
8 IEEE INTELLIGENT SYSTEMS

Sliding-tile puzzles and Rubik’s
Cube in AI research
Richard E. Korf, University of California,
Los Angeles

The best-known sliding-tile puzzle is the
Fifteen Puzzle, shown in Figure 1a. Other
sizes include the 3 × 3 Eight Puzzle and the 5
× 5 Twenty-Four Puzzle. The standard 3 × 3 ×
3 Rubik’s Cube (see Figure 1b) also comes in
2 × 2 × 2, 4 × 4 × 4, and 5 × 5 × 5 versions.
Both these puzzles had similar histories, about
100 years apart. Finding optimal or shortest
solutions to these puzzles has spawned impor-
tant results in space-efficient search algo-
rithms and admissible heuristic functions.

Sliding-tile puzzles
Sam Loyd invented the Fifteen Puzzle in

the 1870s.1 When it appeared in the scien-
tific literature in 1879,2 the journal’s editor
added the following comment:

The “15” puzzle for the last few weeks has
been prominently before the American public,
and may safely be said to have engaged the
attention of nine out of ten persons of both
sexes and of all ages and conditions of the
community. But this would not have weighed
with the editors to induce them to insert arti-
cles upon such a subject in the American
Journal of Mathematics, but for the fact that
the principle of the game has its root in what
all mathematicians of the present day are
aware constitutes the most subtle and charac-
teristic conception of modern algebra, viz: the
law of dichotomy applicable to the separation
of the terms of every complete system of
permutations into two natural and indefeasi-
ble groups,... Accordingly, the editors have
thought that they would be doing no disser-
vice to their science, but rather promoting its
interest by exhibiting this a priori polar law
under a concrete form, through the medium of
a game which has taken so strong a hold upon
the thought of the country that it may almost
be said to have risen to the importance of a
national institution.

One reason for the worldwide Fifteen Puz-
zle craze was that Loyd offered a $1,000 cash
prize to transform a particular initial state to a
particular goal state. William Johnson and

Playing with AI
By Haym Hirsh

Rutgers University
Hirsh@cs.rutgers.edu

T R E N D S & C O N T R O V E R S I E ST R E N D S & C O N T R O V E R S I E S

The use of puzzles and games in AI research dates to its earliest days. In the early 1950s,
Claude Shannon and Alan Turing wrote papers proposing the creation of computer programs
that could successfully challenge humans in two-person games. By the late 1950s, complete
programs for a number of games had been developed, most prominently in chess (by Alex Bern-
stein at IBM and by Allen Newell, Cliff Shaw, and Herbert Simon at the Carnegie Institute of
Technology), and in checkers (by Arthur Samuel at IBM). Similarly, puzzles found their way
into AI research only a short time later. The early 1960s saw the use by Newell, Shaw, and
Simon of various puzzles in their development of GPS, and John McCarthy proposed the muti-
lated checkerboardpuzzle as a difficult problem for automated proof methods. Thus by the
mid1960s puzzles and games were viewed as valuable testbeds for AI research, both as distinct-
ly human cognitive tasks that were hoped to be difficult yet sufficiently circumscribed to allow
significant research progress, and easy-to-understand testbeds for exploring and explaining
foundational questions in AI.

For many years, work in puzzle solving and (especially) game-playing has been somewhat
isolated from work in other areas of AI. However, this has begun to change recently. Many ideas
that have been developed in other areas of AI are now finding important applications for those
working on game-playing and puzzle-solving systems. Similarly, these problems, often unfairly
labeled pejoratively as “toy domains,” have proven to be fertile terrain for research in AI and
have contributed ideas back into other areas of AI. Through the essays of five leaders in this
field, this issue’s “Trends and Controversies” explores the ongoing work and lessons already
learned by those applying AI to game-playing and puzzle-solving. Although each author’s
efforts concerns a very different task, the essays make it clear that there are common themes that
underlie the various successes that they report. For example, probabilistic reasoning can be used
to order or prune parts of a search space, as is done by Buro’s Logistello (for Othello) and
Littman’s Proverb (for crossword puzzles). Intelligent and careful use of approximation can also
be very important—for example, Korf’s evaluation function for Rubik’s Cube is based on the
search space for simplified versions of the problem, and Proverb approximates the cyclical con-
straints of a given crossword puzzle with a tree. Finally, even more basic is the unstated but
ubiquitous and intentional disregard for how humans perform the tasks in the design of their AI
counterparts—in no case do the programs go about their business in a way motivated by how
humans attack these problems.

Most interesting to me, however, is the extent to which the new ideas represent advances and
improvements to ideas already present in the early days of the field. This is especially true for
Samuel’s checkers player, which learned its evaluation function from sample games (against
human opponents, from book games, and from self-play). We similarly now see Logistello learn
its evaluation function from self-play, and its opening book both from self-play as well as from its
subsequent games with others. Much of Proverb’s knowledge and success comes from large
libraries of clues and solutions to past crossword puzzles. Particularly intriguing is that the speed
of modern computers has now allowed some data-generation duringa game, making it possible to,
in effect, learn while playing. Sheppard’s Maven (for Scrabble) uses self-play in such a fashion to
estimate the value of a bound during play. Finally, also present in Samuel’s work, is the fact that in
addition to fast computers and clever ideas, success usually requires clever implementations.
Samuel’s program demonstrated this in multiple ways, such as by going so far as writing board
positions to its drum memory to minimize the seek time on each subsequent drum read. Today we
see similar careful awareness of the power and limitations of current computer hardware. Korf’s
evaluation function for the Rubik’s cube requires computing enormous tables that fit into today’s
computer storage systems. Similarly, Schaeffer precomputes and stores all checkers endgames of
eight pieces or fewer so that once Chinook reaches such a point it plays the game without error.

The essays in this “Trends and Controversies” make it clear that success in games and puzzles
requires more than minimax or A* search and a fast computer, and that puzzles and games can
still play an important role in AI research. Personally, given how many of the ideas can be traced
back to the earliest days of our field, I also hope they will remind us to occasionally return to the
writings of the early masters—they still offer us insights into accomplishing our goals today.
Finally, the efforts described in these essays have the potential to help many of us reconnect
with the spirit of fun offered by puzzles and games that brought many of us to this discipline in
the first place.

—Haym Hirsh

NOVEMBER/DECEMBER 1999 9

William Story proved that
it wasn’t possible, that the
entire state space was di-
vided into even and odd
permutations,and that
there is no way to trans-
form one into the other by
legal moves.

Eight Puzzle. Because
the state space for the
Eight Puzzle contains only 181,440 (9!/2)
states,it can be exhaustively enumerated.
Schofield published a table listing the num-
ber of states at each distance from a given
goal state.3 The average length of a shortest
path between two states is about 22 moves,
and the maximum distance between any
pair of states is 31 moves.

The next important advance related to
this problem was the development of the A*
algorithm.4 A* introduced a heuristic evalu-
ation functionthat estimates the distance
between a pair of states. For the sliding-tile
puzzles,a natural heuristic function is the
Manhattan distance. It is computed by
counting the number of grid units that each
tile is from its goal position and summing
these values for all tiles. The Manhattan
distance is also a lower bound on the opti-
mal solution length. A* is guaranteed to
return an optimal path to the goal,if the
heuristic function is nonoverestimating or
admissible.

Fifteen Puzzle. Unfortunately, A* cannot
compute optimal solutions to the Fifteen
Puzzle, because it stores in memory every
state it generates. Because the Fifteen Puz-
zle contains 16!/2 ≈ 1013 states,the avail-
able computer memory is exhausted in
minutes. This problem motivated the
search for more memory-efficient algo-
rithms and gave rise to Iterative-Deepen-
ing-A* (IDA*). 5 Based on depth-first
search, IDA* generates roughly the same
number of nodes as A*, but its memory
requirement is only linear in the maximum
search depth,eliminating the space con-
straint entirely. IDA* was used to find opti-
mal solutions to 100 randomly generated
Fifteen Puzzle instances,using the Manhat-
tan-distance heuristic. Some problems gen-
erated billions of nodes,and the average
optimal solution length is about 53 moves.

Twenty-Four Puzzle. While in principle
IDA* with Manhattan distance could solve

the 5 × 5 Twenty-Four Puzzle, with 1025

(25!/2) states,the time required is not cur-
rently practical. A more accurate admissi-
ble heuristic function is needed. The first
such function was the linear-conflict en-
hancement to the Manhattan distance.6 The
key idea is that if two tiles are in their cor-
rect row, but reversed relative to their goal
positions,then at least one tile must tem-
porarily move out of the row, to allow the
other to pass,and then move back. These
two vertical moves do not appear in the
Manhattan distance of the two tiles,but can
be added to it without overestimating
actual distance. The same idea applies to
reversed tiles in their correct columns.

This idea can be generalized. The Man-
hattan distance is the sum of the distance
each individual tile has to move, assuming
that there are no interactions between the
tiles. Viewed in this way, the next step is to
consider each pair of tiles and compute
how far each tile has to move, including
any interactions between the pair. For most
tile pairs,this pairwise distanceequals the
sum of their Manhattan distances. For
some pairs,such as those in a linear con-
flict, for example, their pairwise distance
exceeds the sum of their Manhattan dis-
tances,and this larger value can serve in an
admissible heuristic. In addition to linear
conflicts, two other situations give rise to
larger pairwise distances,one involving
tiles near the corners and the other involv-
ing tiles near the final blank position.
Using linear conflicts and these additional
pairwise enhancements with IDA*, we
found optimal solutions to 10 random
instances of the Twenty-Four Puzzle.7

Some of these problems generated trillions
of nodes,and their average solution length
is over 100 moves.

An additional idea used in those experi-
ments was pruning duplicate nodes repre-
senting the same state. Because a depth-first
search,such as IDA*, doesn’t store most of
the states it generates,given two different

paths to the same state,
depth-first search gen-
erates both paths and
then redundantly ex-
plores the subtrees
below that state as
well. Several tech-
niques emerged for
dealing with this prob-
lem,including the use
of a finite-state ma-

chine to prune duplicate paths in graphs
with cycles.8 Each innovation increased the
size and complexity of problems that could
be solved.

Rubik’s Cube
Rubik’s Cube was invented in 1974 by

Hungary’s Erno Rubik,and like the Fifteen
Puzzle 100 years earlier, became a world-
wide sensation in the early 1980s. More
than 100 million Rubik’s Cubes have been
sold. A powerful problem-solving theory,
embodied in the General Problem Solver
program,9 is that to solve a problem with
multiple subgoals,first find an ordering of
the subgoals so that once a subgoal is
solved, it doesn’t have to be violated to
solve the remaining subgoals. What makes
Rubik’s Cube so difficult that this is impos-
sible. For example, once one plane is
solved, it must be messed up,at least tem-
porarily, to make further progress.

Learning a strategy. The solution,as mil-
lions of people discovered, is to learn a set
of macro-operators,which are sequences of
primitive operators,or individual twists of
the cube. A useful macro-operator leaves the
solved portion of the cube intact by the end
of the macro application and makes further
progress on the unsolved part. A computer
program was written to automatically learn
a set of macro-operators sufficient to solve
any legally scrambled 3 × 3 × 3 cube.10The
average length of solutions generated by this
strategy was about 86 moves.

Finding optimal solutions. The next chal-
lenge was to find optimal or shortest solu-
tions to Rubik’s Cube. This is easy for the
2 × 2 × 2 cube, because its state space con-
tains only 3,674,160 states. The 3 × 3 × 3
cube, however, contains about 4.3252 ×
1019 states. (The slogan on the box, that
there are “billions of combinations,” is a
rather considerable understatement.) This
is the number of states reachable from any

(b)(a)

2

75

10

8

1513

31

6

119

4

14

12

Figure 1. Fifteen puzzle (a) and Rubik’s Cube (b).

given state. Like the Fifteen Puzzle, the
complete state space of Rubik’s Cube con-
sists of separate components with no legal
moves connecting them—in fact,12 such
components for the standard cube.

Optimal solutions to Rubik’s Cube re-
quired using IDA* with a heuristic based on
pattern databases.11,12Herbert Kociemba of
Germany developed similar ideas indepen-
dently. The standard Rubik’s Cube consists

of 27 subcubes,or cubies. The 20 movable
cubies include eight cubies on the cube’s
corners and 12 cubies on the edges. Corner
cubies stay on the corners; edge cubies stay
on the edges. The total number of different
permutations and orientations of the corner
cubies is only 88,179,840. Thus,with a
breadth-first search that ignores the edge
cubies,we can compute the exact number of
moves required to solve each state of the

corner cubies and store these values in mem-
ory. Because this number ranges from zero to
11 moves,each entry requires only four bits,
for a total of 42 Mbytes of storage. Because
any solution must solve both the corner and
edge cubies,the number of moves to solve
just the corner cubies is a lower bound on the
total number of moves required to solve the
cube. Thus,this value is an admissible
heuristic.

10 IEEE INTELLIGENT SYSTEMS

The role of games in understanding
computational intelligence
Jonathan Schaeffer, University of Alberta

The AI research community has made one of the most profound contri-
butions of the 20th century to mankind’s knowledge. This research has led
to the realization that intelligence is not uniquely human. Using computers,
it is possible to achieve human-like behavior in nonhumans. In other words,
it is possible to create the illusion of human intelligence in a computer.

This idea has been vividly illustrated throughout the history of computer
games research. Unlike most of the early work in AI, game researchers
were interested in developing high-performance, real-time solutions to
challenging problems. This led to an ends-justify-the-means attitude:the
result—a strong chess program,for example—was all that mattered, not
the means by which it was achieved. In contrast,much of the mainstream
AI work used simplified domains,while eschewing real-time performance
objectives. This research typically used human intelligence as a model:all
one had to do was emulate the human example to achieve intelligent
behavior. The battle (and philosophical) lines were drawn.

The difference in philosophy can be easily illustrated. The human
brain and the computer are different machines,each with its own sets of
strengths and weaknesses. Humans are good at, for example, learning,
reasoning by analogy, and image processing. Computers are good at
numeric calculations,repetitious computations,and memorizing large
sets of data. These machine architectures are largely complementary: the
human’s processing strengths are the computer’s weaknesses and the
computer’s strengths are human weaknesses. Given a problem to be
solved and a specified architecture (human brain or silicon computer),a
good solution should cater to the strengths of the machine being used,
not the weaknesses. When viewed in this light,it is not surprising that the
unhuman-like approaches have won out.

Building high-performance game-playing programs has been one of
AI’ s major triumphs. This is due, in part, to the success achieved in
games such as backgammon,chess,checkers,Othello,and Scrabble,
where computers are playing as well as or better than the best human
players. However, its success is also due to the examples it sets for the
research community. These include tackling challenging problems
(rather than trivial subsets,as is still often seen in AI research) and the
emphasis on the results of the system without regard for the methods
used to achieve those results (the ends justify the means).

This essay illustrates a number of techniques used by game-playing
programs to achieve the illusion of human-like intelligence.

Brute-force search
Humans are poor searchers. They cannot search quickly, and usually

not optimally. In contrast,computers are very good at searching. Consid-
ering millions of possibilities per second, looking for a solution in a maze
(or tree) of possibilities is easy to do in a computer. However, humans are
very good at discovering, generalizing, and using knowledge; computers
are primitive in comparison. Even after 50 years of research,no one
understands how to represent and manipulate knowledge effectively.
Hence, many computer-based solutions for games programs trade off
knowledge for searching. They use large, deep searches to compensate for

inadequate knowledge (so-called brute-force search,sometimes used in a
derogatory context). Search itself is dynamic knowledge.

This idea culminated in the Deep Blue victory in an exhibition match
with world chess champion Garry Kasparov in 1997. Deep Blue used a
32-processor IBM SP-2 computer, with each processor connected to 16
specially designed chess chips.1 Each chip was capable of quickly
searching large chess trees. The result was a chess machine whose search
considered all possible moves at least 12 ply (one ply is one move by one
side) into the future, while selectively extending the search considerably
deeper for interesting moves.

Deep Blue searched 200 million chess positions persecond.1 Kasparov
considered two. Given those numbers,to some observers it was not a
surprise that the computer won the match. The real surprise was how long
humans have been able to withstand the technological onslaught. The next
generation of Deep Blue chess chips will be 10 times faster than those
used in the Kasparov match. Improved computer technology improves the
perceived “intelligence”of compute-bound AI applications.

Brute-force search is now an accepted tool in the AI researchers’ tool-
box, and has been used to achieve many notable successes (with games
and in other domains).

Large memory
Computer memory is cheap. The price per byte of disk storage is

plummeting. This trend will continue for the foreseeable future.
Human memories are notoriously fallible, have a fixed capacity, and

degenerate with time. Storing large amounts of data is impractical.
Humans compensate for this by distilling large amounts of knowledge into
a manageable number of rules (or heuristics) that are effective at recon-
structing the data. Computer memory, on the other hand, can be made
infallible, expanded to fit the needs,and preserved forever. Hence, a brute-
force approach to storage can be used:save everything.

The Chinook checkers program (8 × 8 draughts) uses this idea.2 The
game theoretic result (win,loss,or draw) for all positions with eight or
fewer pieces on the board were computed:roughly 444 billion positions
(4.44 × 1011). This knowledge lets the program play perfectly when it
reaches a certain position in the database (the program will always win a
won position and never lose a drawn position). It also significantly affects
the search, in that it introduces perfect knowledge. It is not uncommon to
see a position with 20 pieces on the board being searched deeply enough
to back up a database score to the root of the search. Typically, Chinook
can announce the final result of the game (assuming that the human oppo-
nent does not make a mistake) within 15 moves of the start.

The database was compressed into six gigabytes for real-time decom-
pression. While the early versions of the program were I/O bound, con-
tinually accessing the database on disk to look up position values during
a search, the current version preloads the entire database into random-
access memory. The resulting speed benefits only serve to widen the gap
between Chinook’s capabilities and what the best humans can achieve.

Unexplainable knowledge
How does one acquire knowledge for use in a game-playing program?

The traditional approach is to consult human domain experts and attempt to
distill rules for strong play from them. This is a difficult task,especially

NOVEMBER/DECEMBER 1999 11

Armand Prieditis first proposed using
the number of moves needed to solve the
corner cubies as a heuristic for the whole
cube.13Additional pattern databases,based
on subsets of the edge cubies,can also be
built, with the final heuristic being the
maximum of the individual heuristic val-
ues. Initially, 10 randomly generated initial
states were solved optimally using this
technique.11 One of these states generates

over a trillion nodes,and the median opti-
mal solution length is 18 moves.

Conclusions and further work
I have chronicled the major milestones in

finding optimal solutions to sliding-tile puz-
zles and Rubik’s Cube. The numbers of
nodes generated in these experiments in-
creased from 181,440 for the Eight Puzzle
in 1967,through billions for the Fifteen

Puzzle in 1985,to trillions for the Twenty-
Four Puzzle and Rubik’s Cube in 1996.
Given this trend, it is tempting to ascribe all
this progress simply to faster computers.
While Moore’s Law has played an impor-
tant role, these results would not have been
possible without A*, linear-space algo-
rithms such as IDA*, and more accurate
admissible heuristic functions,such as pat-
tern databases. Even today’s computers

given the difficulty humans have in expressing their subconscious decision-
making processes. For a computer solution,one ideally wants to eliminate
the weak link—the human expert. The computer should be able to discover
and refine all the knowledge it needs. While this goal remains elusive in
general, there have been some notable successes in the games domain.

The Othello program Logistello plays Othello better than all humans.3

The program evaluates positions using 11 patterns that, with reflections
and rotations,come to 46. Assigning a score to each possible value for
each pattern results in roughly 1.2 million evaluation scores that need to
be determined. Using self-play (Logistello playing games against itself)
and linear regression,the program can incrementally learn the value of
these parameters. With relatively little effort (roughly a month of compu-
tation), the program achieves world-class ability. In effect,this is a brute-
force approach to integrating knowledge. Program designers can include
as much (or as little) knowledge as they like, and let the parameter-learn-
ing process decide what is used and how important it is. The TD-Gam-
mon backgammon program pioneered similar techniques where self-play
and temporal difference learning of a neural net resulted in play that is
comparable to that of the human world champion.4

There is little in the way of useful information that humans can extract
from the large number of seemingly random numbers with which Logis-
tello evaluates positions. Just as computer program designers have diffi-
culty understanding human knowledge, so too do humans have difficulty
understanding computer “knowledge.”

Simulations
The early research into games was restricted to two-player, perfect-

information games. With the decline of interest in chess research in the
1990s,efforts switched to other games,including those with multiple
players and having imperfect information. Imperfect information pro-
vides an interesting challenge. In these types of games,humans observe
their opponent’s actions and make inferences as to the missing informa-
tion. Human intuition and experience can be amazingly accurate. Com-
puters have difficulty approximating experience and intuition,but are
capable of precise probability calculations. The computer’s solution is
simulation: instantiate the missing information many times,each time
calculating the likely outcome. In this way, a statistical profile can be
obtained that indicates the computer’s best course of action.

Bridge,5 poker,6 and Scrabble7 programs—all games of imperfect infor-
mation—use similar techniques to achieve their success:they simulate
hundreds or thousands of scenarios. For example, the bridge program
GIB decides what card to play by simulating the play of the hand.5 The
program internally deals out cards that are consistent with the bidding to
the opponents. It then plays out the hand to the end to see which card play
leads to the best result (most tricks won). It repeats this process roughly
100 times,each time with different cards for the opponent. After enough
simulations,it becomes clear which card play, on average, leads to the
best result. The program does not understand well-known bridge concepts
such as finesse or squeeze; everything is done using uninformed search.

Comprehension without understanding
Documents contain human-understandable information. Because this

information was designed to be easily understood by a human (such as

text, sounds,and images),it is often difficult for a computer to figure it out.
This communications gap between man and machine is an imposing obsta-
cle to technology. No one wants to re-express human knowledge in com-
puter-understandable terms unless absolutely necessary. We need to make
computers understand documents. The computer solution is to create the
illusion of understanding, without actually doing any comprehension.

The Proverb program solves crossword puzzles.8 Human crossword
solvers use the semantics of the clues to deduce the answers needed for
the puzzle. The clues are intended for a human audience and include a
combination of factual information, common knowledge, missing words,
and word plays. Writing a computer program to understand the seman-
tics is a challenging problem. Proverb’s solution is to not understand the
clues. It includes a variety of solvers (or agents) that examine the words
in the clues to identify likely answers. For example, Proverb uses a data-
base of clues and answers from previous puzzles to find an answer to a
clue 34% of the time. Specialized agents can go out on the Internet and
query, for example, dictionary, history, geography, and movie databases.
Each agent returns a set of answers. Proverb combs through the plausible
answers,trying to fit them into the puzzle grid and satisfy all the con-
straints. Proverb scores 95% letters correct on the New York Times cross-
word puzzles,without understanding the meaning of any of the clues.

Comprehension without understanding is a powerful technique. Simi-
lar ideas are being applied to,for example, classifying Web pages. Given
an arbitrary Web page, is it possible to classify its type (personal page,
company, course, and so forth)? Statistical techniques can do an effective
job. For example, counting the frequency of words appearing on the page
can be a powerful indicator of the type of the page. No human would
ever explicitly compute word frequencies to do this.

COMPUTER GAMESresearch is a microcosm for AI research. By liber-
ating the computer from blindly following the human example, amazing
feats of intelligence are possible with relatively little computer program-
ming effort. Our notion of intelligence will never be the same.

References
1. F-H. Hsu,“IBM’ s Deep Blue Chess Grandmaster Chips,” IEEE

Micro, Mar./Apr., 1999,pp. 70–81.

2. J. Schaeffer, One Jump Ahead, Springer-Verlag, New York, 1997.

3. M. Buro, “Logistello—A Strong Learning Othello Program,” 1997;
www.neci.nj.nec.com/homepages/mic/ps/log-overview.ps.gz.

4. G. Tesauro, “Temporal Difference Learning and TD-Gammon,”
Comm. ACM, Vol. 38,No. 3,1995,pp. 58–68.

5. M. Ginsberg, “GIB: Steps Toward an Expert-Level Bridge-Playing
Program,” Proc. Int’l Joint Conf. AI, AAAI Press,Menlo Park,
Calif., 1999,pp. 584–589.

6. D. Billings et al. “Using Probabilistic Knowledge and Simulation to
Play Poker,” Proc. AAAI Nat’ l Conf.,AAAI Press,Menlo Park,
Calif., 1999,pp. 697–703.

7. B. Sheppard, private communication, Oct. 1998.

8. G. Keim et al.,“Proverb:The Probabilistic Cruciverbalist,” Proc.
AAAI Nat’ l Conf.,AAAI Press,Menlo Park, Calif., 1999,pp.
710–717.

couldn’t find optimal solutions to the Fif -
teen Puzzle with just brute-force search.
Similarly, finding optimal solutions to the
6 × 6 Thirty-Five Puzzle or the 4 × 4 × 4
Rubik’s Cube will in all likelihood require
the development of new algorithmic
techniques.

Another problem is finding the diameter
of these problem-space graphs. In other
words,how many moves apart can two states
be, via a shortest solution path. This number
is 31 moves for the Eight Puzzle and 80
moves for the Fifteen Puzzle,14 but it’s not
known for any larger versions. The corre-
sponding value for the 2 × 2 × 2 Rubik’s
Cube is 11 moves,but is unknown for any
larger cubes. The current conjecture for the
diameter of the 3 × 3 × 3 Rubik’s Cube is 20
moves.

While most research on games and puz-
zles has strived to achieve expert human-
level performance, finding optimal solutions
to sliding-tile puzzles or Rubik’s Cube is far
beyond human capabilities. Even expert
cubists that can solve a cube in less than 30
seconds employ over 50 moves,compared
to an optimal solution of 20 or less.

References
1. S. Loyd, Mathematical Puzzles of Sam

Loyd: Selected and Edited by Martin Gard-
ner, Dover, New York, 1959.

2. W.W. Johnson and W.E. Storey, “Notes on
the 15 Puzzle,” Am. J. Mathematics,Vol. 2,
1879,pp. 397–404.

3. P.D.A. Schofield, “Complete Solution of the
Eight Puzzle,” Machine Intelligence 3,
American Elsevier, New York, 1967,pp.
125–133.

4. P.E. Hart, N.J. Nilsson,and B. Raphael,“A
Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths,” IEEE Trans.
Systems Science and Cybernetics, Vol. SSC-
4, No. 2,July 1968,pp. 100–107.

5. R.E. Korf, “Depth-First Iterative-Deepen-
ing:An Optimal Admissible Tree Search,”
Artificial Intelligence, Vol. 27,No. 1,1985,
pp. 97–109.

6. O. Hansson,A. Mayer, and M. Yung, “Criti -
cizing Solutions to Relaxed Models Yields
Powerful Admissible Heuristics,” Informa-
tion Sciences, Vol. 63,No. 3,1992,pp.
207–227.

7. R.E. Korf and L.A. Taylor, “Finding Opti-
mal Solutions to the Twenty-Four Puzzle,”
Proc. 13th Nat’ l Conf. AI, AAAI Press,
Menlo Park, Calif., 1996,pp. 1202–1207.

8. L. Taylor and R.E. Korf, “Pruning Duplicate
Nodes in Depth-First Search,” Proc. 10th
Nat’ l Conf. AI, AAAI Press,Menlo Park,
Calif., 1993,pp. 756–761.

9. A. Newell and H.A. Simon,“GPS, a Pro-
gram that Simulates Human Thought,”
Computers and Thought,E. Feigenbaum
and J. Feldman,eds.,McGraw-Hill, New
York, 1963,pp. 279–293.

10. R.E. Korf, “Macro-Operators:A Weak
Method for Learning,” Artificial Intelli-
gence, Vol. 26,No. 1,1985,pp. 35–77.

11. R.E. Korf, “Finding Optimal Solutions to
Rubik’s Cube Using Pattern Databases,”
Proc. 14th Nat’ l Conf. AI, AAAI Press,
Menlo Park, Calif., 1997,pp. 700–705.

12. J.C. Culberson and J. Schaeffer, “Pattern
Databases,” Computational Intelligence,
Vol. 14,No. 4,1998,pp. 318–334.

13. A.E. Prieditis,“Machine Discovery of
Effective Admissible Heuristics,” Machine
Learning, Vol. 12,1993,pp. 117–141.

14. A. Brungger et al.,“The Parallel Search
Bench ZRAM and its Applications,” Annals
of Operations Research, Vol. 90,1999,pp.
45–63.

How machines have learned to
play Othello

Michael Buro, NEC Research

Today’s top programs for perfect-infor-
mation games use a variety of techniques to
increase the move quality subject to the
limited time available in tournaments.
These programs

• achieve a high raw search speed by
means of assembler routines or by using
very fast parallel or special-purpose
hardware that allows deep game-tree
searches and thereby enables playing a
strong game even if only poor evalua-
tion functions are used;

• use smart evaluation functions that are
often automatically tuned;

• perform selective searches to follow
interesting variations more deeply or to
cut off probably irrelevant lines of play
early, without missing many decisive
variations; and

• utilize large opening books and perfect
endgame databases for improving per-
formance in the opening and endgame
phases.

The combination of all these techniques is
ideal for top-level play.

Unfortunately, there are incompatibilities
as well as trade-offs between these tech-

niques. For instance, affordable hardware
realizations require a simple structure both
for the evaluation function and the selective
search mechanism. These restrictions might
cause a lower playing strength than expected
compared to that of a workstation implemen-
tation of a smarter search algorithm coupled
with a better evaluation function. On the
other hand, weaker but faster evaluation
functions allow deeper searches that might
lead to a better overall performance than the
use of smart but slow functions in conjunc-
tion with shallower searches.

Despite these design problems,game
designers can often improve existing im-
plementations by working on each of the
mentioned topics separately, aiming for the
right balance. This is very important,be-
cause neglecting one issue can reduce the
overall performance considerably.

In this essay, I describe the cornerstones
of Logistello,which dominated the com-
puter Othello scene from 1993 until 1997.
In late 1997,it retired from active tourna-
ment play after beating the then human
world champion Takeshi Murakami 6-0
(see Figures 2 and 3).1 Although Othello—
a popular Japanese board game—served as
a test domain for research in evaluation
function construction,selective search, and
opening book learning, the novel ideas I
will discuss are game-independent and
worth considering in other games and
domains.

Positional evaluation—GLEM
Many AI systems use evaluation func-

tions for guiding search tasks. In the con-
text of strategy games,they usually map
game positions into the real numbers for
estimating the winning chance for the
player to move. Decades of research have
shown how hard a problem-evaluation
function construction is,even when focus-
ing on particular games.

To simplify the construction task,the
notion of evaluation features emerged. This
notion assumes that there exist reasonable
approximations of the perfect evaluation
function in the form of combinations of a
few distinct numerical properties of the posi-
tion—called features. Given this,evaluation
functions can be constructed in two phases
by selecting features and combining them.

Selecting features is one of the most
important and difficult subtasks in con-
structing a game-playing program. It
requires both domain-specific knowledge

12 IEEE INTELLIGENT SYSTEMS

NOVEMBER/DECEMBER 1999 13

and programming skills because
of the well-known trade-off
between speed and knowledge
in game-tree search. A couple of
years ago, the authors of the best
game-playing programs still
picked not only features but also
their weights in the course of a
tedious optimization process.
This is somewhat surprising,
because in 1959,Arthur Samuel
had already proposed ways for
automatically tuning weights.2

While selecting features is diffi-
cult for a machine, fitting even a
large number of weights given a
set of training positions is not.
Research focused on the latter
topic produced TD-Gammon,a
world-class backgammon pro-
gram written by Gerry Tesauro.2

In the effort of improving Oth-
ello’s evaluation function,I went
a step further toward the ultimate
goal of automatic evaluation-
function construction. Based on a
generalized linear-evaluation
model—called GLEM—I have
developed efficient procedures for generat-
ing training positions,exploring the feature
space, and fitting feature weights.3 Rather
than combining a few features by using
complicated nonlinear functions,I propose
to construct evaluation functions by linearly
combining a large number of features that
are Boolean combinations of atomic rela-
tions. This approach lets us model nonlinear
effects directly, without the detour over
analytic functions and opens up practical
ways for generating features automatically.
While refining the evaluation model,Logis-
tello’s evaluation function underwent dras-
tic changes from a classic form—featuring
only a handful of manually weighted fea-
tures—to its final version,which utilizes
approximately 100,000 binary features in
conjunction with over 1.2 million automati-
cally tuned parameters. Observing that
short Boolean combinations of simple
binary features (such as,“is a white disc on
h8?”) can approximate important Othello
concepts combined with the “mechanical”
analysis of millions of training positions
has produced an expert program capable of
beating any human player. Interestingly, the
game knowledge encoded by the set of over
a million configuration weights goes far
beyond the mobility features we intended

the system to approximate in the first place.
This result encourages the application of

GLEM to other games or even to search or
decision problems in other domains. At-
tractive candidates are chess and Go because
both games are very popular and well ana-
lyzed. And yet,for chess,hardware roughly
equivalent to 2,000 ordinary PCs is currently
needed to compete with the human world
champion. For Go,the status is even worse
because brute-force search is infeasible due
to the large branching factor. Because a good
evaluation function is not known either, ama-
teurs can still beat the best Go programs
handily. In our opinion,the key to better
chess and Go programs lies in improved
evaluation functions. A starting point could
be the analysis of known features with regard
to their approximation by simple Boolean
functions as proposed by GLEM.

Selective search—Multi-ProbCut
Human players can find good moves with-

out searching the game tree in its full width.
Using their experience, they can prune
unpromising variations in advance. The
resulting game trees are narrow and might be
rather deep. By contrast,the original mini-
max algorithm searches the entire game tree
up to a certain depth and even its efficient

improvement—the alpha-beta
algorithm—may only prune
backwards because it must
compute the correct minimax
value.

The selective-search proce-
dure ProbCut permits pruning
of subtrees that are unlikely
to affect the minimax value
and uses the time saved to
analyze more probably rele-
vant variations. This ap-
proach capitalizes on the fact
that values returned by mini-
max searches of different
depths are highly correlated
provided that a reasonably
good evaluation function
and—if necessary—a quies-
cence search is used. In this
case, we would expect that a
shallow search result v(s) is a
good predictor for the deep
minimax value v(d). Based
on this estimation, we could
determine whether the deep
minimax value lies outside
the current alpha-beta win-

dow with a prescribed likelihood. If so,the
position need not be searched more deeply
because the deep search result will unlikely
change the root’s minimax value. Other-
wise, the deep search is performed yielding
the true value. Here, a shallow search has
been invested, but relative to the deep
search the effort involved is negligible, due
to the exponential tree sizes.

A natural way to express the relationship
between search results of different depth is
a linear model of the form v(d) = a*v(s) + b
+ e where a and b are real constants and e is
a normally distributed error variable having
mean 0 and variance σ2. Once all model
parameters are estimated by linear regres-
sion applied to a large number of training
pairs (v(d), v(s))(i), ProbCut can test the cut
conditions v(d) ≤ α and v(d) ≥ β efficiently
during game-tree search: after computing
the shallow search result v(s), the search
terminates in the current position if a∗ v(s) +
b, which is an unbiased estimator for v(d),
lies outside of [α – t∗ σ, β + t∗ σ]. Here, t is
an adjustable confidence parameter that can
be optimized by means of tournaments.

In the first ProbCut implementation used
in Logistello,s= 4 and d = 8 were chosen
and t = 1.5 was empirically found to be the
best cut threshold. For this parameter con-

Figure 3. Othello board.

Figure 2. Takeshi Murakami playing Logistello.

stellation, the winning percentage of the
ProbCut-enhanced version of Logistello
playing against the brute-force version was
74% in a 70-game tournament.

Although ProbCut already marks a big—
and potentially game-independent—
improvement over brute-force alpha-beta
search, it can still be refined in several ways.
Multi-ProbCut (MPC)

• allows for pruning at different search
heights,

• uses game-stage dependent cut thresh-
olds,and

• conducts shallow check searches using
iterative deepening.4

The latter improvement detects extreme
positions much earlier. Incorporated in
Logistello,MPC featuring up to (s = 5 ,d =
17) cuts and two cut thresholds (for the open-
ing and middle game) beats regular (s = 4,d
= 8) ProbCut by about 72%. At equal search
times,MPC looks five to seven plies further
ahead in selected lines compared with brute-
force alpha-beta search and achieves a win-
ning percentage of about 80%.

In summary, for Othello and the chosen
evaluation function,MPC significantly out-
performs ProbCut as well as brute-force
alpha-beta search. MPC’s amazing perfor-
mance demonstrates that the alpha-beta algo-
rithm wastes most of its time by analyzing
irrelevant variations. MPC,on the other
hand, detects potential bad moves very early
and postpones their further investigation. In
this way, it concentrates on probably relevant
lines of play without overlooking crucial
tactical variations near the root. It remains to
be shown whether MPC can be successfully
applied to other games. Because it coexists
with most of the alpha-beta enhancements
currently used in chess programs,MPC
might improve these programs,too.

Opening book learning
In spite of evaluation and search im-

provements,programs still show weak-
nesses in the opening phase, stemming
from a lack of strategic planning. To miti-
gate this problem,game developers use
opening books that store move sequences
or positions together with moves. Their
automatic generation was of little interest
up to now, because move sequences can be
taken from the literature, suited to one’s
own requirements (such as the striving for
tactical complications) and manually

updated if necessary. Today, many game-
playing programs are attached to servers,
playing against human players and other
programs 24 hours a day. Thus,it has be-
come necessary for the programs to update
their opening books automatically without
human intervention.

If a player wants to be successful not only
in a single game against an unknown oppo-
nent but in a sequence of games,he or she
might face simple but effective playing
strategies by the opponent that cannot be met
by the well-known game-tree search tech-
niques alone. Perhaps the most obvious and
simple one is the following: “If y ou have
won a game, try it the same way next time.”
A program with no learning mechanism and
no random component follows this strategy,
but is also a victim of it,because it does not
deviate and therefore can lose games twice in
the same way. To avoid this,the program
must find reasonable move alternatives. It
can do so passively, as the following strategy
shows:“Copy the opponent’s winning
moves next time when colors are reversed.”
This elegant method lets the opponent show
you your own faults so you can play the
opponent’s winning moves next time by
yourself. In this way, even an otherwise
stronger opponent can be compromised,
because—roughly speaking—eventually he
is playing against himself. Thus,copying
moves makes it necessary to come up with
good move alternatives actively. To do so,a
player must understand his winning chances
after deviations from known lines.

These basic requirements of a skilled
match strategy lead directly to an algorithm
for guiding opening book play based on
minimax search.5 The procedure builds a
game tree from played variations—starting
with the initial game position—and labels
the leaves depending on the particular game
outcomes. Moreover, in each interior node,
the algorithm evaluates the heuristically
best move not played so far and adds the
corresponding edge and node together with
its evaluation to the tree. Given such a tree,
the program can easily guide the opening
book play by propagating leaf evaluations
to the root using the minimax algorithm.

Several of today’s best Othello programs
have effectively used variations of this open-
ing-book algorithm: surprises in tournament
games caused by blindly following noneval-
uated opening lines are no longer to be
feared, many programs playing on the Oth-
ello server (telnet:external.nj.nec.com:

5000) are improving their books autono-
mously, and extensive automatic book
preparation by self-play is now possible that
has revealed refutations of many common
opening lines used by human players.

Outlook
All of today’s top Othello programs use

variations of the evaluation, search, and
opening-book algorithms I’ve discussed.
Whether they can successfully apply to
other games is currently under investiga-
tion. Anyway, after the great success of
learning backgammon and Othello pro-
grams,it now seems clear that future
progress in more complex problems (in
which brute-force search is infeasible)—
such as Go—also depends on advances in
machine learning.

Because games can serve as “most sim-
ple but already hard” prototypes of real-
world decision problems,games research
is an important branch of AI. Construction
of problem-solving algorithms in complex
domains greatly benefits from a practical
framework for automatic feature construc-
tion, training-set generation, weight
assignment,selective search, and post
mortem analysis. Although the work on
Othello I’ve discussed has opened doors
in these directions,there is much room for
improvement—which becomes apparent
when picking the next harder game on the
list.

References
1. M. Buro, “The Othello Match of the Year:

Takeshi Murakami vs. Logistello,” ICCA J.,
Vol. 20,No. 3. 1997,pp. 189–193.

2. A.L. Samuel,“Some Studies in Machine
Learning Using the Game of Checkers,”
IBM J Research and Development, Vol. 3,
No. 3,1959,pp. 211–229.

3. M. Buro, “From Simple Features to Sophis-
ticated Evaluation Functions,” First Int’l
Conf. Computers and Games (CG’98),Lec-
ture Notes in Computer Science, Springer-
Verlag, New York, Vol. 1558,1998.

4. M. Buro, Experiments with Multi-ProbCut
and a New High-Quality Evaluation Func-
tion for Othello, NECI Tech. Report #96,
Princeton,N.J., 1997.

5. M. Buro,Toward Opening Book Learning,
ICCA J.,Vol. 22,No. 2,1999,pp. 98–102.

6. G. Tesauro, “Temporal Difference Learning
and TD-Gammon,” Comm. ACM, Vol. 38,
No. 3,1995.

14 IEEE INTELLIGENT SYSTEMS

NOVEMBER/DECEMBER 1999 15

Mastering Scrabble
Brian Sheppard, Hasbro

If I had to identify one factor that enabled
recent advances in game AI, it would be that
programmers have a large arsenal of methods
to adapt to their needs. An example is in order,
so I’ll describe Maven,my Scrabble AI.

The most important skill in Scrabble is
the ability to find high-scoring plays. So
Maven includes an exhaustive move genera-
tor, which produces each legal move, along
with a score and a list of the tiles remaining
on the rack. Thus,Maven achieves this criti -
cal skill using full-width search.

A note about word lists is in order.
Nowadays,I can get a computerized word
list from the National Scrabble Association
(NSA). But this is a recent advance. The
development of Maven included several
man-months of data entry. I will describe
the process,because every game AI project
involves similar drudge work.

I bought a copy of the Official Scrabble
Players Dictionary (OSPD) from my local
bookstore and started typing the words. I
couldn’t bear to type every single word, so I
invented a “little language” of the form “v
assert -or -ors,” which I postprocessed into
“ASSERT ASSERTED ASSERTING ASSERTS ASSERTOR

ASSERTORS.” This trick cut the typing in half.
Then came a verif ication stage, where I

statistically profiled the word list to deter-
mine its error rate. My initial data entry
omitted 2% of the words and misspelled
1%. There ensued a proofreading chore to
correct these errors. I then validated key
lists of words such as the two-letter words,
JQXZ words,and so forth,against printed
lists from the NSA. This step ensured that
any remaining errors were unlikely to mat-
ter, because they would occur among low
frequency words. Eight errors remained
(out of 95,000 words),which I found sev-
eral years later when I compared my list
against the list of another person who had
undertaken the same task.

Then I decided to add the “long words”
to my list, because the OSPD only con-
tains main entries up to eight letters long.
This process involved scanning Webster’s
10th Collegiate Dictionary, proofreading,
profiling, cross-checking, and so on. It was
a huge task,but very typical of game AI
development.

Evaluation functions
To evaluate a position properly you have

to model the factors that are important to the
domain. Maven’s development is interesting
because there wasn’t a well-developed posi-
tional model of Scrabble at the time. At
least,there was none that I could find. Of
course, experts used certain precepts in
choosing plays,but I didn’t know any expert
players,and I didn’t have access to any of
their writings. I had to model the domain
“fr om first principles.” I might have been
lucky in this regard, because almost every
precept held by experts prior to the advent of
Maven has been proven false. Since model-
ing is a messy task that nearly every game
AI developer has to do sometime, I will
walk you through the steps I followed.

I reasoned that a move changes three
things:the score, the tiles held by the
player, and the position. So,in gross terms,
I have the equation Evaluation = Score +
Rack + Position. This is a good start be-
cause my move generator already computes

the score and the tiles left on the rack (the
rack leave). I was confident that I could
build an evaluator for rack leaves,because I
had a trick up my sleeve. But what should I
do about this annoying Positionterm? Did I
have to develop a complicated (and slow)
pattern-matching algorithm for evaluating
the myriad possible changes in position that
could occur as a result of a move?

Upon reflection,I decided that the Posi-
tion term was usually very close to 0,so I
could ignore it (with one exception). The
reason is that the board is a resource that
affects both players,so any openings for
high scores tend to cancel out. The oppo-
nent’s advantage is that he moves first,so
a hot spot is more likely to benefit him.
Maybe you should penalize hot spots by a
small amount,but maybe not. You have to
consider that the opponent is a weaker
player than Maven,so hot spots dispro-
portionately benefit Maven. The only

Michael Buro is a scientist at the NEC Research Institute. He wrote Logis-
tello, the world champion-class Othello program. He earned a diploma in
computer science from the Technical University of Aachen and a PhD in
machine learning in games from the University of Paderborn,Germany. He
is a member of the AAAI and the ICCA. Contact him at NEC Research Inst.,
4 Independence Way, Princeton,NJ 08540; mic@research.nj.nec.com;
www.neci.nj.nec.com/homepages/mic/mic.html.

Richard E. Korf is a professor of computer science at the University of
California,Los Angeles. He received his BS from MIT, and his MS and
PhD from Carnegie-Mellon University, all in computer science. His
research is in the areas of problem solving, planning, and heuristic search
in artif icial intelligence. He received an NSF Presidential Young Investiga-
tor Award and is a fellow of the AAAI. Contact him at the Computer Sci-
ence Dept.,UCLA, Los Angeles,CA 90095; korf@cs.ucla.edu; www.cs.
ucla.edu/~korf.

Michael Littman is an assistant professor of computer science at Duke
University. His main interests are in machine learning, examining algo-
rithms for decision-making under uncertainty, and statistical natural-lan-
guage processing. He received his PhD from Brown University, and his
master’s and bachelor’s degrees from Yale University. His crossword work
was chosen for the best paper award at AAAI 99. Contact him at Box
90129,Duke Univ., Durham,NC 27708-0129; mlittman@cs.duke.edu;
www.cs.duke.edu/mlittman/.

Br ian Sheppard is director of technology at Hasbro Interactive. His
research interests include heuristic search and multiplayer network games.
He received a BA in mathematics from Harvard College. He is the author
of the Scrabble program Maven,one of the first programs to achieve cham-
pionship caliber in any game. Contact him at Hasbro Interactive, 50 Dun-
ham Rd., Beverly, MA 01915; bsheppard@hasbro.com.

Jonathan Schaeffer is a professor in the Department of Computing Sci-
ence at the University of Alberta. His research interests include heuristic
search and parallel-computing environments. He received a BSc from the
University of Toronto and an M.Math and a PhD from the University of
Waterloo. He is a member of the IEEE,ACM, AAAI, and ICCA. Contact
him at the Dept. of Computing Science, Univ. of Alberta,Edmonton,
Alberta,Canada T6G 2H1; jonathan@cs.ualberta.ca; www.cs.ualberta.
ca/~jonathan.

exception is that direct access to triple-
word squares is a factor that should be
evaluated, because such a spot is high
scoring, easy to use, and unlikely to be
left around for the next turn. Still, calcula-
tion showed that direct access to triple-
word square is only worth a few points
(usually under three).

As for Rack evaluation, I whipped out
my trick: I would use self-play to generate
games and “f eed back” the impact of hold-
ing specific tiles into the evaluation func-
tion. This method worked well in Scrabble.
In fact,the evaluation function improved
from zero initial knowledge to beyond the
level of the human champions of the day,
while using only a single day of training.

Self-play combined with feedback is a
fundamental method employed in most
competitive programs. It works in other
nondeterministic games,and in determinis-
tic games,too,if combined with tricks that
ensure exploration.

But self-play can only take you so far.
Self-play brings a program into greater
internal consistency, but if a fundamental
computational process is missing, you
won’t discover it through self-play. Actual
comparison against human experts is
required to diagnose such deficiencies.

The most direct form of comparison is
competition. Competition measures skill
using the same standards that humans use.
You can also participate in post-mortem
discussions that provide guidance about
where to invest additional effort.

Maven’s competitive games showed that
Maven was championship caliber. They
showed that I could stop worrying about
things that I always believed were unimpor-
tant,but experts told me were huge. For
example, was it important that Maven didn’t
vary its play as a function of the score? Was
it important to consider the skill of the oppo-
nent? Was it important to block or openthe
board? Well, maybe it was important,but it
was insignificant compared to Maven’s skill
in scoring points and keeping good tiles.

Other forms of comparison are indirect.

For example, I compared Maven’s moves
against moves made by experts and against
annotations written by experts. I published
annotations “wr itten” by Maven,to elicit
feedback from experts. All of these things
helped somehow, if only to provide reas-
surance to the author.

The endgame
I also learned about the importance of

the endgame, which is the phase of the
game where there are no tiles in the bag,
and so the game becomes deterministic.
Maven made serious endgame errors by
failing to block a good spot for the oppo-
nent or failing to leave itself a way to play
off all of its tiles.

Achieving good endgame play required
that I scrap Maven’s whole approach, be-
cause it is impossible to build a static eval-
uator that evaluates an endgame position
using only one ply of lookahead. Clearly,
the searching techniques of perfect-infor-
mation games needed to be brought to bear,
but the leading candidate (full-width alpha-
beta) had serious shortcomings for this
application.

For one thing, alpha-beta requires almost
best-first move ordering for good search
efficiency, whereas my move generator
produces moves in order of rows of the
board. The prospect of ordering moves
after generating them was unattractive,
because there are an average of 200 moves
at the start of an endgame, and there could
be many, many more if the side-to-move
held two blanks. Also, move generation
was comparatively slow (about 1 second on
the hardware of the day), which limited us
to about 120 nodes per search. Obviously,
you can’t search a tree whose branching
factor is 200 at the root if you have only
120 nodes to work with. As if that weren’t
enough,there are vitally important
endgames where the one side is “stuck with
the Q”and cannot play out. In such cases,
the best strategy may be to play out “one
tile at a time.” Such endgames can last 14
ply, with several hundred legal moves per
ply, and the highest-scoring moves are
almost always bad!

What was needed was a search algo-
rithm that was naturally full-width, vari-
able-depth,and appropriately selective
(that is, able to distribute 120 nodes of
search so as to explore a potentially huge
space). Fortunately, I have read nearly
every paper about search algorithms ever

written,so Berliner’s B* algorithm was
familiar to me. The technique of applying
B* is very interesting and novel, but alas,
this is not the right forum for describing
it, as it is highly domain-specific. To con-
tinue our topic, every game programmer
needs to be familiar with the literature,
because there are many general-purpose
methods available. The programmer must
also accurately judge the applicability of
each method to his domain. Finally, gen-
eral methods usually require domain-
specific adaptation to reach their full
potential.

Statistical lookahead
Finally, is developing one novel tech-

nique too much to ask of a game program-
mer? Actually, most successful game pro-
grammers have contributed a novel
method. It seems that one cannot conquer a
new game simply by applying previously
known techniques. So I tentatively put for-
ward that Maven was the first to use the
technique of statistical lookahead for play-
ing games.

Statistical lookahead is now recognized
as a general method, having been applied
(and independently discovered) by
pioneers in games such as backgammon,
bridge, and poker. The technique might be
new to readers,so I will take a moment to
describe it.

The idea is to evaluate moves by “play-
ing them out”at high speed. The move with
the highest average outcome is selected.
During the process,you can gain speed by
pruning moves that have proven to be infe-
rior. This technique has many domain-spe-
cific details,such as the question of which
alternatives are considered, how the game is
played out,how to prune moves,how to
model opponent’s behavior, and so forth.
Virtually any domain with randomness
(such as backgammon) or hidden informa-
tion (bridge) or both (Scrabble and poker)
can benefit from statistical lookahead. I
think this technique will produce a treasure-
trove of research results (and practical
results) because of its adaptability.

So,successful game AI results from
combining many general methods. Maven
would not be what it is without full-width
search, evaluation functions,self-play,
feedback, competition,indirect compar-
isons,knowledge engineering, perfect-
information search techniques,and statisti-
cal lookahead. Plus a lot of luck.

16 IEEE INTELLIGENT SYSTEMS

Coming Next
Issue

Special Millenium Issue:
The Experts Expound on
AI’s Greatest Trends and

Controversies

NOVEMBER/DECEMBER 1999 17

Computers and language games
Michael L. Littman,Duke University

It’s amazing that we can communicate at
all. There are millions of words and phrases
that can be uttered and understood, each
with its own particular shade of meaning.
New words constantly enter the lexicon,
and old words continually evolve in their
meanings,making the situation appear
downright grim. Even so,language use
rarely seems like hard work to us. In fact,to
many people, language is one of the best
toys around.

Language games draw their challenge
and excitement from the richness and
ambiguity of natural language. Acrostics,
cryptograms,Jeopardy, and even riddles
and puns are all forms of language games.
Games like Scrabble, word search, or Bog-
gle, although word-related, typically don’t
involve true language, because word mean-
ings are not important. And it’s having to
make judgments about word meanings that
separates language games from their purely
logical counterparts.

In purely logical games,the rules defining
winning positions and legal moves are quite
clear. Not so for crossword puzzles,one of
the most popular language games and the
focus of this essay. Consider the crossword
clue “The Hindenburg, e.g.” (5 letters). Prob-
ably most of us would agree that BLIMP is a
valid answer and ROGERisn’t. But,what
about LARGE or RIGID, or even MOVIE? While
acceptable answers,they are far from ideal.

From an AI perspective, lan-
guage games are an interesting
challenge. The language compo-
nent makes them different from
board games and more closely
related to applications such as
text summarization or machine
translation. But,like logical
games,success in solving cross-
words is crisply defined:how
well does the system do in pro-
ducing the right answer?

The crossword problem
A group of us at Duke Uni-

versity became interested in
language games and decided to
build a crossword-puzzle-solv-
ing program in the fall of 1998.
We called the resulting system
Proverb for “probabilistic cru-
civerbalist”because it uses

probability theory to solve crossword
puzzles.1

The lack of formal rules was the very
first difficulty we had to face. Michael
Garey and David Johnson,in their book on
NP-completeness,2 provide formal defini-
tions for hundreds of computational prob-
lems,including crossword puzzles. In their
version of the crossword problem,the puz-
zler receives a grid and a dictionary of legal
words. A solution is an assignment of dic-
tionary words to each slot in the puzzle, so
that the across and down words fit together.

While this clearly captures some of what
it means to solve a puzzle, it isn’t a useful
characterization of real crosswords. For one
thing, there is no official dictionary of legal
answers. For Proverb, we compiled a list of
2.1 million words and short phrases from a
combination of online dictionaries,news
wire articles,compendia of famous people’s
names,and other sources. Even so,this list
only covers around 95% of answers on an
average puzzle. For example, the 16 Octo-
ber 1999 TV Guidecrossword contains 66
answers,three of which were not in Pro-
verb’s extended word list: SHOOTME, BRIDE-
OFCHUCKY, and PRINCESSBRIDE. A priori, it’s
hard to rule out any letter sequence as a
possible crossword answer:XLNC has been
clued as “Ambassador’s title,” (4 letters).

But, there’s another, more significant
reason that we need a different formaliza-
tion of crossword puzzles:in the correct
solution,the answers must relate to the
clues. We can adapt the Garey and Johnson

problem statement to reflect this by having
a separate dictionary for each slot of the
puzzle. This takes us a step closer to a prac-
tical formalization, but it misses two im-
portant facts:

• As in the Hindenburg example, some
answers are just better than others. We
ought to allow marginal answers,but
there should be a preference for the
better answers.

• Even if there were a perfect way of
deciding which answers are okay and
which aren’t, it is unlikely we could
write a program that could capture the
distinction perfectly. The best we could
expect a computer program to do would
be to assign candidate answers confi-
dence scores so that acceptable answers
are generally ranked above unaccept-
able ones.

This line of thinking informed the formal-
ization we chose for Proverb. The crossword
puzzle problem divides into two pieces:
candidate generation and grid filling. In
candidate generation,Proverb analyzes each
clue and generates a long list of candidate
answers. It then assigns each candidate a
prior probability indicating how likely it is
that the candidate is an answer to the clue. If
RED, HUE, DYE, and TAN are all equally good
answers for “Color,” (3 letters),then each
would be assigned a prior probability of
0.25. However, in actual crossword puzzles,
RED is about twice as common as any of the

other answers to this clue, so it
ought to be assigned a higher
prior probability.

In grid filling , the probability-
weighted candidate lists and the
grid serve for generating a solu-
tion to the puzzle. Because can-
didate lists are generally long,
there can be multiple solutions.
We define the best solution to be
one that maximizes the expected
number of correctly answered
clues. To define this formally,
we assume that the probability
of a given solution is propor-
tional to the product of the prior
probabilities of the answers that
make up the solution.

Candidate generation
Perfect candidate generation

requires human-level knowledge.An early chess program.

Consider the clue “Deadly sin,” (5 letters).
Answering this requires background knowl-
edge to know that four of the seven deadly
sins have five letters:GREED, WRATH, SLOTH,
and PRIDE. It requires lexical knowledge to
know that ANGER is an appropriate alternate
to WRATH. It requires syntactic knowledge to
realize that LUSTSand SEVENare related terms,
but are not appropriate given the wording of
the clue.

Some clues require an understanding of
cause-and-effect or even phonetic relation-
ships between words:“Result of bird
pharyngitis,” (12 letters):CROWINGPAINS. Still
others only make sense if you are familiar
with crossword conventions or current
events:“Emulate Mia,” (5 letters):ADOPT.

For these reasons,human-level profic-
iency in candidate generation seems an elu-
sive goal. In designing Proverb, we turned to
standard computer science and AI tech-
niques for help with candidate generation.
Proverb uses a set of databases,each with
one or more ways of turning a clue into a
query. Of the many databases it draws upon,
the most important is the cluedb, a collec-
tion of clues and answers from previously
published crossword puzzles. Depending on
the difficulty of the puzzle being solved,
from 30% to 60% of the clues are already
present in the cluedb.

Because of the wide variety of ways in
which clues can be worded, the cluedb con-
tributes in several different ways to candidate
generation. The simplest and most accurate
is exact match; if the clue being attacked
appears in the cluedb, the answer or answers
in the cluedb are returned as a candidate with
high prior probability. Proverb also queries
the cluedb using word-overlap measures as
pioneered in the information-retrieval com-
munity: the more words in common a clue
has with one in the cluedb, the more likely it
is to share its answer.

The cluedb is also used as a source of
word-word associations. In the Hindenburg
example, Proverb returns BLIMP because
“Hindenburg” appears with “airship” in
one clue, and “airship” appears with
“blimp” in another clue. By building asso-
ciation chains of this kind, Proverb can
generalize a bit beyond the specific set of
clues it has to work with. Of course, this
kind of free association leads to some odd
connections. The answer ROGERalso comes
back because “Hindenburg” appears in a
clue with “Ebert” (Hindenburg succeeded
Friedrich Ebert as Reich president in

1925),which appears in a clue with
“Roger” (because of movie critic Roger
Ebert). (You can play with a version of the
candidate generation algorithm online at
www.oneacross.com.)

Grid filling
In some ways,Proverb’s candidate gen-

eration is amazing:for “Broadcast,” (10
letters), it instantly returns DISTRIBUTE, PAS-
SAROUND, and PUBLICIZED. I doubt even the
best human crossword solvers could do
this. However, it also generates TELEVISION,
TECHNICIAN, and JOURNALIST, among other
10-letter words. While there is a clear con-
nection between these words and the clue,
few people would consider them to be valid
answers.

However, what Proverb lacks in answer
precision,it makes up for in the grid-filling
stage. Unlike humans,Proverb can simulta-
neously entertain thousands upon thous-
ands of choices for how to fill in the grid.
To generate a solution to the puzzle, Prov-
erb first computes the posterior probability
for each candidate. This is the probability
that the candidate appears in a solution; it’s
a combination of how well the candidate
answers the clue (its prior probability) and
how well it fits with other answers in the
grid.

Computing the posteriors exactly is a
#P-complete problem; it’s like counting the
number of answers to a Boolean satisfiabil-
ity problem—probably worse than NP-com-
plete. For Proverb, we designed a tree-based
approximation algorithm; we later learned
that the same approach is used in decoding
transmissions from deep-space probes.
Proverb then uses A* search to find a solu-
tion that maximizes the sum of the posteri-
ors; this is the solution that maximizes the
expected number of words correct.

Proverb’s performance on real puzzles is
impressive. In about 15 minutes of wall-
clock time per puzzle, Proverb generates
solutions that average 95% words correct
on a testset of 370 puzzles from The New
York Times, USA Today, The LA Times, TV
Guide, and other sources. Proverb was also
run on a set of seven puzzles used in the
1999 American Crossword Puzzle Tourna-
ment and scored around the middle of the
pack of the 250 human competitors.

Future challenges
In spite of its strong performance on real

crosswords,Proverb is still a far cry from

black-belt level. Expert human solvers can
finish a moderately challenging 15 × 15
puzzle in four or five minutes with no errors.
While increasing Proverb’s speed is not dif-
ficult, brining its accuracy up to champi-
onship levels will require a bit more work.

One way for Proverb to improve perfor-
mance would be to read between the lines
more. For example, encountering the clue
“Behold to Brutus,” (4 letters) with answer
ECCEshould tell Proverb that “ecce”means
“behold” in Latin. Armed with this infor-
mation, Proverb would be prepared to an-
swer “Latin behold,” (4 letters). Through a
more syntactic analysis of the cluedb and
other text sources,a structured knowledge
base could be constructed for use in solv-
ing novel clues with high accuracy. This
knowledge base would have natural appli-
cations beyond crossword puzzles.

Proverb already supports a simplified
form of this reasoning. In particular, it looks
through the cluedb for clues with the same
answer and constructs transformation rules
for turning one clue into another, preserving
meaning. Using this,Proverb finds some
simple grammar-type rules such as:“X of
Egypt” is equivalent to “Egypt’s X” for all
X. It also finds some crossword-specific
transformation rules such as:“Nice X” is
equivalent to “X in French” for all X.

But, of course, our work on Proverb just
scratches the surface of the sort of tech-
niques that can help computers tackle lan-
guage games. And, different techniques
will be most useful in different games.

Even so,expert competence in any lan-
guage game requires mastery across all
levels of linguistic knowledge, from pro-
nunciation and spelling, to syntax,mean-
ing, and world knowledge. Thus,while a
grandmaster chess program can be a nar-
rowly focused savant,a competition-class
crossword program would necessarily pos-
sess a broad set of skills. This makes the
program itself much more of a challenge to
build, but probably also a whole lot more
interesting to chat with after a match.

References
1. G.A. Keim et al.,“Proverb:The Probabilis-

tic Cruciverbalist,” Proc. 16th Nat’ l Conf.
AI, AAAI Press,Menlo Park, Calif., 1999,
pp. 710–717.

2. M.R. Garey and D.S. Johnson,Computers
and Intractability: A Guide to the Theory of
NP-completeness, Miller Freeman,San
Francisco,1979.

18 IEEE INTELLIGENT SYSTEMS

