
Parallel UCT Search on GPUs

Nicolas A. Barriga
Department of Computing Science

University of Alberta
barriga@ualberta.ca

Marius Stanescu
Department of Computing Science

University of Alberta
astanesc@ualberta.ca

Michael Buro
Department of Computing Science

University of Alberta
mburo@ualberta.ca

Abstract—We propose two parallel UCT search (Upper Con-
fidence bounds applied to Trees) algorithms that take advantage
of modern GPU hardware. Experiments using the game of Ataxx
are conducted, and the algorithm’s speed and playing strength is
compared to sequential UCT running on the CPU and Block
Parallel UCT that runs its simulations on a GPU. Empirical
results show that our proposed Multiblock Parallel algorithm
outperforms other approaches and can take advantage of the GPU
hardware without the added complexity of searching multiple
trees.

I. INTRODUCTION

Monte-Carlo Tree Search (MCTS) has been very successful
in two player games for which it is difficult to create a good
heuristic evaluation function. It has allowed Go programs to
reach master level for the first time (see [1] and [2]). Recent
results include a 4-stone handicap win by Crazy Stone against
a professional player [3].

MCTS consists of several phases, as shown in Figure 1,
which for our purposes can be classified as in-tree and off-
tree. During the in-tree phases, the algorithm needs to select
a node, expand it, and later update it and its ancestors. The
off-tree phase consists of possibly randomized playouts starting
from the selected node, playing the game until a terminal node
is reached, and returning the game value which is then used
for updating node information. For this paper we choose UCT
(Upper Confidence bounds applied to Trees, [4]) as a policy
for node selection and updating because it has been proven
quite successful in computer game playing [5].

As with most search algorithms, the more time MCTS
spends on selecting a move, the greater the playing strength.
Naturally, after searching the whole game tree, there are
no further gains. However, games such as Go which are
characterized by a very large branching factor have large game
trees that cannot be fully searched in a feasible amount of time.
Parallelizing MCTS has led to stronger game play in computer
programs [6], and state of the art UCT implementations
use distributed algorithms which scale well on thousands of
cores [7]. Unfortunately, the prohibitive cost of highly parallel
machines has limited the full exploration of the potential of
these algorithms.

However, a new type of massively parallel processors
capable of running thousands of threads in Single Instruction
Multiple Thread (SIMT) fashion, with performance in the
Teraflops range, has become mainstream. These processors,
called Graphics Processing Units (GPUs), are widely avail-
able on most of the current computer systems, ranging from
smartphones to supercomputers. So far, there have been only a

few attempts of harnessing this computing power for heuristic
search.

In the remainder of the paper we first describe the tradi-
tional MCTS parallelization techniques on multi-core CPUs
and computer clusters, which is followed by an introduction
of GPU architectures and an existing Block Parallel MCTS
algorithm designed to take advantage of this hardware. We then
propose two new algorithms to improve on Block Parallel and
describe implementation details. After discussing experimental
results, we finish the paper with a concluding section that also
suggests future work in this area.

II. BACKGROUND AND RELATED WORK

In addition to its success when applied to board games,
MCTS is easier to parallelize than αβ [8], [9], [10], [11], [6].
There are several existing methods for parallelizing MCTS,
which we describe in the following subsections. We start
by describing CPU only parallel algorithms and then present
advantages and disadvantages of GPU parallelization followed
by describing an MCTS algorithm which makes use of both
CPU and GPU parallelization which we we will improve upon.

A. CPU Only Parallel MCTS

The most common methods for parallelizing MCTS have
been classified by [6] as root parallelization (Figure 2), leaf
parallelization and tree parallelization (Figure 3). Leaf par-
allelization is the easiest to implement, but it usually has the
worst performance. It works with a single tree and each time a
node is expanded, several parallel playouts are performed, with
the goal of getting a more accurate value for the node. Root
parallelization constructs several independent search trees, and
combines them at the end. It has the least communication
overhead, which makes it well suited for message passing
parallel machines, for which it has shown good results. Tree
parallelization works by sharing a single tree among different
threads, with access coordinated by either a single global
mutex, or several local mutexes. It works best on shared
memory systems and its performance is highly dependent on
the ratio of time spent in-tree to time spent on playouts.

B. GPU Hardware for Parallelization

In 2006 NVIDIA launched its GeForce 8800 videocard
with the G80 GPU, which at the time was a major leap forward
both in terms of graphics performance and in architecture. It
was the first card to allow full General-Purpose computing
on Graphics Processing Units (GPGPU) through its Compute
Unified Device Architecture (CUDA) programming platform.

0/49/15 2/8

1/3 2/4 1/46/8 1/4

11/27

2/4 4/4

0/49/15 2/8

1/3 2/4 1/46/8 1/4

11/27

2/4 4/4

0/0

(a) The selection function is applied
recursively until a node with un-
expanded children is found

0/49/15 2/8

1/3 2/4 1/46/8 1/4

11/27

2/4 4/4

0/49/15 2/8

1/3 2/4 1/46/8 1/4

11/27

2/4 4/4

0/0

(b) One (or more) leaf nodes are
created

0/49/15 2/8

1/3 2/4 1/46/8 1/4

11/27

2/4 4/4

0/0

0/1

0/49/16 2/8

1/3 2/4 1/46/9 1/4

11/28

2/4 4/5

0/1

(c) One (or more) simulated game(s)
is played

0/49/15 2/8

1/3 2/4 1/46/8 1/4

11/27

2/4 4/4

0/0

0/1

0/49/16 2/8

1/3 2/4 1/46/9 1/4

11/28

2/4 4/5

0/1

(d) The game result is propagated up
the tree

Fig. 1. How Monte Carlo tree search works.

This new architecture has since then evolved into processors
capable of executing thousands of threads in parallel, using
simple cores called Streaming Processors (SPs) which are
grouped into several Multiprocessors (MPs). These cores are
optimized for throughput, running as many threads as possible,
but not focusing on the speed and latency of any individual
thread. On the other hand, a CPU runs a small number of
parallel threads, but focuses on running them as fast as possible
while assuring each thread a fair share of processing time. A
modern CPU is an out-of-order superscalar processor with
branch prediction [12]:

• it reorders instructions to make use of instruction
cycles that would otherwise be wasted,

• it provides instruction-level parallelism, executing
more than one instruction during a clock cycle by
simultaneously dispatching multiple instructions to
redundant functional units on the processor,

• and it improves the flow in the instruction pipeline by
trying to predict the outcome of the next conditional
jump instruction.

A GPU has none of those features, making each thread run
much more slowly.

The keys to the vast GPU processing power are a couple of
design decisions: Single Instruction Multiple Thread (SIMT)
architecture, in which a group of threads, called a Warp
(presently comprised of 32 threads), all execute the same

Fig. 2. Root Parallel.

Fig. 3. Leaf Parallel vs. Tree Parallel.

instruction. If there is control divergence within the threads
in a Warp, some threads will be deactivated while others
execute the divergent code, and then the roles will be reversed
— which effectively decreases the instruction throughput.
The second feature that contributes to performance is zero-
overhead scheduling, which, by means of the GPU having
thousands of registers, can maintain tens of thousands of ’live’
threads with almost no context switch cost. This allows the
GPU to hide global memory latency by switching to another
thread group when one thread group requests a global memory
access. The number of threads that can execute concurrently
is given by the number of SPs or cores a GPU has (on current
hardware between the high hundreds to low thousands). The
number of live threads that can be scheduled depends on the
amount of shared memory (a manually controllable L1 cache)
and registers all those threads need, and can go up to tens
of thousands. The particular number of standby threads in an
application divided by the theoretical maximum supported by
a specific GPU is called the occupancy factor.

Finally, it is worth mentioning that the latest GPUs support
multiple kernels (the CUDA name for a function executing
on the GPU) running in parallel, which cannot share MPs,
however. Moreover, these GPUs can have one or two copy
engines, which can manage data transfers simultaneously to
and from main memory to GPU memory.

These details make it difficult to estimate the performance
that can be achieved by a particular GPU on a particular
application.

1) CUDA Programming Terminology: In the CUDA pro-
gramming model, a function to be executed on the GPU is
called a kernel. A kernel is executed by several threads grouped
in thread blocks. All blocks in a kernel invocation compose a
grid.

Fig. 4. Block Parallel.

Each thread can synchronize and communicate via shared
memory with other threads in the same block, but there can
be no synchronization between blocks. Blocks need to be
completely independent of each other, so that they can run
and be scheduled in different MPs without any communication
overhead.

We can estimate how efficiently we are utilizing the GPU
by calculating the occupancy. An occupancy of 100% means
that based on the hardware resources available — mainly
registers, cores and shared memory — and on the resources
needed by each thread, the entire theoretical computing power
of the GPU is used. The resources needed depend on the kernel
to be run; the number of registers and the memory needed is
provided by the CUDA compiler. Reaching 100% occupancy
using some number of blocks B each with T threads doesn’t
imply that all B · T threads will be running at the same
time. It means that they are all standing by and ready to be
scheduled by the thread scheduler. Thus, a configuration with
50% occupancy will not necessarily run twice as long as one
with full occupancy to perform the same amount of work.

C. CPU/GPU Parallel MCTS

In [13], the authors implemented a hybrid Root/Leaf Par-
allel MCTS with the playouts running on a GPU. Their Block
Parallel algorithm expands several Root Parallel trees on the
CPU, and then runs blocks of Leaf Parallel playouts on the
GPU, as shown in Figure 4. The root parallel part of the
algorithm is shown in Figure 5. It searches several game trees
in parallel in line 2 and then combines the values of all children
of the root node and selects the best move.

Figure 6 describes leaf parallel search of one tree. After
selecting a node and expanding one child, a CUDA kernel is
called in line 7: PLAYOUTKERNEL≪1,threads≫(CHILD,T).
The parameters between triple angle brackets specify that this
kernel will run one block, with threads parallel playouts on
the GPU. Their results will be copied back to main memory
in the following line. Then, the tree is updated, from the last
expanded node up to the root.

In a CUDA kernel, the following variables are automati-
cally defined by the system:

• threadId: the index of the current thread inside a
thread block.

• blockDim: the number of threads in a block.

• blockId: the index of the current block in the grid.

The CUDA kernel shown in Figure 7 takes as parameters an
array of board positions and whose turn it is to move. Each
thread will run a playout for the board position indexed by its
blockId, effectively running blockDim playouts for each board.
Algorithm BLOCK only uses one block to run parallel playouts
for one position. Lines 3 to 12 compute the sum over the array
of blockDim playout outcomes in parallel.

III. PROPOSED ENHANCEMENTS

In this paper, we discuss the implementation of two algo-
rithms:

1) GPU Parallel MCTS, which is a Block Parallel
MCTS with the trees residing on the GPU.

2) Multiblock Parallel MCTS, similar to the Block Par-
allel algorithm proposed by [13], but running sim-
ulations for all the children instead of only for one
child of the selected node — with the goal of fully
utilizing the GPU hardware.

A. GPU Parallel

GPU Parallel is a Block Parallel MCTS completely exe-
cuted by the GPU. After receiving the state to be searched, the
GPU will construct enough independent search trees, starting
from that position, to fully occupy the GPU (a few hundred
are enough in our experiments). A multiple of 32 threads will
be used for leaf parallelism in each of the trees. For occupancy
purposes, several trees are handled by each thread block. The
value of 32 threads is chosen because that is the minimum
thread scheduling unit in the CUDA architecture, a Warp.
The number of trees and threads is dependent on the specific
hardware available and chosen to fully utilize the GPU.

Designing time controls for GPU processing is non-trivial
because the programmer has no control of the thread schedul-
ing which is optimized for throughput rather than latency. It

1: function PARALLELSEARCH(Board current, Turn t)
Require: trees . Number of root parallel trees
Require: time . Time to search

2: parallel for i ← 0, trees do
3: roots[i]←BLOCK(current, t, time)
4: end for
5: int num←NUMCHILDREN(root[0])
6: for i←0, trees do
7: for j←0, num do
8: total[j]+=roots[i].children[j].mean
9: end for

10: end for
11: value← −∞
12: for i←0, children do
13: if total[i]>value then
14: value←total[i]
15: bestChild←roots[0].children[i].board
16: end if
17: end for
18: bestMove←GETMOVE(current, bestChild)
19: return bestMove
20: end function

Fig. 5. Main Parallel MCTS, computes the best move for a given state.

1: function BLOCK(Board current, Turn t, Time time)
Require: int threads . threads per tree

2: Node root(current) . root tree at current board
3: int startTime←CURRENTTIME()
4: while CURRENTTIME()-startTime<time do
5: Node node←SELECT(root) . UCT selection
6: Node child←EXPAND(node) . UCT expansion
7: PLAYOUTKERNEL≪1,threads≫(CHILD,T)
8: int[] wins←transfer results from GPU
9: UPDATETREE(child, wins)

10: end while
11: return root
12: end function

Fig. 6. Block Parallel MCTS, computes a game tree for a given state.

is impossible to tell each thread to run for a certain amount
of time because some of them may be suspended indefinitely
and never get a chance to run in the allotted time. To solve
this problem our program estimates in advance the number of
nodes each thread should search. This estimate depends on the
number of nodes per second it was able to compute during the
previous move, which allows the system to adapt as the game
makes a transition into easier or more difficult positions.

B. Multiblock Parallel

The Multiblock Parallel algorithm, shown in Figure 8, is
quite similar to the Block Parallel approach proposed by [13].
However, to increase GPU occupancy, instead of performing
several leaf simulations for a selected node, all the selected
node’s children are expanded and several simulations are
performed for each of them. The algorithm in Figure 9 is quite
similar to the Block Parallel shown in Figure 6, but in line 6
all children are expanded for the selected node, num stores the
number of children expanded, and then the PLAYOUTKERNEL
is called in line 8 with the array of boards corresponding to
those children. The kernel is configured to run num blocks of
threads threads. The number of threads is a parameter of the

1: function PLAYOUTKERNEL(Board[] boards, Turn t)
Require: threadId . index of current thread
Require: blockId . block of current thread
Require: blockDim . threads in a block
Require: shared values[blockDim] . shared array for

. intermediate results
2: values[threadId]←RANDPLAYOUT(boards[blockId])
3: offset←blockDim/2
4: while offset>0 do
5: if threadId < offset then . parallel sum
6: values[threadId] += values[threadId + offset]
7: end if
8: offset←offset/2
9: end while

10: if threadId==0 then
11: wins[blockId]←values[0]
12: end if
Output: int[] wins . array with the wins for each board
13: end function

Fig. 7. CUDA kernel for playouts.

Fig. 8. Multiblock Parallelism.

1: function MULTIBLOCK(Board current, Turn t, Time time)
Require: int threads . threads per tree

2: Node root(current) . root tree at current board
3: int startTime←CURRENTTIME()
4: while CURRENTTIME()-startTime<time do
5: Node node←SELECT(root) . UCT selection
6: Node[] children←EXPANDALLCHILDREN(node)
7: int num←SIZE(children)
8: PLAYOUTKERNEL≪num,threads≫(children,t)
9: int[] wins←transfer results from GPU

10: for i←0, num do
11: UPDATETREE(children[i], wins[i])
12: end for
13: end while
14: return root
15: end function

Fig. 9. MultiBlock Parallel MCTS, computes a game tree for a given state.

algorithm.

IV. EXPERIMENTAL RESULTS

For all experiments we used a PC with Intel Core2 Quad
CPU Q8300 processor at 2.5GHz, with 8GB of RAM, running
Ubuntu 12.04.2 LTS. The video card is a GeForce GTX 650
Ti, which contains a GK106 GPU with compute capability
3.0, and 2GB of RAM. This card has 4 multiprocessors
running at 928Mhz, each of which can execute 192 single
precision floating point operations per clock cycle. The card
is therefore referred to as having 768 (4x192) CUDA Cores.
Integer performance is much slower than floating point at 160
32-bit integer add/compare/logical operations per clock cycle,
and 32 32-bit integer shift/multiply operations per clock cycle.
As 64-bit integer operations are usually a combination of two
or three 32-bit operations, the throughput is estimated to be
around 200 arithmetic and 40 bitwise 64-bit integer operations
per clock cycle for the combined 4 multiprocessors. The bulk
of the operations in our simulations are 64-bit integer bitwise
operations. This card has only one copy engine, meaning data
cannot be transferred simultaneously in both directions.

The algorithms are compared by playing 8 × 8 Ataxx.
Ataxx is a 2-player, perfect information, zero-sum game. The
game usually starts with two pieces in the corners of the board
for each player, as shown in Figure 10(a). There are two type
of moves in the game:

• a clone move adds a new piece to an empty square
adjacent to any piece of the same color

(a) Initial Ataxx board (b) Ataxx board after one move
from each player

Fig. 10. Game of Ataxx played on a 8x8 board with 4 blocked squares.

TABLE I. COMPLEXITIES OF SOME GAMES.

Game Game-tree State-space Average Average
Complexity Complexity Branching Factor Game Length

Othello 1058 1028 10 58

Chess 10123 1050 35 80

Ataxx 10163 1028 65 90

Go 10360 10172 250 150

• a jump move takes one piece and transfers it to
an empty square two spaces away from its original
position.

At each turn, each player must make one move as long
as there are legal moves available, or pass otherwise. Figure
10(b) shows the board position after White made a jump move
and Black responded with a clone move. It is common to have
blocked squares on the board, where no pieces can be played.
After each move, all opponent pieces adjacent to the moved
piece are ’captured’ and switch color. The game ends when
there are no more empty squares. The player with most pieces
wins the game.

We computed the average branching factor and Ataxx game
length for the board in Figure 10 by running a few hundred
games. We obtained an average branching factor of 65 which is
almost double to that of chess, and a game length of 90 moves.
These values, along with the estimated state-space complexity
and game-tree complexity for Ataxx, Othello, Chess, and Go
are shown in Table I. For Ataxx, we estimated the state-space
complexity as approximately 360 ' 1028 (each of the 60 non-
blocked squares can be empty, white or black) and the game-
tree complexity around 6590 ' 10163 (average branching factor
to the power of average game length). For the other games we
use the values from [14].

Ataxx was chosen because it has a bigger game tree
complexity than Othello — the game used to evaluate the Block
Parallel algorithm in [13] — but is still simple enough to be
easily implemented in CUDA.

All experiments were performed with 200 games per data
point and 100ms per move, counting a win as 1 point, a tie
as 0.5 points and a loss as 0 points. The games were played
on 10 different starting configurations, with 0, 4 or 8 blocked
squares. The UCT exploration constant was tuned using the
same parameters.

TABLE II. SIMULATIONS PER SECOND, MID-GAME.

Sequential Trees×Threads GPU

88 × 103
128×32 1817 × 103

256×32 2015 × 103

512×32 1458 × 103

TABLE III. SIMULATIONS PER SECOND SPEEDUP OVER SEQUENTIAL.

Game stage GPU 256x32
Start 17.5
Mid 22.9
End 17.2

TABLE IV. NODES PER SECOND, MID-GAME.

Sequential Trees×Threads GPU

88049
128×32 56784
256×32 62971
512×32 45578

We will assess the performance of the parallel algorithms
running on the GPU by playing them against a sequential
single threaded UCT running on the CPU.

All of the evaluated algorithms use the same playout
function, a simple random playout until the end of the game is
reached. This function is not optimized for any specific target
architecture.

A. GPU Results

In this first experiment the GPU Parallel algorithm uses
128, 256, or 512 trees, each with 32 leaf parallel threads.
Four trees are handled by each thread block. The sequential
algorithm always uses one thread and one tree.

Table II shows the average number of simulations (play-
outs) per second, performed by each algorithm in middle-game
positions (at move 30). Table III shows the speedup of GPU
Parallel at its fastest settings (256 trees and 32 threads per tree)
over sequential at a start, mid-game (move 30) and late-game
(move 60) positions. The speed for 256 trees and 32 threads
per tree is the highest because it is with this configuration that
we get 100% occupancy of our GPU. Using 128 trees only
gets us 50% occupancy, wasting some GPU resources, while
using 512 trees gets us 200% occupancy having more threads
than the GPU can schedule.

Finally, Table IV shows the speed of the algorithms in
terms of nodes expanded per second. Note that although the
number of nodes for the GPU algorithm (around 50, 000)
is comparable to that of the sequential algorithm (close to
88, 000), those nodes are spread over a few hundred trees.
Therefore, each tree is much smaller than the single tree ex-
panded on the CPU. This accounts for the poor game strength
results shown in Figure 11 which indicates the GPU Parallel
algorithm performance for four occupancy percentages. We
get 50% occupancy when using 128 trees and 32 threads
per tree. The 75% mark corresponds to 192 trees. The 100%
mark shows parameters for full occupancy, with 256 trees,
while the 200% mark has 512 trees and twice the amount of
threads that can be supported by the hardware. For this last
setting, on average, half the threads are waiting idle and are not
even available for scheduling. The 100% mark shows a peak
performance of 42.5% winning rate. We can see a significant

Fig. 11. GPU Parallel winning percentage against sequential. Shaded areas
represent 95% confidence intervals.

performance increase between 50% and 100% occupancy, and
a slight drop when going to 200%. This seems encouraging as
the expected performance on a GPU with more MPs should
be higher.

B. Multiblock Results

We implemented the Block Parallel and Multiblock Parallel
algorithms with 1, 2, and 4 trees, each using 64 to 1024
GPU threads. Note that when only one tree is used, the Block
Parallel algorithm degenerates into leaf parallelization.

Figure 12 shows the win percentages of different Multi-
block configurations against the sequential MCTS. The best
result is obtained by the implementation using only one three.
Figure 13 compares Block and Multiblock algorithms using
this setting. For the Block Parallel algorithm the number of
trees didn’t make a significant difference. Therefore, we used
the one tree implementation for comparison. This contradicts
findings by [13] which concludes that the number of trees has
a bigger impact than the number threads per tree. This is likely
due to the different hardware used: the Nvidia Tesla C2050 has
14 MPs (multiprocessors), each of which can execute 32 single
precision floating point operations per clock cycle, for a total
of 448 CUDA Cores, while the GeForce GTX 650 Ti we use
has 4 multiprocessors, each of which can execute 192 single
precision floating point operations per clock cycle, for a total of
768 CUDA Cores. An increased number of MPs means better
parallelism for concurrent kernels, as kernels cannot share an
MP. Also, the Tesla card has two copy engines, which allows
it to copy data to and from the GPU memory at the same time,
while the GeForce only has one copy engine, so simultaneous
data transfers will be queued.

The best overall performer is the Multiblock Parallel, using
one tree and 128 threads per node, winning 77.5% of its games.
The maximum performance for the Block Parallel algorithm
is 49.0% win rate, achieved for one tree and 512 threads.

Tables V, VI and VII, respectively, show the average
number of simulations (playouts) per second, the speedup over
the sequential algorithm, and the number of nodes expanded
per second.

Fig. 12. Multiblock Parallel winning percentage against sequential. Shaded
areas represent 95% confidence intervals.

Fig. 13. Strength comparison between Multiblock Parallel and Block Parallel.
Shaded areas represent 95% confidence intervals.

TABLE V. SIMULATIONS PER SECOND, MID-GAME.

Sequential Trees×Threads Block Multi

88 × 103
1×128 106 × 103 1877 × 103

1×256 210 × 103 2235 × 103

1×512 376 × 103 2438 × 103

TABLE VI. SIMULATIONS PER SECOND SPEEDUP OVER SEQUENTIAL.

Game stage Block 1x512 Multi 1x128
Start 3.7 17.4
Mid 4.3 21.3
End 4.9 13.7

TABLE VII. NODES PER SECOND, MID-GAME.

Sequential Trees×Threads Block Multi

88049
1×128 828 14667
1×256 820 8729
1×512 734 4761

Block Parallel’s speed in terms of nodes per second doesn’t
significantly change when increasing the number of threads on
each tree. This is likely due to one tree not being enough to
fully utilize the GPU. This means that the generated trees are of
similar size, but the kernel is running more threads to perform
simulations. Hence, the quality of the trees is likely improving
which explains the rise in performance seen in Figure 13. On
the other hand, Multiblock Parallel performs very differently.
When using one tree both its speed (in terms of nodes per
second) and its performance diminish when increasing the
number of threads over 128. At this point, the trade-off
between obtaining a better quality tree by adding more threads
is offset by the time slowdown caused by expanding each node.
Doubling the number of threads roughly halves the number of
explored nodes per second in this case (table VII). This is due
to Multiblock Parallel already being close to fully utilizing
the GPU, as exhibited by the scant increase in simulations per
second in table V.

V. CONCLUSIONS AND FUTURE WORK

Our experiments indicate that in 8×8 Ataxx, the Multiblock
Parallel algorithm was able to successfully turn its simulation
speed advantage into a playing strength advantage, while the
GPU Parallel algorithm was not. A possible explanation is
that because GPU Parallel is expanding many trees, each
tree is not searched very deeply. Using fewer trees, but
exploring each one in a Tree Parallel fashion may be worth
trying. However, this approach may be difficult to implement
because of the restrictions imposed by CUDA, which doesn’t
support mutexes, for example. However, the lock-less approach
described in [15] might be applicable here.

An unexpected result is that even when seeing a speedup
comparable to what Rocki et al. [13] found for the Block
Parallel algorithm, we did not obtain a similar playing strength
improvement. One reason for this could be the different
application domain: Ataxx has a bigger branching factor than
Othello, which leads to a shallower search (due to having to
expand more siblings of each node, before expanding a child).
However, for Multiblock Parallel, more siblings means a better
GPU utilization, by scheduling more threads to execute the
kernel.

Another reason is the different hardware used: their GPU
had 14 multiprocessors with 32 CUDA cores each and 2 copy
engines, while ours had 4 multiprocessors with 192 CUDA
cores each and 1 copy engine. To investigate the true cause
more experiments need to be conducted on different domains
and a wider hardware range. An obvious follow-up would be to
test our algorithms on Othello, which would allow for a more
direct comparison with [13]. A different alternative would
be to use artificial game trees with configurable parameters,
which could give us broader insights on the interaction between
game characteristics — like branching factor, game length and
playout speed — and hardware characteristics like number of
MPs, CUDA cores and copy engines.

REFERENCES

[1] R. Coulom, “Efficient selectivity and backup operators in Monte Carlo
tree search,” Computers and Games, pp. 72–83, 2007.

[2] S. Gelly, “A contribution to reinforcement learning; application to
computer Go,” Ph.D. dissertation, Universite Paris-Sud, 2008.

[3] “Human-computer go challenges,” April 2013. [Online]. Available:
http://www.computer-go.info/h-c/index.html#2013

[4] L. Kocsis and C. Szepesvári, “Bandit based Monte Carlo planning,” in
Machine Learning: ECML 2006. Springer, 2006, pp. 282–293.

[5] F. Teytaud and O. Teytaud, “Creating an upper-confidence-tree program
for Havannah,” in Proceedings of the 12th international conference on
Advances in Computer Games. Springer-Verlag, 2009, pp. 65–74.

[6] G. Chaslot, M. Winands, and H. van Den Herik, “Parallel Monte Carlo
tree search,” Computers and Games, pp. 60–71, 2008.

[7] K. Yoshizoe, A. Kishimoto, T. Kaneko, H. Yoshimoto, and Y. Ishikawa,
“Scalable distributed Monte Carlo tree search,” in Fourth Annual
Symposium on Combinatorial Search, 2011.

[8] T. Cazenave and N. Jouandeau, “A parallel Monte Carlo tree search
algorithm,” Computers and Games, pp. 72–80, 2008.

[9] S. Gelly, J.-B. Hoock, A. Rimmel, O. Teytaud, Y. Kalemkarian et al.,
“On the parallelization of Monte Carlo planning,” in ICINCO, 2008.

[10] T. Cazenave and N. Jouandeau, “On the parallelization of UCT,” in
Proceedings of the Computer Games Workshop, 2007, pp. 93–101.

[11] H. Kato and I. Takeuchi, “Parallel Monte Carlo tree search with
simulation servers,” in 13th Game Programming Workshop (GPW-08),
2008.

[12] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,
N. Satish, M. Smelyanskiy, S. Chennupaty, P. Hammarlund et al.,
“Debunking the 100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu,” in ACM SIGARCH Computer Architecture
News, vol. 38, no. 3. ACM, 2010, pp. 451–460.

[13] K. Rocki and R. Suda, “Parallel Monte Carlo tree search on GPU,” in
Eleventh Scandinavian Conference on Artificial Intelligence: Scai 2011,
vol. 227. IOS Press, Incorporated, 2011, p. 80.

[14] L. V. Allis, “Searching for solutions in games and artificial intelligence,”
Ph.D. dissertation, University of Limburg, Maastricht, 1994.

[15] M. Enzenberger and M. Müller, “A lock-free multithreaded Monte Carlo
tree search algorithm,” Advances in Computer Games, pp. 14–20, 2010.

