH ∗ USE “CENTERTRACK” [32] TO REFINE THE PROVIDED PUBLIC DETECTIONS.

Tracker Type MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ FRAG↓
NOMT [43] offline 33.7 44.6 71.9 12.2 44.0 7762 32547 442 823
QuadMOT [47] offline 33.8 40.4 73.4 12.9 36.9 7898 32061 703 1430
JointMC [34] offline 35.6 45.1 71.9 23.2 39.3 10580 28508 457 969
CEM [48] offline 48.3 56.5 74.8 32.2 24.3 9640 21629 504 1023
MPNTrack+ [9] offline 51.5 58.6 76.0 31.2 25.9 7620 21780 375 872
STRN [39] online 38.1 46.6 72.1 11.5 33.4 5451 31571 1033 2665
DAN [14] online 35.8 39.6 72.4 7.8 39.0 4065 33669 1728 1312
DGCAN (ours) online 38.8 41.9 74.7 11.1 40.5 5293 31404 914 1050
Tracktor+++ [41] online 44.1 46.7 75.0 18.0 26.2 6477 26577 1318 1702
DGCAN C∗ (ours) online 49.2 45.7 74.7 33.1 20.2 7747 21124 2319 1922

10 IEEE INTERNET OF THINGS JOURNAL

MOT17-01-SDP

MOT17-03-SDP

#70 #90

MOT17-06-SDP

#110 #120 #130

MOT17-07-SDP

#200 #210 #220

MOT17-08-SDP

#250 #260 #270

#300 #310 #320

MOT17-12-SDP

#620 #630 #640

MOT17-14-SDP

#1 #11 #21

#50

Fig. 3. Qualitative tracking results on different test sequences of the MOT17 dataset.

FENG et al.: ONLINE MULTIPLE-PEDESTRIAN TRACKING WITH DETECTION-PAIR-BASED GRAPH CONVOLUTIONAL NETWORKS 11

TABLE IV
EVALUATION METRICS OF DIFFERENT K ON MOT17-SDP TRAINING

SEQUENCES.

K IDF1↑ MOTA↑ IDS↓ GCN
time(s)

vertex
ratio

comp edge
ratio

coll edge
ratio

edge
ratio

1 63.5 64.9 502 241.15 0.5 0.945 0.063 1.008
2 66.0 64.9 336 243.39 1.0 3.69 0.338 4.028
3 66.5 65.0 328 245.45 1.5 8.25 0.81 9.06
4 66.3 64.9 321 248.4 1.99 14.6 1.46 16.06
5 66.4 64.9 331 251.69 2.47 22.8 2.29 25.09
6 66.1 64.9 336 271.23 2.93 32.7 3.26 35.96
all 66.1 64.9 326 355.99 10.97 820 55.1 875.1

and ratio of the number of compatible edges, ratio of the
number of colliding edges, ratio of the number of total edges
in the seventh, eighth and ninth columns, respectively. From
Table IV, the proposed top K scheme significantly reduces the
number of vertices and edges, and therefore requires much
less memory and computation resources. The best tracking
performance was obtained when K is 3, thus we set K = 3
for the following experiments. Thus, instead of enlarging the
dimensions of nodes and edges from N to N2, the filter
strategy only enlarges the dimensions of nodes and edges from
N to 3N .

Motion description dimension: The dimension of initial
appearance features of nodes is 520. To better fuse motion
and appearance, we select the dimension of motion dim2 from
{32, 64, 128, 256, 512}. From Fig. 4, the best performance
were obtained for dim2 = 256, we chose this value for all
subsequent experiments.

Dimension of hidden layers of GCN: The dimension of
initial features of nodes is dim1 + dim2 = 776, thus we
select the dimension of hidden layers of GCN dim3, dim4

from {128, 256, 512, 1024, 2048}. From Fig. 5 and Fig. 6, we
set dim3 = 1024 and dim3 = 512.

History buffer length: The maximum length of the history
buffer τhis in an important hyper-parameters because it is
directly related to the depth of confidence-based track asso-
ciation. We performed experiments to find a good value out
of a fixed set of choices. We varied τhis from 1 to 14 with
interval length 1 and compared the IDF1 and MOTA scores.
The obtained results are shown in Fig. 7. Because the best
performance were obtained for τhis = 6, we chose this value
for all subsequent experiments.

Control parameter variation: Parameter λc controls the
effect of the recent pedestrian confidence score. We measured
IDF1 and MOTA scores for various λc settings as depicted in
Fig. 8 and selected λc = 3 for the following experiments.

Effect of compatible and conflicting interactions: We
included the conventional online tracking model (Fig. 1(a))
as the baseline in the experiments reported in Fig. 9(A). It
utilizes 2 linear layers to estimate the affinity of each detection
pair. To separately demonstrate the influence of compatible and
mutually exclusive interactions, we designed two GCN models
with 2 Laplacian smoothing layers (model (B) in Fig. 9) and 2
Laplacian sharpening layers (model (C) in Fig. 9), respectively.
Finally, we also designed a GCN model with 1 Laplacian
smoothing layer and 1 Laplacian sharpening layer (model (D)

Fig. 4. Tracking performance for various motion dimensions dim2.

Fig. 5. Tracking performance for various dimensions dim3 of the first hidden
GCN layer.

Fig. 6. Tracking performance for various dimensions dim4 of the second
hidden GCN layer.

Fig. 7. Tracking performance for various history buffer lengths τhis.

Fig. 8. Tracking performance for various λc values.

in Fig. 9) to incorporate both kinds of interactions among
pedestrians. The reported results indicated that incorporating
relationship information and topological structure information
by GCNs can improve the performance of multiple-pedestrian
tracking. Specifically, compared with model (A), the MOTA
score is increased by 4.9% (B), 4.9% (C), and 5% (D);
MOTP values are improved by 2.3% (B), 2.3% (C), and
2.3% (D); IDF1 is increased by 0.2% (B), 1.1% (C), and
2.8% (D); and IDS is decreased by 51.9% (B), 58% (C),
and 61.3% (D). These comparisons demonstrate that either
Laplacian smoothing or Laplacian sharpening works well with
the developed graph data structure, while combining them
achieves the best scores.

Effect of deep track association: To evaluate the effect
of the confidence-based deep track association, we compare
our method with a baseline without the history buffer, i.e.,
computing the affinity between a track and a detection only
based on the recently matched detection of the track. Table V
shows the performance of DGCAN with and without history
buffer. We observe that the proposed deep track association
outperforms the baseline on all evaluation metrics.

GCN Architecture: As the GCN architecture may influence
the performance of DGCAN, we obtained performance values
for different model settings that are shown in Table VI. The
x-sm-y-sh model refers to a stack of x Laplacian smoothing

12 IEEE INTERNET OF THINGS JOURNAL

Fig. 9. Ablation studies on MOT17-SDP in terms of MOTA, MOTP, IDF1,
and IDS, where ↑ means higher values are better, ↓ means lower values are
favored. The selected models include (A) 2 linear layers, (B) 2 Laplacian
smoothing layers, (C) 2 Laplacian sharpening layers, and (D) 1 Laplacian
smoothing layer and 1 Laplacian sharpening layer.

TABLE V
EVALUATION METRICS WITH AND WITHOUT HISTORY BUFFER FOR DEEP

ASSOCIATION ON MOT17-SDP TRAINING SEQUENCES.

Variant MOTA↑ MOTP↑ IDF1↑ IDS↓

without history 64.8 85.5 63.8 526
with history 65.0 85.5 66.5 501

layers and y Laplacian sharpening layers. From the last row of
Table VI, we observe that the architecture of two Laplacian
smoothing layers and one Laplacian sharpening layer is the
best setting in terms of all the metrics in our application.

In order to explore the influence of the ordering of the
Laplacian smoothing layer and the Laplacian sharpening layer,
we compared the performance of different GCN architec-
tures by changing the order of the Laplacian smoothing and
sharpening layers. From Table VII, the GCN architecture
with the ordering of Laplacian smoothing, smoothing and
sharpening demonstrated the best performance, implying that
employing the compatible interactions first, and then applying
the mutually exclusive interactions among associations works
best.

E. Time Analysis

In Table VIII, we show the running time of our tracker
on different test sets given the detections. Note that the
running time varies between these sets of detections. This is
mainly due to the fact that different detections feature different
numbers of detection bounding boxes, which leads to the
varying time for constructing the graph, the computation of the
similarity matrix, and the process of deep data association. The
quality of detection bounding boxes also affects the running
time. For example, the number of original DPM detection
bounding boxes is much larger than that of original SDP
detection. However, many DPM detection bounding boxes are
false positives, and these false positives can be removed by
some heuristics, such as dropping detections whose confidence
scores are lower than a threshold, or dropping tracked targets
that do not associate detections for a period of time. The valid
number of DPM detection bounding boxes is smaller than the
valid number of SDP detections, and thus the processing speed

TABLE VI
EVALUATION METRICS OF DIFFERENT GCN ARCHITECTURES ON

MOT17-SDP TRAINING SEQUENCES.

Variant MOTA↑ MOTP↑ IDF1↑ IDS↓

1-sm-1-sh 64.9 85.5 66.3 530
1-sm-2-sh 64.9 85.5 65.8 550
2-sm-1-sh 65.0 85.5 66.5 501
2-sm-2-sh 65.0 85.5 66.0 512

TABLE VII
EVALUATION METRICS OF DIFFERENT ORDERING OF LAPLACIAN

SMOOTHING AND SHARPENING LAYERS ON MOT17-SDP TRAINING
SEQUENCES.

Variant MOTA↑ MOTP↑ IDF1↑ IDS↓

sh-sm-sm 64.5 85.5 65.1 562
sm-sh-sm 64.9 85.5 66.4 520
sm-sm-sh 65.0 85.5 66.5 501

TABLE VIII
RUNNING TIME (SECONDS)AND SPEED (FRAMES PER SECOND) OF OUR

TRACKER ON DIFFERENT TEST SETS OF DETECTIONS, WHERE t1 DENOTES
FEATURE EXTRACTION TIME, t2 DENOTES GCN BASED

TRACK-DETECTION AFFINITY ESTIMATION TIME, t3 DENOTES
HUNGARIAN ALGORITHM TIME, t4 DENOTES THE COST TIME FOR ALL

REMAINING OPERATIONS, SUCH AS IMAGE LOADING, UPDATING TRACKS.

Detections Frames Boxes Density t1 t2 t3 t4 fps

DPM 5919 135376 22.87 57.5 558.8 6.7 284.1 6.5
FRCNN 5919 110141 18.61 75.4 694.3 5.8 281.5 5.6

SDP 5919 128653 21.74 86.8 887.4 13.0 292.3 4.6
total 17757 374170 21.07 219.7 2140.5 25.5 857.8 5.5

of DPM detection (6.5 fps) is bigger than that of SDP detection
(4.6 fps).

The average speed of our tracker is 5.5 frames per second
(fps) on the MOT17 and 6.5 fps on the MOT16, when
implemented using the PyTorch framework on a computer
with one NVIDIA Tesla V100 GPU. Although the speed is
not satisfactory from the point of real-time application, we
believe the current work is a starting point towards real-time
application by optimizing the implementation and using more
advanced computation devices.

F. GFLOPs and Number of Parameters

Our proposed DGCAN is similar to the end-to-end DAN
[14] in the sense that both DAN and DGCAN use the
same backbone network for feature extraction. The difference
between DAN and DGCAN is how they estimate affinities
between the objects in a frame pair. Thus we compare the
GFLOPs and number of parameters of the proposed DGCAN
with DAN to verify its usability. We utilize the widely-used
tool [49] to compute the GFLOPs and number of parameters.

From Table IX, compared with DAN, our proposed DG-
CAN only increases GFLOPs and number of parameters by
0.54% and 1.8%, respectively. However, DGCAN improves
the MOTA and IDF1 by 3.82% and 9.3%, respectively. Our
proposed DGCAN improves DAN by a large margin while
only introduces marginal overhead, demonstrating its usabil-
ity.

FENG et al.: ONLINE MULTIPLE-PEDESTRIAN TRACKING WITH DETECTION-PAIR-BASED GRAPH CONVOLUTIONAL NETWORKS 13

TABLE IX
COMPARISON OF GFLOPS AND NUMBER OF PARAMETERS BETWEEN

DAN AND OUR PROPOSED DGCAN.

Model GFLOPs # params MOTA IDF1

DAN 571.386 26.572M 52.4 49.5

DGCAN 574.476
(+0.54%)

27.06M
(+1.8%)

54.4
(+3.82%)

54.1
(+9.3%)

V. CONCLUSIONS

In this paper, we propose a graph convolutional network-
based model to incorporate the interaction between detection-
detection pairs from two different frames in the learning
process of multiple-pedestrian tracking, which we call Deep
Graph Convolutional Affinity Network (DGCAN). The model
combines appearance, motion, and topology cues, and jointly
learns pedestrian representation and affinity estimation in an
end-to-end manner. Based on the efficient affinity estimation
module of DGCAN, we present an online multiple-pedestrian
tracker. Evaluations on three widely used multiple-pedestrian
tracking benchmarks demonstrate that the proposed tracker
outperforms most existing online and offline trackers and
achieves state-of-the-art performance.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks.” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 6, p. 1137, 2017.

[2] F. Yang, W. Choi, and Y. Lin, “Exploit all the layers: Fast and accurate
cnn object detector with scale dependent pooling and cascaded rejection
classifiers,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2016, pp. 2129–2137.

[3] P. Feng, W. Wang, S. Dlay, S. M. Naqvi, and J. Chambers, “Social force
model-based MCMC-OCSVM particle PHD filter for multiple human
tracking,” IEEE Transactions on Multimedia, vol. 19, no. 4, pp. 725–
739, apr 2017.

[4] P. Dai, X. Wang, W. Zhang, and J. Chen, “Instance segmentation enabled
hybrid data association and discriminative hashing for online multi-
object tracking,” IEEE Transactions on Multimedia, vol. 21, no. 7, pp.
1709–1723, jul 2019.

[5] Z. Fu, F. Angelini, J. Chambers, and S. M. Naqvi, “Multi-level coop-
erative fusion of GM-PHD filters for online multiple human tracking,”
IEEE Transactions on Multimedia, vol. 21, no. 9, pp. 2277–2291, sep
2019.

[6] T. Gao, H. Pan, Z. Wang, and H. Gao, “A CRF-based framework for
tracklet inactivation in online multi-object tracking,” IEEE Transactions
on Multimedia, pp. 1–1, 2021.

[7] L. Lan, X. Wang, S. Zhang, D. Tao, W. Gao, and T. S. Huang,
“Interacting tracklets for multi-object tracking,” IEEE Transactions on
Image Processing, vol. 27, no. 9, pp. 4585–4597, 2018.

[8] W. Feng, Z. Hu, W. Wu, J. Yan, and W. Ouyang, “Multi-object tracking
with multiple cues and switcher-aware classification,” arXiv:1901.06129,
2019.

[9] G. Brasó and L. Leal-Taixé, “Learning a neural solver for multiple object
tracking,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020, pp. 6247–6257.

[10] W. Feng, L. Lan, X. Zhang, and Z. Luo, “Learning sequence-to-sequence
affinity metric for near-online multi-object tracking,” Knowledge and
Information Systems, vol. 62, no. 10, pp. 3911–3930, 2020.

[11] W. Feng, L. Lan, Y. Luo, Y. Yu, X. Zhang, and Z. Luo, “Near-online
multi-pedestrian tracking via combining multiple consistent appearance
cues,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 31, no. 4, pp. 1540–1554, 2021.

[12] L. Leal-Taixé, C. Canton-Ferrer, and K. Schindler, “Learning by track-
ing: Siamese cnn for robust target association,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. IEEE, 2016, pp. 33–40.

[13] J. Munkres, “Algorithms for the assignment and transportation prob-
lems,” Journal of the Society for Industrial and Applied Mathematics,
vol. 5, no. 1, pp. 32–38, 1957.

[14] S. Sun, N. Akhtar, H. Song, A. S. Mian, and M. Shah, “Deep affinity
network for multiple object tracking,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019.

[15] X. Shi, H. Ling, W. Hu, C. Yuan, and J. Xing, “Multi-target tracking
with motion context in tensor power iteration,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2014, pp. 3518–3525.

[16] L. Lan, D. Tao, C. Gong, N. Guan, and Z. Luo, “Online multi-object
tracking by quadratic pseudo-boolean optimization.” in Proceedings of
the International Joint Conferences on Artificial Intelligence, 2016, pp.
3396–3402.

[17] J. Park, M. Lee, H. J. Chang, K. Lee, and J. Y. Choi, “Symmetric
graph convolutional autoencoder for unsupervised graph representation
learning,” in Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2019, pp. 6519–6528.

[18] B. Yang and R. Nevatia, “An online learned crf model for multi-target
tracking,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2012, pp. 2034–2041.

[19] C. Ma, Y. Li, F. Yang, Z. Zhang, Y. Zhuang, H. Jia, and X. Xie, “Deep
association: End-to-end graph-based learning for multiple object track-
ing with conv-graph neural network,” in Proceedings of the International
Conference on Multimedia Retrieval. ACM, 2019, pp. 253–261.

[20] J. Li, X. Gao, and T. Jiang, “Graph networks for multiple object track-
ing,” in Proceedings of The IEEE Winter Conference on Applications of
Computer Vision. IEEE, 2020, pp. 719–728.

[21] Q. Liu, Q. Chu, B. Liu, and N. Yu, “Gsm: Graph similarity model
for multi-object tracking,” in Proceedings of the International Joint
Conference on Artificial Intelligence. International Joint Conferences
on Artificial Intelligence Organization, 2020, pp. 530–536.

[22] I. Papakis, A. Sarkar, and A. Karpatne, “Gcnnmatch: Graph convolu-
tional neural networks for multi-object tracking via sinkhorn normaliza-
tion,” arXiv preprint arXiv:2010.00067, 2020.

[23] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence. AAAI, 2018.

[24] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation
in pytorch,” in Advances in Neural Information Processing Systems
Workshops, 2017.

[25] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the International
Conference on Artificial Intelligence and Statistics, 2010, pp. 249–256.

[26] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler,
“Motchallenge 2015: Towards a benchmark for multi-target tracking,”
arXiv:1504.01942, 2015.

[27] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A
benchmark for multi-object tracking,” arXiv:1603.00831, 2016.

[28] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan,
“Object detection with discriminatively trained part-based models,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 9, pp. 1627–1645, 2009.

[29] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids
for object detection,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 36, no. 8, pp. 1532–1545, 2014.

[30] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object tracking
performance: the clear mot metrics,” EURASIP Journal on Image and
Video Processing, vol. 2008, pp. 1–10, 2008.

[31] B. Yang and R. Nevatia, “Multi-target tracking by online learning a
crf model of appearance and motion patterns,” International Journal of
Computer Vision, vol. 107, no. 2, pp. 203–217, 2014.

[32] X. Zhou, V. Koltun, and P. Krähenbühl, “Tracking objects as points,” in
Proceedings of the European Conference on Computer Vision. Springer,
2020, pp. 474–490.

[33] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis tracking
revisited,” in Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2015, pp. 4696–4704.

[34] M. Keuper, S. Tang, B. Andres, T. Brox, and B. Schiele, “Motion seg-
mentation & multiple object tracking by correlation co-clustering,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 42,
no. 1, pp. 140–153, 2018.

[35] R. Henschel, L. Leal-Taixé, D. Cremers, and B. Rosenhahn, “Fusion of
head and full-body detectors for multi-object tracking,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. IEEE, 2018, pp. 1428–1437.

14 IEEE INTERNET OF THINGS JOURNAL

[36] B. Wang, L. Wang, B. Shuai, Z. Zuo, T. Liu, K. Luk Chan, and G. Wang,
“Joint learning of convolutional neural networks and temporally con-
strained metrics for tracklet association,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops.
IEEE, 2016, pp. 1–8.

[37] R. Henschel, Y. Zou, and B. Rosenhahn, “Multiple people tracking using
body and joint detections,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops. IEEE, 2019, pp.
0–0.

[38] L. Chen, H. Ai, Z. Zhuang, and C. Shang, “Real-time multiple peo-
ple tracking with deeply learned candidate selection and person re-
identification,” in Proceedings of the IEEE International Conference on
Multimedia and Expo. IEEE, 2018, pp. 1–6.

[39] J. Xu, Y. Cao, Z. Zhang, and H. Hu, “Spatial-temporal relation networks
for multi-object tracking,” in Proceedings of the IEEE International
Conference on Computer Vision. IEEE, 2019, pp. 3988–3998.

[40] P. Chu and H. Ling, “Famnet: Joint learning of feature, affinity and
multi-dimensional assignment for online multiple object tracking,” in
Proceedings of the IEEE International Conference on Computer Vision.
IEEE, 2019, pp. 6172–6181.

[41] P. Bergmann, T. Meinhardt, and L. Leal-Taixe, “Tracking without bells
and whistles,” in Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2019, pp. 941–951.

[42] S. Karthik, A. Prabhu, and V. Gandhi, “Simple unsupervised multi-object
tracking,” arXiv:2006.02609, 2020.

[43] W. Choi, “Near-online multi-target tracking with aggregated local flow
descriptor,” in Proceedings of the IEEE International Conference on
Computer Vision. IEEE, 2015, pp. 3029–3037.

[44] G. Wang, Y. Wang, H. Zhang, R. Gu, and J.-N. Hwang, “Exploit the
connectivity: Multi-object tracking with trackletnet,” in Proceedings of
the ACM International Conference on Multimedia. ACM, 2019, pp.
482–490.

[45] L. Ma, S. Tang, M. J. Black, and L. Van Gool, “Customized multi-
person tracker,” in Proceedings of the Asian Conference on Computer
Vision. Springer, 2018, pp. 612–628.

[46] L. Chen, H. Ai, R. Chen, and Z. Zhuang, “Aggregate tracklet appearance
features for multi-object tracking,” IEEE Signal Processing Letters,
vol. 26, no. 11, pp. 1613–1617, 2019.

[47] J. Son, M. Baek, M. Cho, and B. Han, “Multi-object tracking with
quadruplet convolutional neural networks,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. IEEE, 2017,
pp. 5620–5629.

[48] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization
for multitarget tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 36, no. 1, pp. 58–72, 2013.

[49] L. Zhu, “Pytorch opcounter,” https://github.com/Lyken17/
pytorch-OpCounter.

Weijiang Feng is currently a lecture with the PLA
Information Engineering University. He received the
Ph.D. degree in computer science from the Na-
tional University of Defense Technology in 2021.
His research interests include multi-object tracking,
computer vision, and quantum computing.

Long Lan is currently a lecturer with College of
Computer, National University of Defense Tech-
nology. He received the Ph.D. degree in computer
science from National University of Defense Tech-
nology 2017. He was a visiting Ph.D. student in
University of Technology, Sydney from 2015 to
2017. His research interests include multi-object
tracking, computer vision and discrete optimization.

Michael Buro is a professor in the computing
science department at the University of Alberta in
Edmonton, Canada. He received his PhD in 1994
for his work on Logistello - an Othello program that
later defeated the reigning human World champion
6-0. His current research interests include heuristic
search, machine learning, abstraction, state infer-
ence, and agent modeling applied to games.

Zhigang Luo received the B.S., M.S., and Ph.D.
degrees from the National University of Defense
Technology in 1981, 1993, and 2000, respectively.
He is currently a Professor with the College of
Computer, National University of Defense Technol-
ogy. His current research interests include machine
learning, computer vision, and bioinformatics.

