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Abstract

Historically applied exclusively to perfect information games, depth-limited search
with value functions has been key to recent advances in AI for imperfect information
games. Most prominent approaches with strong theoretical guarantees require
subgame decomposition—a process in which a subgame is computed from public
information and player beliefs. However, subgame decomposition can itself require
non-trivial computations, and its tractability depends on the existence of efficient
algorithms for either full enumeration or generation of the histories that form the
root of the subgame. Despite this, no formal analysis of the tractability of such
computations has been established in prior work, and application domains have
often consisted of games, such as poker, for which enumeration is trivial on modern
hardware.
Applying these ideas to more complex domains requires understanding their cost.
In this work, we introduce and analyze the computational aspects and tractability of
filtering histories for subgame decomposition. We show that constructing a single
history from the root of the subgame is generally intractable, and then provide a
necessary and sufficient condition for efficient enumeration. We also introduce
a novel Markov Chain Monte Carlo-based generation algorithm for trick-taking
card games—a domain where enumeration is often prohibitively expensive. Our
experiments demonstrate its improved scalability in the trick-taking card game Oh
Hell. These contributions clarify when and how depth-limited search via subgame
decomposition can be an effective tool for sequential decision-making in imperfect
information settings.

1 Introduction

Games are a standard model for sequential decision-making. As the number of sequential decisions
needed to play increases, the size of the game’s state space can grow exponentially—quickly becoming
too large to search exhaustively. Depth-limited search navigates this issue by replacing decision
points below a certain depth with a value function that captures or approximates the value of playing
the subgame from that position onward. This can massively boost scalability and has been key to
several famous results in perfect information games including Checkers (Schaeffer and Lake [1996]),
Chess (Campbell et al. [2002]) and Go (Silver et al. [2017]).

The same idea has recently been successfully applied to certain imperfect information games such as
poker (Brown and Sandholm [2019]; Moravčík et al. [2017])—achieving similarly impressive results
by defeating human experts. In contrast to the perfect information setting, for which computing
the value function only requires evaluating the current history, most successful depth-limited search
algorithms in imperfect information games require evaluating whole sets of histories and their
reach probabilities. This information is used to generalize the concept of a subgame and its value
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by decomposing the game tree into public belief states, which are analogous to belief states in
Markov systems such as Hidden Markov Models (HMMs) and Partially Observable Markov Decision
Processes (POMDPs). This approach is commonly referred to as subgame decomposition; we
describe the associated history and reach probability computations as history filtering. Although
current theory establishes the necessary information for theoretically sound depth-limited search in
imperfect information games (Kovařík et al. [2020]), it is unclear how, or if, this information can be
computed efficiently. Understanding these computations provides insight into scaling search to larger,
more complex imperfect information games.

In this work, we define variants of history filtering for subgame decomposition that are useful for
search—called enumeration and generation—while also developing a suitable notion for efficiently
solving them. Efficient solutions should take at most polynomially many steps in the length of
the input observation sequence. We show that, in general, such algorithms only exist if P = NP.
From there, we investigate methods for efficient enumeration and generation. First, by identifying
a structural property of the game tree that is both a necessary and sufficient condition for efficient
enumeration, and then by introducing a novel, unbiased generation algorithm for trick-taking card
games, based on Markov Chain Monte Carlo. Through experiments in Oh Hell, we validate its
improved scalability and highlight the potential advantages of this approach. Our contributions
advance the theory of depth-limited search in imperfect information domains.

2 Background

In this section, we summarize the concepts and algorithms related to history filtering and public belief
states.

2.1 Factored Observation Stochastic Games

The recent introduction of Factored Observation Stochastic Games (FOSGs) (Kovařík et al. [2019])
has helped clarify fundamental concepts about decomposing public and private observations and
information in multi-agent, partially-observable sequential decision problems.

An FOSG is a tuple G =
〈
N ,W,P, w0,A, T ,R,O

〉
. N = {1, ..., N} represents the set of players,

W is the set of world states, and A is the set of joint actions. P : W → 2N is the player function,
which describes which players act in which world states. T :W ×A → ∆W is the state transition
function, where ∆W represents the set of probability distributions over W . R : W × A → RN

assigns a reward to each player, and O :W ×A×W → ON+1 is the observation function—which
maps transitions (world state-action-world state triples) to private observations for each player and a
public observation common to all players.

Games start at the initial world state w0. In any world state w ∈ W , player i acts when i ∈ P(w).
The joint action set A :=

∏
i∈N Ai is defined as the product of each player’s individual action sets

across all w ∈ W . Ai(w) ⊂ Ai denotes the legal actions for i in w, andA(w) :=
∏

i∈P(w)Ai(w) is
the set of legal joint actions in w. Play proceeds when each i ∈ P(w) chooses an action ai ∈ Ai(w)—
resulting in joint action a := (ai)i∈P(w), a ∈ A(w). The next state w′ is sampled from T (w, a),
while the reward is determined by evaluating R(w, a). Finally, O(w, a,w′) is factored into public
and private observations as (Opriv(1)(w, a,w

′), ...,Opriv(N)(w, a,w
′),Opub(w, a,w

′)).

2.2 Policies, Reach Probabilities, and Beliefs

A history is a sequence h := (w0, a0, w1, a1, ..., wt) of world states and actions for which wk ∈
W, ak ∈ A(wk), and P[T (wk, ak) = wk+1] > 0 for k, 0 ≤ k ≤ t− 1. We refer to |h| := t as the
length of h. The set of all legal histories is denoted as H. We use the standard notation h′ ⊑ h to
denote that h′ is a prefix history of h (i.e., h′ is a subsequence of h starting at w0 and ending in a
world state). A terminal history z ∈ Z signifies that play has reached a world state where the game
ends. The utility for player i, ui : Z → R is the sum of all rewards accumulated by i over the world
state and action sequence.

A history h produces a public state, which is the sequence of public observations spub(h) :=
(O1

pub, O
2
pub, ..., O

t
pub) produced along the trajectory with Ok

pub := Opub(w
k−1, ak−1, wk). We
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Figure 1: The same history viewed in the world state tree (left) and the public tree (right). Grey boxes
are public states, which can be consistent with many histories from the world state tree.

Figure 2: (Left) An example public belief state in a two-player game with ranges r1 and r2. S is
consistent with a set of 5 histories. Player 1’s range contains two private information states. (Right)
A player’s beliefs (top) and a joint range (bottom). Player 1’s beliefs, given the first private infostate,
consist of reach probabilities for the individual histories in the infostate. The joint range consists of
reach probabilities over all histories in S.

denote a public state generated by an unknown history as S ∈ S, where S is the set of all
public states (and the vertex set of the public tree, see Figure 1). Likewise, player i’s pri-
vate information state Si ∈ Si similarly captures the sequence of observations seen only by
that player: si(h) := (O1

i , O
2
i , ..., O

t
i), where Ok

i := Opriv(i)(w
k−1, ak−1, wk). Taken together,

(spub(h), si(h)) represents all information available to player i at history h, and is referred to as the
player’s information state or infostate. Si(S) denotes the set of all infostates consistent with public
state S and is a partition of S. We useHS := {h ∈ H : spub(h) = S} to denote the set of histories
consistent with public state S. Since all players receive (possibly empty) observations at every world
state transition, this formalism avoids non-timeability and thick infostates present in the extensive
form. See Kovařík et al. [2020] for details.

A player plays according to a policy πi : Si → ∆(A) which maps player i’s infostates to the
set of probability distributions over action set A. A joint policy π = (π1, ..., πn) is a tuple
consisting of every player’s policy. The reach probability of a history under π is Pπ(h) =
Pc(h)P

π
1 (h)P

π
2 (h)...P

π
N (h) where each Pπ

i (h) is a product of action probabilities taken by player
i to reach h from w0, and Pc(h) is the product of all probabilities from chance transitions taken
according to the stochastic transition function T . The reach probability of an infostate (or public
state) Si under π can be expressed as Pπ(Si) :=

∑
h∈Si

Pπ(h). Infostate reach probabilities can
also be decomposed into Pπ(Si) = Pπ

i (Si)P
π
−i(Si) where −i denotes all players except i. Since all

h ∈ Si are indistinguishable to i, Pπ
i (Si) = Pπ

i (h), whereas Pπ
−i(Si) =

∑
h∈HSi

Pπ
−i(h) (Kovařík

et al. [2020]).

Kovařík et al. [2020] define a belief under joint policy π as the probability of reaching a history
h given the current infostate Si: for any h ∈ HSi

, Pπ(h|Si) = Pπ(h)/
∑

h′∈HSi
Pπ(h′). The

range for a joint policy π at public state S, rπ(S) := ((Pπ
j (Si))Si∈Sj(spub))j=1,2,...,N contains each

player’s reach probabilities for their infostate partition of S. The (normalized) joint range Pπ(h|S)
contains the normalized reach probabilities of all h ∈ S. These concepts are visualized in an abstract
game in Figure 2. Our analysis focuses on history filtering with respect to the joint range—assuming
the joint policy is constant and known by all players.
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2.3 Depth-Limited Search, Subgames, and Belief State Computation

Several depth-limited search algorithms, such as Information Set Monte Carlo Tree Search (ISMCTS)
(Cowling et al. [2012]), Player of Games (Schmid et al. [2021]), and ReBel (Brown et al. [2020]),
require methods for simulating actions and state transitions. In these algorithms, search starts from a
ground truth history—a plausible state of the game—and proceeds until a depth limit; value functions
represent the players’ expected reward in the subgame below.

Subgames and their value functions are intuitive in the perfect information setting because they can
be rooted at any non-terminal history. However, the necessary information for computing value
functions in the imperfect information setting is structured differently. Subgames are instead rooted
at public belief states (PBS), which are tuples β := (S, rπ(S)) composed of a public state and a
range. Searching from β requires computing histories fromHS because the actions and transitions
necessary for forward simulation are defined for world states, not public states, and computing optimal
value functions at the subgame leaves requires ranges defined over all histories in HS (Kovařík et
al. [2020]). Player of Games (Schmid et al. [2021]) opts for the Monte Carlo approach, which
generates h ∈ HS for player i by sampling an infostate from Si ∈ Si(S) according to i’s component
of rπ(S), and then sampling according to their beliefs Pπ(h|Si) (see Figure 2 for the distinction).
ISMCTS (Cowling et al. [2012]) is similar, but instead samples directly from the normalized joint
range Pπ(h|S). Either case depends on solving a common computational problem: histories from
HS must be sampled according to rπ(S), given only S and π.

Belief state computation is an important topic in general Markov systems with partial observability.
As such, it appears frequently in areas such as stochastic control (Nayyar et al. [2013]), learning in
decentralized POMDPs (Dibangoye et al. [2016]; Oliehoek [2013]), and multi-agent reinforcement
learning (Fickinger et al. [2021]). In FOSGs, which are a generalization of POMDPs, search
techniques that use public belief states have also been crucial to the development of superhuman
poker AI (Brown and Sandholm [2019]; Brown et al. [2020]; Moravčík et al. [2017]; Schmid et al.
[2021]). In card game AI, Perfect Information Monte Carlo (PIMC) search was successfully applied to
Contract Bridge (Levy [1989]; Ginsberg [2001]) and later Skat (Buro et al. [2009]). Both applications
rely on game-specific implementations for history filtering. Richards and Amir [2012] described the
problem as information set generation and provided the first generic, but exponential-time, algorithm
for solving it. Seitz et al. [2021] provided an algorithm for approximating information set generation
based on deep neural networks. Šustr et al. [2021] identified that exponential-sizedHS cause memory
issues in methods that explicitly represent the range, and that efficient search requires the range to be
represented compactly.

Recently, the idea of fine-tuning has helped push the scalability of planning in POMDPs via reinforce-
ment learning (Fickinger et al. [2021]) and search in FOSGs (Sokota et al. [2021]) by eliminating
the need to explicitly represent the range. In reinforcement learning, fine-tuning consists of online
updates to a parameterized model of a blueprint policy or Q-value function using sample trajectories
with a fixed horizon. These local improvements to the model helped train policies which achieved a
new state-of-the-art in self-play Hanabi (Fickinger et al. [2021]). Belief fine-tuning (BFT) (Sokota et
al. [2021]) extended the idea to PBS approximation without pre-training the generative model as a
function of the joint policy π.

In some domains, it is unclear how to structure a dynamics model for fine-tuning such that only
legal sample histories are produced. For example, in trick-taking card games, the public observation
sequence could indicate that certain players cannot possibly have certain cards in their hands; all
histories output by the model should satisfy this constraint. Our approach uses only the dynamics
model defined by the game. It is parameter-free and instead calls for simple domain-specific
algorithms for history construction and neighbor generation in a Markov chain. This results in
unbiased history generation and guarantees that any sample history is legal according to the game
rules.

3 History Computation in Public Belief States

Our first contribution is to introduce a family of history filtering relations FILTER(G, π) which
formalize this computation for a given FOSG G and joint policy π. For simplicity, we limit our
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analysis to FOSGs with finite world state setsW and action sets A, and joint policies that can be
evaluated in polynomial time with respect to history length.

3.1 Family of Filtering Relations

Computing histories from a given public state is a special case of particle filtering, so we name our
family of relations FILTER.

Definition 1. (FILTER) For any FOSG G with finiteW,A and joint policy π, let FILTER(G, π) :=
{(S, h) ∈ Σ∗ × Σ∗ : spub(h) = S, Pπ(h|S) > 0}.

An FOSG G and a joint policy parameterize the relation—which pairs public states S ∈ S and
histories consistent with S. S is treated as the problem input (encoded using alphabet Σ) and
reachable histories fromHS are valid outputs.

Our definition treats the FOSG G and the joint policy π as fixed and assumes that the FOSG functions
(T ,A, etc.) and the policy can be evaluated in polynomial time with respect to their inputs, and are
not encoded as inputs to the problem. Thus, the input and output sizes of a problem instance are the
lengths of the encoded observation sequence and history, respectively.

A relation R ⊂ Σ∗ × Σ∗ over alphabet Σ is polynomially balanced if there exists a polynomial p
such that for all (x, y) ∈ R, |y| ≤ p(|x|) (i.e., the length of output y is at most polynomial in the input
length) (Jerrum et al. [1986]). R is polynomial-time verifiable if the predicate (x, y) ∈ R (xRy for
short) can be tested in polynomial time. Lemma 1 states that this is the case for FILTER(G, π) with
finiteW and A. FiniteW and A imply polynomial balance and polynomial-time verification is done
using |h| evaluations of the observation function and policy to check if S is produced and the reach
probability is nonzero. All proofs are in the appendix.

Lemma 1. For any FOSG G with finiteW,A and arbitrary joint policy π, FILTER(G, π) is polyno-
mially balanced and polynomial-time verifiable.

3.2 Computational Problem Variants

For a binary relation R, there are several naturally associated computational problems. Given a
problem instance x ∈ Σ∗, some of these are:

1. Existence: Is there a y ∈ Σ∗ such that xRy?

2. Construction: Return a y ∈ Σ∗ such that xRy if one exists.

3. Generation: Generate a y ∈ Σ∗ such that xRy according to some predetermined distribution
over the solution set {y ∈ Σ∗ : xRy} if one exists.

4. Counting: Compute |{y ∈ Σ∗ : xRy}|.
5. Enumeration: Return all y ∈ Σ∗ such that xRy.

Of these, generation and enumeration are clearly relevant to history filtering. Prior work (Schmid et
al. [2021]; Brown et al. [2020]; Moravčík et al. [2017]; Brown and Sandholm [2019]) has generally
relied on enumerative methods, i.e. filtering histories by explicitly representing the entire PBS.
Generative methods for history filtering potentially have the advantage of avoiding explicit PBS
representation. In the next section, we analyze the computational complexity of problem variants
1-5.

4 Complexity of Filtering Histories

Efficient (polynomial-time and space) algorithms for history filtering enable scalable depth-limited
search in imperfect information games. In this section, we provide an FOSG instance where the
construction variant of FILTER is intractable and explain when efficient enumeration is possible.

4.1 FNP-Completeness of Construction

Consider the following two-player FOSG, based on Functional Boolean Satisfiability (FSAT):
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Definition 2. (3-FSAT-GAME) For a given integer m, world states are encoded as m-variable
truth assignments. Starting at initial state w0, player 1 chooses an action a0 = (y1, y2, ..., ym) that
represents a truth assignment. This is followed by a transition to some w = (y1, y2, ..., ym) that
encodes the same assignment. Opub(w

0, a0, w) reveals no public information about the transition
to w except that the action and transition occurred. w has joint action set A(w) := {a} and
T (w, a) := w for all w ∈ W . Rewards are arbitrary. When action a is taken at time t, the public
observation function Opub(w, a,w) generates, at random, a 3-CNF clause ct that is satisfied by w.

Player 1 chooses an m-variable truth assignment, and then player 2 repeatedly takes arbitrary actions—
outputting a 3-CNF clause satisfied by the assignment as a public observation each time. The truth
assignment is unknown to player 2, so solving a 3-CNF Boolean formula is necessary to construct a
history consistent with the public observations. Additionally, a sequence of observations equivalent
to any satisfiable 3-CNF formula over m variables can be generated by playing this game.

Theorem 1. There exists a joint policy π for which the construction problem associated with
FILTER(3-FSAT-GAME, π) is FNP-complete.

Theorem 1 implies that unless P = NP, computing even a single history corresponding to a given
public state in the 3-FSAT-GAME is intractable in the worst case. It follows that the same applies
to more complex computations such as generation and enumeration. However, there are several
examples where these computations have been successfully performed in practical examples of games
such as poker—we discuss where efficient enumeration is feasible next.

4.2 Efficient Enumeration in Games with Sparse Public States

Prior work has often limited application domains to games where the public state is trivially enumer-
ated and beliefs can be represented explicitly in physical memory; the efficiency of these algorithms
depends on a structural property of the game tree that we call sparsity.

Definition 3. The public tree S of an FOSG G is sparse if and only if all public states S =
(o1, o2, ..., ot) in S satisfy |HS | ≤ p(t) for some polynomial p. Public trees that do not satisfy this
property are dense.

Public states in games with sparse public trees can be enumerated in polynomial time using a simple
breadth-first search that makes at most |A ×W|p(k) calls to the observation function at depth k (see
proof of Theorem 2 in the appendix for more details).

Theorem 2. For any FOSG G with finite W,A, the enumeration problem associated with
FILTER(G, π) can be solved in polynomial time if and only if G’s public tree is sparse.

As an example, consider the following variants of two-player poker. In Texas Hold’em, there is a
52-card deck and two cards are dealt to each player; public states in this game are of constant size.
With n cards in the deck where each player is dealt 2 cards, the number of histories per public state is
polynomial in n. Both of these games have sparse public trees. However, with n cards in the deck and
k cards dealt to each player, the number of histories is exponential in k, so the public tree is dense.

Sparsity itself does not guarantee that enumeration is feasible on modern hardware. For instance,
physical memory and time constraints still prevent enumeration in large trick-taking card games with
constant-sized public states such as Skat and Hearts. In the next section, we propose an algorithm for
history generation in these games and validate it empirically.

5 MCMC History Generation in Trick-Taking Card Games

Trick-taking card games (TTCGs) like Contract Bridge, Skat, and Hearts are played by millions of
people worldwide and have historically been of significant interest to the AI community. However,
superhuman-level computer play in these games has yet to be achieved—in part because of their
large public belief states. Here, we devise a Gibbs sampler (Geman and Geman [1984]) for history
generation in TTCGs that treats histories as states in a Markov chain and uses local computations to
generate histories without explicit belief representation.
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Figure 3: A flow network constructed from a history in a TTCG with three suits and two players. The
suits have three, one, and two unknown cards remaining, respectively, and each player must be dealt
three more cards. The first player is void in the third suit, and the second player is void in the second
suit.

5.1 Challenges of Filtering in TTCGs

Depending on the size of the deck and the number of cards dealt to each player, public states in
TTCGs may be large early in the game: up to n!/(n− k)! for decks with n cards and k cards dealt in
total. They shrink as information is revealed because players must be dealt the cards they play, and
void suits (when a player reveals they cannot have a certain suit through play) imply certain cards
cannot be dealt to certain players. These observations lead to two possible constraints on a card being
dealt to a player: either it must have been dealt to a player, or it cannot have been dealt to a player.
Both can be checked efficiently through a single pass over the observation sequence.

5.2 History Construction in TTCGs

The solution to history construction for some S ∈ S is a history h ∈ HS . This history can serve as
an initial state for the Markov process we have designed to solve generation in TTCGs. As we now
describe, construction can be solved in polynomial time using an algorithm for integer maximum flow
such as Edmonds-Karp (Edmonds and Karp [1972]) along with some simple pre- and post-processing
steps.

Given a history h with the subsequence of private actions that represent the deal, σ ⊑ h, we create a
flow network that captures the constraints of the cards in σ. Cards revealed through play must be
dealt to the player that played them, so we can ignore them when solving for deals that satisfy the
other constraint: where a player cannot have any more cards in a suit. The source vertex is connected
to k suit vertices via directed edges with a capacity that corresponds to the number of unknown cards
remaining in that suit. Each suit vertex is connected to a player vertex if it is possible for that player
to hold cards of that suit in their hand. The edges connecting the player and suit vertices have capacity
equal to the number of total unknown cards remaining in all suits. Finally, the player vertices are
connected to the sink via edges that correspond to the number of cards remaining in that player’s
hand. See Figure 3 for an example.

Lemma 2. For TTCG G and joint policy π with full support, FILTER(G, π) can be solved in
polynomial-time using a maximum flow computation.

Applying a maximum flow algorithm based on augmenting paths will construct integral flows that
represent assignments of the number of unknown cards in each suit dealt to each player—which we
call a suit length assignment. We can select one of possibly many histories that satisfy the suit
length assignment (and the cards that have been explicitly revealed through play) and construct a
history fromHS .

5.3 TTCG Gibbs Sampler

The TTCG Gibbs sampler is Markov Chain Monte Carlo method (see Häggström and others [2002]
for an overview) for generative history filtering in TTCGs. It is based on two concepts: Markov chain
states are histories fromHS , and transitions use unnormalized reach probabilities and involve local
modifications to the suit length assignment of the current state.
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Algorithm 1: RingSwap
input :S — public state, σ — deal consistent with S
output :Ωσ — set of neighbors of σ

1 let An×m be the suit assignment matrix for σ
2 Ωσ ← {}
3 for Row i in rows(A) do
4 for Columns j, k, j ̸= k in cols(A) do
5 if void(S, i, j) or void(S, i, k) or ai,k = 0, continue
6 C ← A
7 ci,j ← ci,j + 1; ci,k ← ci,k − 1
8 Ωσ ← Ωσ

⋃
BFS(C, n) to find all ways to make C a valid suit length assignment

9 end
10 end
11 return Ωσ

We start by describing the neighbor generation algorithm, RingSwap (Algorithm 1), which operates
on suit length assignment matrices. Constraints on suit length assignments can be encoded using a
matrix with row and column sums equal to the number of unknown cards in each suit and player
hand. Void suits are represented as entries fixed to zero. For example, the following is a suit length
assignment matrix that satisfies the max flow network in Figure 3:[

2 1 0
1 0 2

]
The rows sum to 3 because each player has 3 unknown cards, and the columns sum to the number of
unknown cards in the corresponding suit.

With suit assignment matrix A corresponding to σ, RingSwap repeats the following for all players i.
For every pair of non-void suits j and k, perform a swap by adding a card to Ai,j and removing one
from Ai,k. The column sums of the matrix are now incorrect (j has too many cards and k has one too
few), and must be corrected via a sequence of swaps in other rows. All sequences of swaps of length
< n that lead to valid suit length assignments are then computed via BFS and a valid assignment is
selected proportionally to the number of histories it corresponds to.

We can now describe the TTCG Gibbs sampler. For public state S at time t, given Xt = h, deal
σ ⊑ h, and a joint policy π with full support at all infostates, consider the following Markov chain:

At time t+ 1:

1. Compute Ωσ , the set of all neighbors of σ using the procedure RingSwap(S, σ)
2. Sample σ′ uniformly from Ωσ

3. Compute Ωσ′ and h′ such that σ′ ⊑ h′ by replacing σ with σ′ in h to form h′

4. Let z = min{1, P̄π(h′)|Ωσ|
P̄π(h)|Ωσ′ |}

5. With probability z, Xt+1 = h′, otherwise Xt+1 = h

State transitions are done according to the Metropolis-Hastings algorithm (Metropolis et al. [1953];
Hastings [1970])— with unnormalized reach probabilities P̄π as µ∗ and uniform selection over the
neighboring states. All computations are local to the current history at time t, and take at most
polynomial time in the history length. The following theoretical details state that the chain is suitable
for unbiased history generation.
Theorem 3. The TTCG Gibbs sampler is aperiodic and irreducible.

Theorem 3 implies that the TTCG Gibbs Sampler converges to some stationary distribution; the
following theorem ensures that its stationary distribution is the desired Pπ .
Theorem 4. The stationary distribution of the TTCG Gibbs sampler with input π is Pπ .

Given an initial history obtained by solving the construction problem for the game and a policy with
full support at all infostates, the TTCG Gibbs sampler correctly generates histories from Pπ(·|S) in
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(a) 192 Histories (b) 12,960 Histories (c) 544,320 Histories

Figure 4: Value estimation error of TTCG Gibbs Sampler with specified burn-in and baselines on
PBS of various sizes. Error bars show one standard error of the mean over 100 runs. See the appendix
for full game parameters.

(a) 192 Histories (b) 12,960 Histories (c) 544,320 Histories

Figure 5: The effect of the number of samples burned on the value estimation error of the TTCG
Gibbs Sampler. Burning fewer samples can result in a lower value error after an equal number of
transitions. Error bars show one standard error of the mean over 100 runs.

the limit. The next section validates the efficiency and approximation quality of the TTCG Gibbs
sampler empirically in the domain of Oh Hell (Parlett [2008]); we leave the theoretical analysis of its
mixing time to future work.

5.4 Experiments

The TTCG Gibbs sampler we just described runs in polynomial-time with respect to history length
and removes dependencies on explicit belief representation. Thus, the algorithm’s scalability depends
on the mixing time of the underlying Markov chain. The following empirical results suggest that the
chains mix rapidly in this domain.

We evaluate the TTCG Gibbs sampler using a value estimation task in the trick-taking card game
Oh Hell. Oh Hell is an N -player game with n cards in the deck, where each player is dealt between
1 and ⌊(n− 1)/N⌋ cards. We control the size of randomly generatedHS—starting small and then
scaling to HS several orders of magnitude larger—by varying the number of cards in the deck
and the number of cards dealt to players. The task is to estimate the expected value of S under π,
V π(S) =

∑
h∈S Pπ(h)V π(h), where the value of a history h, V π(h) =

∑
z∈Z:h⊑z P

π(h, z)u(z)
is the expected utility of the terminal histories in Z reachable from h. The initial state is chosen
uniformly fromHS , and ranges are constructed using policies learned via independent Q-learning
(Claus and Boutilier [1998])—hyperparameters and other details can be found in the supplementary
material. Strong performance in this task does not necessarily imply improved search performance;
instead, it demonstrates the sampler’s ability to generate histories from the correct public belief state.

Figure 4 shows the value error curves of the TTCG Gibbs sampler with a specified burn-in compared
to two Monte Carlo baselines. True samples from the exact joint range, and Importance performs
(biased) importance sampling with a uniform proposal and unnormalized reach probabilities. The
latter estimates the PBS value by correcting the weight of samples drawn uniformly from HS .
In practice—especially at larger scales than these experiments—importance sampling may not
be feasible without a generation algorithm that approximates a known proposal distribution in
polynomial time. We see that the TTCG Gibbs sampler outperforms importance sampling and closely
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approximates sampling from the joint range in all cases while using a burn-in orders of magnitude
smaller than the size of the public belief states.

Figure 5 shows the effect of burning samples on value estimation error. On one hand, our results show
that burning fewer samples can result in a better value estimate with fewer state transitions. This is
unsurprising because larger sample sizes generally lead to better estimates. However, evaluating a
sample could be several orders of magnitude more costly than performing a state transition in the
Markov chain in practice. Comparing Figures 5 and 4 shows that, if the estimation task is constrained
by time or computational resources, fewer high-quality samples may produce a better estimate. The
appropriate burn-in depends both on the task and the available resources.

Our experiments show that the TTCG Gibbs Sampler leads to increased scalability over the enu-
merative approach in this value estimation task. With a small burn-in of 20 state transitions, a good
approximation of the PBS value is achieved after only 400 samples and therefore only 8,000 total state
transitions—compared to the enumerative approach which must construct and calculate the reach
probability for 544,320 histories. State transitions are computed locally to the current state (history)
and do not require knowledge of the rest of the PBS, so memory requirements are dramatically
reduced. These effects increase along with public state size; in Oh Hell with a 52-card deck, public
states can have over 1061 histories.

6 Discussion and Conclusions

In this paper, we analyzed the computational complexity of history filtering for subgame decomposi-
tion and depth-limited search in imperfect information games. Although even the simplest form of
the computation is likely intractable in general, we have shown that depth-limited search remains a
viable option in certain classes of imperfect information games. Efficient enumeration is achievable
in games with polynomially-sized public states; many application domains from prior work seem to
have this property. However, generative methods for history filtering may not require explicit belief
representation, and are therefore more scalable than enumeration. To this end, we have introduced a
novel generation algorithm for trick-taking card games for asymptotically correct and efficient history
filtering that fits seamlessly with Monte Carlo-style search algorithms.

Our TTCG Gibbs sampler needs a method that constructs a valid history from the public state
but is otherwise flexible. It does not depend on knowing the size of the public state and does not
require normalized reach probabilities to produce samples with the correct probability. Unlike the
enumerative approach which front-loads all of its computation, our algorithm applies to the setting
where the game-playing algorithm must return an action within a predefined time budget. It is also
easy to parallelize; multiple samples can be generated simultaneously by starting the process multiple
times from the same initial state and running each for the desired burn-in time. We demonstrate its
effectiveness empirically—though future work should prove rapid mixing analytically.
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Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisỳ. Rethinking formal
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7 Supplementary Material

Alternative Definitions of Filtering

We analyze history filtering in terms of the public state and joint range for simplicity, but some
algorithms compute value functions using player ranges and beliefs instead. Definitions 4 and 5
alternatively describe filtering histories from a player’s infostate according to their beliefs and filtering
a player’s infostates from the public state according to their range, respectively.
Definition 4. (FILTER-BELIEF) For any FOSG G with finite W,A and joint policy π, let
FILTER-BELIEF(G, π) := {(Si, h) ∈ Σ∗ × Σ∗ : si(h) = Si, P

π(h|Si) > 0}.
Definition 5. (FILTER-RANGE) For any FOSG G with finite W,A and joint policy π, let
FILTER-RANGE(G, π) := {(S, Si) ∈ Σ∗ × Σ∗ : Si ∈ Si(S), Pπ(Si|S) > 0}.

The key difference in Definition 4 is that the input is a player i’s infostate Si instead of a public state
S. Definition 5 consists of public state S as input and i’s infostates as output. Both require that the
output history is reachable (with non-zero probability) according to the joint policy π.
Lemma 3. FILTER-BELIEF and FILTER are mutually polynomial-time reducible.

Proof. Given an instance S of FILTER-BELIEF(G, π) with FOSG G and player i with infostate
tree Si in G, there exists an FOSG G′ with public tree S ′ = Si. Given G, we need to construct
G′ in polynomial-time with respect to the encoding length for the input instance S, using only the
functions that define G. To do so, we include evaluations of i’s private observation function si in
the public observation function s′pub of G′. In other words, we set s′pub = (si, spub) in G′, which
increases the cost of evaluating s′pub(h) by a factor of 2. Since each call to the observation function is
polynomial-time with respect to the encoding of w, a,w′, our transformation is also polynomial-time.

A basic fact from this construction is h ∈ Si ⇐⇒ h ∈ S′. Moreover, there exists a joint
policy π′ such that Pπ′

(h) = Pπ(h) for each such h. Joint policy π′ is constructed by mapping
π′
p((s

′
p(g), s

′
pub(g)), a) = πp((sp(g), spub(g)), a) for all g · a ⊑ h for each player p ∈ N . Each

player p ̸= i ∈ G′ ignores i’s private information, reconstructing an information set on which πp is
valid and contributes the desired reach probability on h. Evaluating π′ therefore requires just a single
call to π, so the transformation from π to π′ is clearly polynomial-time with respect to the encoding
length of S.

Since S = S′, we have Pπ(h|Si) = Pπ′
(h|S′). It follows that (Si, h) ∈

FILTER-BELIEF(G, π) ⇐⇒ (S′, h) ∈ FILTER(G′, π′), where G′ and π′ can be constructed
in polynomial time given G and π.
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For the other direction, given an instance of FILTER(G, π) with FOSG G, construct G′ by adding
a player i (who takes no actions) and setting s′i = spub, s′pub = ∅, and s′j = (spub, sj) for every
j ∈ −i, and similarly constructing a new joint policy π′ that copies π at every infostate for players in
−i. It follows that (S, h) ∈ FILTER(G, π) ⇐⇒ (S′

i, h) ∈ FILTER-BELIEF(G′, π′).

Lemma 4. FILTER ≤p FILTER-RANGE.

Proof. Given an instance S of FILTER(G, π), we construct game G′ by adding a player i that has
perfect information but takes no actions. This transformation is computed in polynomial-time with
respect to the encoding length of S by creating an observation function that returns the current
history to i. Thus, for any S ∈ S in the original game G, there exists an S′

i in i’s infostate tree
which corresponds to exactly one h ∈ S. Since i takes no actions, the policy is unchanged. This
means we have Pπ(h|S) = Pπ(S′

i|S) by the definition of infostate reach probability. Therefore,
(S, S′

i) ∈ FILTER-RANGE(G′, π) =⇒ (S, h) ∈ FILTER(G, π).

Lemmas 3 and 4 show that FILTER is polynomial-time reducible to these alternative definitions, and
unsurprisingly, that filtering a history from a player’s beliefs is equivalent to filtering a history from
the joint range.

Experiment Parameters

Table 1 shows the game parameters used to generate Figures 4 and 6. Experiments are repeated 100
times and runtimes range from seconds to 12 hours on a single core of an AMD Ryzen 9 © CPU.

Table 1: Value estimation and mixing time experiment parameters.
Size Players Suits Ranks Tricks Tricks Played

192 3 2 4 2 1
12,960 3 3 4 3 2

544,320 3 3 4 3 1

Additional Experiments

In addition to the value estimation experiments using policies learned via reinforcement learning
in the main paper, we conducted similar experiments using random policies to increase empirical
coverage of the policy space. At any information state, the policies place policy bias probability on a
randomly selected action and distribute the remaining probability mass uniformly across the other
actions. Figure 6 shows that these experiments yielded similar results to the RL policies.

Table 2 shows the entropy and variance of the tested public states, organized by the policy bias used
to generate them. Policy bias clearly has an effect on both the reach probabilities of the histories in
the PBS, as well as on the variance of the PBS value. The medium size exhibits proportionally higher
entropy and lower variance because an extra trick has been played—meaning play is closer to the end
of the game.

Table 2: Mean variance and entropy of generated public belief states of different sizes.
Entropy Variance

Bias 0.5 0.7 0.9 0.5 0.7 0.9

196 6.84± 0.05 6.13± 0.07 4.89± 0.07 12.98± 1.12 10.11± 0.95 5.36± 0.93
12,960 12.04± 0.06 10.99± 0.08 9.30± 0.08 8.77± 1.02 6.01± 0.86 2.38± 0.58
544,320 16.21± 0.25 14.06± 0.45 12.36± 0.17 10.55± 1.17 11.44± 2.40 8.77± 2.01
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(a) 192 Histories (b) 12,960 Histories (c) 544,320 Histories

Figure 6: Value estimation error of TTCG Gibbs Sampler with specified burn-in and baselines on
PBS of various sizes. Error bars show one standard error of the mean over 100 runs. Joint policies
are generated randomly according to policy bias.

Proofs of Theorems

Lemma 1. For any FOSG G with finiteW,A and arbitrary joint policy π, FILTER(G, π) is polyno-
mially balanced and polynomial-time verifiable.

Proof. We need to show that there exists a polynomial p such that for any (S, h) ∈ FILTER(G, π),
|h| ≤ p(|S|) and that the predicate (S, h) ∈ FILTER(G, π) can be verified in polynomial time. W
being finite implies there exists an encoding for all w ∈ W and a constant cW , where |w| ≤ cW .
Likewise, A being finite implies the existence of an encoding for all a ∈ A and a constant cA such
that |a| ≤ cA. h = (w0, a0, w1, a1, ..., wt), so |h| ≤ t(cW + cA) + cW ≤ ct for all t > 0 and
some constant c > 0. For any encoding of input observations S := (o1, o2, ..., ot) with |oi| ≥ 1,
|S| ≥ t, so |h| ≤ c|S|. Lastly, predicate (S, h) ∈ FILTER(G, π) is easily verified in polynomial time
in the encoding length of S and h by checking that O(wk, ak, wk+1) = ok+1 for 0 ≤ k ≤ t− 1 and
Pπ(h) > 0.

Theorem 1. There exists a joint policy π for which the construction problem associated with
FILTER(3-FSAT-GAME, π) is FNP-complete.

Proof. A construction problem is in the class FNP if its associated relation is both polynomially-
balanced and polynomial-time verifiable (Bellare and Goldwasser [1994]). A construction problem
is FNP-complete if and only if it belongs to FNP and all other problems in FNP are polynomial-time
reducible to it.

First, Lemma 1 implies that the problem is in FNP. Next, we need to show that 3-FSAT-GAME, an
FNP-complete problem, can be reduced to FILTER(3-FSAT-GAME, π).

Given TM M , which computes construction for FILTER(3-FSAT-GAME, π) and any 3-FSAT instance
ϕ = (c1, ..., ck) containing variables y1, ..., ym in DTIME(p(|x|)) for some time-constructible poly-
nomial p, map ϕ to the equivalent public state x = ϕ in 3-FSAT-GAME and run h = M ′(x), where
M ′ simulates M with a time bound of p(|x|) in DTIME(p(|x|)2).
Let π1(w

0) be the uniform policy, which assigns equal action probability to each of the 2m actions
available at w0 Since action a is the singular joint action at any w ̸= w0, πi(s, a) = 1 for any
s ∈ Si(spub) for all players i—implying that any h output by M ′ satisfies Pπ(h) > 0. If M ′ returns
h = (w0, a0, w, a1, w, a2, ..., w), then w must be a satisfying assignment to ϕ. If M ′ returns NO, then
there is no h, spub(h) = S and ϕ is unsatisfiable.

Theorem 2. For any FOSG G with finite W,A, the enumeration problem associated with
FILTER(G, π) can be solved in polynomial time if and only if G’s public tree is sparse.
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Proof. Suppose G’s public tree is sparse. To enumerate HS , consider a basic breadth-first search
which, at time k, only searches actions that satisfy Opub(w

k, ak, wk+1) = Ok+1, where ak ∈ A(wk)
and wk+1 is in the support of T (wk, ak). Let the set Hk

S = {h′ ∈ H : h′ ⊑ h, h ∈ HS , |h′| = k}
contain the length k prefix histories of all histories inHS . All histories inHk

S must produce the same
public observation sequence and therefore must correspond to a unique public state. Since G’s public
tree is sparse, this implies there can be at most p(k) histories at depth k of the search. This means
we must evaluate Opub(·) at most |A ×W|p(k) times at depth k and therefore O(|h|p(|h|)) times
overall.

Conversely, suppose there exists a polynomial-time TM M for solving the enumeration problem
associated with FILTER(G, π). Assume there exists a dense public state S in G. Then for input
instance S, M(S) computesHS in p(t)-time for some polynomial p. This is impossible since, for
any polynomial p′, |HS | > p′(t) by assumption.

Lemma 2 For TTCG G and joint policy π with full support, FILTER(G, π) can be solved in
polynomial-time using a maximum flow computation.

Proof. Given public state instance S, let N = (V,E) be the flow network constructed as follows.
The network contains a source connected via edges to a set of suit vertices (one vertex for every suit,
each with an edge from the source). Each suit vertex is connected to any number of vertices from the
set of player vertices (one for each player). A suit vertex is connected via a directed edge to a player
vertex if and only if the player can hold that suit in their hand. Finally, each suit vertex is connected
to the sink via a directed edge. For the edges connected to source s, capacity c(s, u) is the number of
cards remaining in suit u. Likewise, for edges connected to the sink t, c(v, t) is the number of cards
that must be assigned to player v. Edges connecting suits to players have infinite capacity.

Let F be the set of flows over N , and ϕ : H → F be the following transformation from history to
flow: for edges from source to suit and player to sink, the flow is equal to the capacity, for edges from
suit to player, the flow is equal to the number of cards from that suit dealt to that player in h.

Suppose there exists some h ∈ HS , then by construction |ϕ(h)| =
∑

u c(u, t) =
∑

u c(s, u) and
is an integer because the number of cards dealt to each player is known. To show that |ϕ(h)| is a
maximum flow, assume for contradiction, that there exists some f ∈ F such that |f | > |ϕ(h)|. This
implies that |f | >

∑
u c(s, u) which is impossible, so |ϕ(h)| ≥ |f | for all f ∈ F .

Now suppose we have some maximum flow f∗ ∈ F ; we can construct h ∈ HS in the following
way. If |f ∗ | <

∑
u c(s, u), then at least one player or suit cannot have the appropriate number of

cards allocated to it, so we return that HS is empty. Otherwise, for each suit u and player v, we
assign f∗(u, v) arbitrary cards (which have not been revealed by play) from suit u to player v in the
deal.

Theorem 3. The TTCG Gibbs sampler is aperiodic and irreducible.

Proof. Self-transitions in the chain imply aperiodicity. We prove irreducibility by showing that there
exists a path between any two consistent suit length assignments that can be generated via multiple
iterations of our neighbor generation algorithm. This proves the chain’s irreducibility because the
neighbor set is the union of all history subsets that correspond to neighboring suit length assignments.

Given two suit length assignment matrices A and B (see description in Section 5.3, we prove that B
is reachable from A by showing that the L1-norm

||B −A||1 =

n∑
j=1

m∑
i=1

|bi,j − ai,j |

decreases to zero for a sequence of iterations of our neighbor generation algorithm, and that each
iteration makes at most max{n,m} swaps (where a player gains a card of one suit and loses a card
of another) for an n×m matrix.

First, we show that applying a sequence of RingSwap calls to A decreases ||B − A||1 to zero. Let
C = B − A, and denote a swap that adds one to ci,j and subtracts one from ci,k as δ = (i; j, k).
Since all columns and rows of C sum to zero, if ||C||1 > 0, there must be some element ci,j < 0 and
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another ci,k > 0. Since swap δ0 = (i; j, k) decreases ||C||1 by 2, and such a swap is guaranteed to
exist whenever ||C||1 > 0, repeating this process decreases ||C||1 to zero.

After applying δ0,
∑

b Ca,b = 0 for all rows a, but columns
∑

a Ca,k = −1 and
∑

a Ca,j = 1, so the
result does not correspond to a valid suit assignment. To generate a neighbor, the algorithm performs
a sequence of swaps until the column sums are corrected. Since, prior to δ0, ci,k > 0, there exists
cl,k < 0; likewise there must be some cl,z > 0. Perform swap (l; k, z), now

∑
a Ca,k = 0. If z = j,

then
∑

a Ca,j = 0 and we are done. Otherwise,
∑

a Ca,z = 1, and the above process can be repeated
using column z instead of l.

Now, we show that given any starting swap, we can reach a valid suit length assignment using at most
n swaps. Assume n ≥ m, otherwise transpose A and B. As we have shown above, given an arbitrary
starting swap (i; a, b), all rows and columns will sum to zero once a swap of the form (j; b, c) adds
a unit back to column b. Consider the sequence of swaps made until the z = j stopping condition
is reached and suppose that a row has to be repeated in this sequence (i.e. there is a subsequence
(k; d, e),..., (k; f, g)). This means the remainder of the sequence begins by with a swap from column
g and ends with a swap into column b, and leads to the condition that all rows and columns sum to
zero. But before the first swap in the subsequence, (k; d, e), only columns d and b have non-zero sum.
This implies we can remove this subsequence, and replace it with (k; d, g) and proceed until b is
reached. So, each row must only be visited once in the sequence of swaps, implying that there exists
a sequence with length at most n which turns A to A′ where all rows and columns of A′ −B sum to
zero and ||A′ −B||1 < ||A−B||. This implies a path between any two suit length assignments can
be generated using multiple ring swaps of length <= n.

Theorem 4. The stationary distribution of the TTCG Gibbs sampler with input π is Pπ .

Proof. A sufficient condition for some µ to be the stationary distribution of a Markov chain is
that the chain is reversible with respect to µ (Häggström and others [2002]). So if we can show
that Pπ

i Qi,j = Pπ
j Qj,i, the theorem follows. This is the standard approach which derives the

Metropolis-Hastings algorithm ([Metropolis et al., 1953]).

First, suppose Pπ
i |Ωj | > Pπ

j |Ωi|. Then, by inspecting lines 1-5 in the algorithm we see that

Pπ
i Qi,j = Pπ

i

1

|Ωi|
P̄π
j |Ωi|

P̄π
i |Ωj |

=
Pπ
j

|Ωj |
= Pπ

j

1

|Ωj |
= Pπ

j Qj,i

where the last equation holds because Pπ
i |Ωj | > Pπ

j |Ωi| implies z = 1 for the transition from j to i.
The same applies to the case where Pπ

i |Ωj | < Pπ
j |Ωi|. Finally, suppose Pπ

i |Ωj | = Pπ
j |Ωi|. Then,

Pπ
i |Ωj | = Pπ

j |Ωi|

=⇒ Pπ
i

|Ωi|
=

Pπ
j

|Ωj |
=⇒ Pπ

j Qj,i = Pπ
i Qi,j

So the TTCG Gibbs sampler is reversible with respect to Pπ .
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