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Game Tree Search Based on Non-Deterministic
Action Scripts in Real-Time Strategy Games

Nicolas A. Barriga, Marius Stanescu and Michael Buro

Abstract—Significant progress has been made in recent years
towards stronger Real-Time Strategy (RTS) game playing agents.
Some of the latest approaches have focused on enhancing stan-
dard game tree search techniques with a smart sampling of the
search space, or on directly reducing this search space. However,
experiments have thus far only been performed using small
scenarios. We provide experimental results on the performance of
these agents on increasingly larger scenarios. Our main contribu-
tion is Puppet Search, a new adversarial search framework that
reduces the search space by using scripts that can expose choice
points to a look-ahead search procedure. Selecting a combination
of a script and decisions for its choice points represents an
abstract move to be applied next. Such moves can be directly
executed in the actual game, or in an abstract representation of
the game state which can be used by an adversarial tree search
algorithm. We tested Puppet Search in µRTS, an abstract RTS
game popular within the research community, allowing us to
directly compare our algorithm against state-of-the-art agents
published in the last few years. We show a similar performance
to other scripted and search based agents on smaller scenarios,
while outperforming them on larger ones.

Index Terms—Real-Time Strategy (RTS) Games, Adversarial
Search, Heuristic Search, Monte-Carlo Tree Search

I. INTRODUCTION

IN the past 20 years AI systems for abstract games such
as Backgammon, Checkers, Chess, Othello, and Go have

become much stronger and are now able to defeat even the
best human players. Video games introduce a host of new
challenges not common to abstract games. Actions in video
games can usually be issued simultaneously by all players
multiple times each second. Moreover, action effects are often
stochastic and delayed, players only have a partial view of
the game state, and the size of the playing area, the number
of units available and of possible actions at any given time
are several orders of magnitude larger than in most abstract
games.

The rise of professional eSports communities enables us to
seriously engage in the development of competitive AI for
video games. A game played just by amateurs could look
intriguingly difficult at first glance, but top players might be
easily defeated by standard game AI techniques. An example
of this is Arimaa [1], which was purposely designed to be
difficult for computers but easy for human players. It took
a decade for game playing programs to defeat the top human
players, but no new AI technique was required other than those
already in use in Chess and Go programs. And after a decade

N. Barriga, M. Stanescu and M. Buro are with the Department of Com-
puting Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2E8
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we still don’t know if the computer players are really strong
at Arimaa or no human player has a truly deep understanding
of the game. In this respect a game with a large professional
player base provides a more solid challenge.

One particularly interesting and popular video game class
is Real-Time Strategy (RTS) games, which are real-time war
simulations in which players instruct units to gather resources,
build structures and armies, seek out new resource locations
and opponent positions, and destroy all opponent’s buildings to
win the game. Typical RTS games also feature the so-called
“fog of war” (which restricts player vision to vicinities of
friendly units), large game maps, possibly hundreds of mobile
units that have to be orchestrated, and fast-paced game play
allowing players to issue multiple commands to their units per
second. Popular RTS games, such as StarCraft and Company
of Heroes, constitute a multi billion dollar market and are
played competitively by thousands of players.

Despite the similarities between RTS games and abstract
strategy games like Chess and Go, there is a big gap in state-
and action-space complexity [2] that has to be overcome if
we are to successfully apply traditional AI techniques such
as game tree search and solving (small) imperfect information
games. These challenges, in addition to good human players
still outperforming the best AI systems, make RTS games a
fruitful AI research target, with applications to many other
complex decision domains featuring large action spaces, im-
perfect information, and simultaneous real-time action execu-
tion.

To evaluate the state of the art in RTS game AI, several
competitions are organized yearly, such as the ones organized
at the AIIDE1 and CIG conferences, and SSCAI2. Even though
bot competitions show small incremental improvements every
year, strong human players continue to defeat the best bots
with ease at the annual man-machine matches organized
alongside AIIDE. When analyzing the games, several reasons
for this playing strength gap can be identified. Good human
players have knowledge about strong game openings and play-
ing preferences of opponents they encountered before. They
can also quickly identify and exploit non-optimal opponent
behaviour, and — crucially — they are able to generate robust
long-term plans, starting with multi-purpose build orders in
the opening phase. RTS game AI systems, on the other hand,
are still mostly scripted, have only modest opponent modeling
abilities, and generally don’t seem to be able to adapt to
unforeseen circumstances well. In games with small branching

1http://starcraftaicompetition.com
2http://sscaitournament.com/
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factors a successful approach to overcome these issues is look-
ahead search, i.e. simulating the effects of action sequences
and choosing those that maximize the agent’s utility. In this
paper we present and evaluate an approach that mimics this
process in video games featuring vast search spaces. Our
algorithm uses scripts that expose choice points to the look-
ahead search in order to reduce the number of action choices.
This work builds on the Puppet Search algorithm proposed in
[3]. Here we introduce new action scripts and search regimens,
along with exploring different game tree search algorithms.

In the following sections we first describe the proposed
algorithm in detail, then show experimental results obtained
from matches played against other state-of-the-art RTS game
agents, and finish the paper with discussing related work, our
conclusions and motivating future work in this area.

II. ALGORITHM DETAILS

Our new search framework is called Puppet Search. At
its core it is an action abstraction mechanism that, given
a non-deterministic strategy, works by constantly selecting
action choices that dictate how to continue the game based
on look-ahead search results. Non-deterministic strategies are
described by scripts that have to be able to handle all aspects of
the game and may expose choice points to a search algorithm
the user specifies. Such choice points mark locations in the
script where alternative actions are to be considered during
search, very much like non-deterministic automata that are
free to execute any action listed in the transition relation. So,
in a sense, Puppet Search works like a puppeteer who controls
the limbs (choice points) of a set of puppets (scripts).

More formally, we can think of applying the Puppet Search
idea to a game as 1) creating a new game in which move
options are restricted by replacing original move choices with
potentially far fewer choice points exposed by a non-de-
terministic script, and 2) applying an AI technique of our
choice to the transformed game to find or approximate optimal
moves. The method, such as look-ahead search or finding
Nash-equilibria by solving linear programs, will depend on
characteristics of the new game, such as being a perfect or
imperfect information game, or a zero sum or general sum
game.

Because we control the number of choice points in this
process, we can tailor the resulting AI systems to meet given
search time constraints. For instance, suppose we are interested
in creating a fast reactive system for combat in an RTS game.
In this case we will allow scripts to expose only a few carefully
chosen choice points, if at all, resulting in fast searches that
may sometimes miss optimal moves, but generally produce
acceptable action sequences quickly. Note that scripts exposing
only a few choice points or none do not necessarily produce
mediocre actions because script computations can themselves
be based on (local) search or other forms of optimization. If
more time is available for computing moves, our search can
visit more choice points to generate better moves.

The idea of scripts exposing choice points originated from
witnessing poor performance of scripted RTS AI systems and
realizing that one possible improvement is to let look-ahead

GAME
STATE

Attack

Gather 
resources

Build
defenses

Expand

Train soldiers

Fig. 1. Decision tree representing script choices.

search make fundamental decisions based on evaluating the
impact of chosen action sequences. Currently, RTS game AI
systems still rely on scripted high level strategies [4], which,
for example, may contain code that checks whether now is a
good time to launch an all-in attack based on some state feature
values. However, designing code that can accurately predict
the winner of such an assault is challenging, and comparable
to deciding whether there is a mate in k moves in Chess
using static rules. In terms of code complexity and accuracy
it is much more preferable to use look-ahead search to decide
the issue, assuming sufficient computational resources are
available. Likewise, given that currently high-level strategies
are still mostly scripted, letting search decide which script
choice point actions to take in complex video games has
the potential to improve decision quality considerably while
simplifying code complexity.

A. Scripts

For our purposes we define a script as a function that takes
a game state and returns a set of actions to be performed
now. The method for generating actions is immaterial: it could
be a rule based player, hand coded with expert knowledge,
a machine learning or search based agent, etc. The only
requirement is that the method must be able to generate actions
for any legal game state. As an example consider a “rush”,
which is a common strategy in RTS games that tries to build
as many combat units as fast as possible in an effort to destroy
the opponent’s base before suitable defenses can be built. A
wide range of these aggressive attacks are possible. At one
extreme end, the fastest attack can be executed using only
workers, which usually deal very little damage and barely have
any armor. Alternatively, the attack can be delayed until more
powerful units become available.

Figure 1 shows a decision tree representing a script that first
gathers resources, builds some defensive buildings, expands
to a second resource location, creates soldiers and finally
attacks the enemy. This decision tree is executed at every game
simulation frame to decide what actions to issue next.

https://www.researchgate.net/publication/285589144_Puppet_Search_Enhancing_Scripted_Behavior_by_Look-Ahead_Search_with_Applications_to_Real-Time_Strategy_Games?el=1_x_8&enrichId=rgreq-73e18524028e5eaee1745daca7903cb6-XXX&enrichSource=Y292ZXJQYWdlOzMxMzU2MTU4NjtBUzo1MDg1ODUxMzExNTU0NTZAMTQ5ODI2NzU1MjgwNQ==
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B. Choice Points

When writing a script, we must make some potentially hard
choices, such as when to expand to create a new base. After
training a certain number of workers, or maybe only after most
of the current bases’ resources are depleted. Regardless of the
decision, it will be hardcoded in the script, according to a set of
static rules about the state of the game. Discovering predictable
patterns in the way the AI acts might be frustrating for all
but beginner players. Whether the behavior implemented is
sensible or not in the given situation, opponents will quickly
learn to exploit it and the game will likely lose some of its
replay value in the process. As script writers, we would like
to be able to leave some choices open, such as which units to
rush with. But the script also needs to deal with any and all
possible events happening during the strategy execution. The
base might be attacked before it is ready to launch its own
attack, or maybe the base is undefended while our infantry
units are out looking for the enemy. Should they continue
in hope of destroying their base before they raze ours? Or
should they come back to defend? What if when we arrive
at the enemy’s base we realize we don’t have the strength to
destroy it? Should we push on nonetheless? Some, or all, of
these decisions are best left open, so that they can be explored
dynamically and the most appropriate choice taken during
the game. We call such non-deterministic script parts choice
points.

C. Using Non-Deterministic Scripts

Scripts with choice points can transform a given complex
game with a large action space into a smaller games to which
standard solution methods can be applied, such as learning
policies using machine learning (ML) techniques, MiniMax or
Monte Carlo Tree Search, or approximating Nash-equilibria
in imperfect information games using linear programming
or iterative methods. The number of choice points and the
available choices are configurable parameters that determine
the strength and speed of the resulting AI system. Fewer
options will produce faster but more predictable AI systems
which are suitable for beginner players, while increasing
their number will lead to stronger players, at the expense of
increased computational work.

ML-based agents rely on a function that takes the current
game state as input, and produces a decision for each choice
in the script. The parameters of that function would then
be optimized either by supervised learning methods on a set
of game traces, or by reinforcement learning via self-play.
Once the parameters are learned, the model acts like a static
(but possibly stochastic) rule based system. If the system is
allowed to keep learning after the game has shipped, then
there are no guarantees as to how it will evolve, possibly
leading to unwanted behavior. Another approach, look-ahead
search, involves executing action sequences and evaluating
their outcomes. Both methods can work well. It is possible to
have an unbeatable ML player if the features and training data
are good enough, as well as a perfect search based player if we
explore the full search space. In practice, neither requirement
is easy to meet: good representations are hard to design, and

Algorithm 1 Puppet ABCD Search
1: procedure PUPPETABCD(state, height, prevMove, α, β)
2: player ← PLAYERTOMOVE(state, policy, height)
3: if heigth == 0 or TERMINAL(state) then
4: return EVALUATE(state, player)
5: end if
6: for move in GETCHOICES(state, player) do
7: if prevMove == ∅ then
8: v ← PUPPETABCD(state, h− 1,move, α, β)
9: else

10: state′ ←COPY(state)
11: EXECCHOICES(state′, prevMove,move)
12: v ← PUPPETABCD(state′, height− 1, ∅, α, β)
13: end if
14: if player = MAX and v > α then α← v
15: if player = MIN and v < β then β ← v
16: if α ≥ β then break
17: end for
18: return player == MAX ? α : β
19: end procedure
20:
21: #Example call:
22: #state: current game state
23: #depth: maximum search depth, has to be even
24: value = PUPPETABCD(state, depth, ∅,−∞,∞)

time constraints prevent covering the search space in most
games. Good practical results are often achieved by combining
both approaches [5].

D. Game Tree Search

To decide which choice to take, we can execute a script
for a given timespan, look at the resulting state, and then
backtrack to the original state to try other action choices,
taking into account that the opponent also has choices. To
keep the implementation as general as possible, we will use
no explicit opponent model. We’ll assume he uses the same
scripts and evaluates states the same way we do.

Algorithm 1 shows a variant of Puppet Search which is
based on ABCD (Alpha-Beta Considering Durations) search,
that itself is an adaptation of alpha-beta search to games with
simultaneous and durative actions [6]. To reduce the compu-
tational complexity of solving multi-step simultaneous move
games, ABCD search implements approximations based on
move serialization policies which specify the player which is
to move next (line 2) and the opponent thereafter. Commonly
used strategies include random, alternating, and alternating in
1-2-2-1 fashion, to even out first or second player advantages.

To fit into the Puppet Search framework for our hypothetical
simultaneous move game we modified ABCD search so that
it considers puppet move sequences — series of script and
choice combinations — and takes into account that at any
point in time both players execute a puppet move, to perform
actions at every frame in the game. The maximum search
depth is assumed to be even, which allows both players
to select a puppet move to forward the world in line 11.

https://www.researchgate.net/publication/292074166_Mastering_the_game_of_Go_with_deep_neural_networks_and_tree_search?el=1_x_8&enrichId=rgreq-73e18524028e5eaee1745daca7903cb6-XXX&enrichSource=Y292ZXJQYWdlOzMxMzU2MTU4NjtBUzo1MDg1ODUxMzExNTU0NTZAMTQ5ODI2NzU1MjgwNQ==
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Moves for the current player are generated in line 6. They
contain choice point decisions as well as the player whose
move it is. Afterwards, if no move was passed from the
previous recursive call (line 7), the current player’s move
previousMove is passed on to a subsequent PUPPETABCD
call at line 8. Otherwise, both players’ moves are applied to
the state (line 11).

RTS games are usually fast paced. In StarCraft bot competi-
tions, for example rules allow up to 41 milliseconds computing
time per simulation frame. However, as actions take some
time to complete, it is often the case that the game doesn’t
really change between one game frame and the next one. This
means that an agent’s computations can be split among several
consecutive frames until an action has to be issued. To take
advantage of this split computation, the recursive Algorithm 1
has to be transformed into an iterative one, by manually
managing the call stack. The details of this implementation
are beyond the scope of this paper, and can be reviewed in
our published code at the µRTS repository3.

Alpha-beta search variants conduct depth-first search, in
which the search depth needs to be predefined, and no solution
is returned until the algorithm runs to completion. In most
adversarial video games, the game proceeds even when no
actions are emitted, resulting in a disadvantage if a player is
not able to issue actions in a predefined time. Algorithms to
play such games have to be anytime algorithms, that is, be
able to return a valid solution even when interrupted before
completion. Iterative deepening has traditionally been used
to transform alpha-beta search into an anytime algorithm.
It works by calling the search procedure multiple times,
increasing the search depth in each call. The time lost due
to repeating computations is usually very low, due to the
exponential growth of game trees. However, even this minimal
loss can be offset by subsequently reusing the information
gained in previous iterations for move sorting.

In our implementation we reuse previous information in two
ways: a move cache and a hash move. The move cache is a map
from a state and a pair of moves (one for each player) to the
resulting state. With this cache, we can greatly reduce the time
it takes to forward the world, which is the slowest operation
in our search algorithm. The hash move is a standard move
ordering technique, in which the best move from a previous
iteration is used first, in order to increase the chances of an
earlier beta cut. Algorithm 2 shows an UCT version of Puppet
Search. The node structure on line 1 contains the game state,
the player to move (moves are being serialized as in ABCD),
a list of the children nodes already expanded, a list of legal
moves (applicable choice point combinations), and a previous
move, which can be empty for the first player.

Procedure PuppetUCTCD in line 9 shows the main loop,
which calls the selectLeaf procedure at line 12, which will
select a leaf, expand a new node, and return it. Then a playout
is performed in line 14 using a randomized policy for both
players. The playout is cut short after a predefined number
of frames, and an evaluation function is used. Afterwards,
a standard UCT update rule is applied. Finally, when the

3https://github.com/santiontanon/microrts

Algorithm 2 Puppet UCTCD Search
1: Structure Node
2: state
3: player
4: children
5: moves
6: previousMove
7: End Structure
8:
9: procedure PUPPETUCTCD(state)

10: root ← NODE(state)
11: while not timeUp do
12: leaf ← SELECTLEAF(root)
13: newState ←
14: SIMULATE(leaf.state, policy, policy, leaf.parent.player,

leaf.player, EVAL PLAYOUT TIME)
15: e ← EVALUATE(newState, leaf.player)
16: UPDATE(leaf, e)
17: end while
18: return GETBEST(root)
19: end procedure
20:
21: procedure SELECTLEAF(root)
22: if SIZE(root.children) < SIZE(root.moves) then
23: move ← NEXT(root.moves)
24: if root.previousMove == ∅ then
25: node ← NODE(root,move)
26: APPEND(root.children, node)
27: return SELECTLEAF(node)
28: else
29: newState ←
30: SIMULATE(root.state, root.previousMove, move,

root.parent.player, root.player, STEP PLAYOUT TIME)
31: node ← NODE(newState)
32: APPEND(root.children, node)
33: return node
34: end if
35: else
36: node ← UCB1(root.children)
37: return SELECTLEAF(node)
38: end if
39: end procedure

computation time is spent, the best move at the root is selected
and returned.

Procedure selectLeaf in line 21 either expands a new sibling
of a leaf node, or if there are none, uses a standard UCB1
algorithm to select a node to follow down the tree. When
expanding a new node, it always expands two levels, because
playouts can only be performed on nodes for which both
players have selected moves.

E. State Evaluation

Forwarding the state using different choices is only useful
if we can evaluate the merit of the resulting states. We
need to decide which of those states is more desirable from
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Barracks: train attack units
Heavy: powerful slow melee unit
Light: low power fast melee unit

Ranged: long ranged attack unit

Bases: accumulate resources and train workers

Workers: can harvest minerals and construct buildings

Minerals: harvested by workers

Fig. 2. Screenshot of µRTS, with explanations of the different in-game symbols.

the point of view of the player performing the search. In
other words, we need to evaluate those states, assign each
a numerical value and use it to compare them. In zero-
sum games it is sufficient to consider symmetric evaluation
functions eval(state, player) that return positive values for
the winning player and negative values for the losing player
with eval(state, p1) = −eval(state, p2).

The most common approach to state evaluation in RTS
games, and the one we use in our experiments, is to use a
linear function that adds a set of values that are each multiplied
by a weight. The values usually represent simple features,
such as the number of units of each type a player has, with
different weights reflecting their estimated worth. Weights can
be either hand-tuned or learned from records of past games
using logistic regression or similar methods. An example of a
popular metric in RTS games is Life-Time Damage, or LTD
[7], which tries to estimate the amount of damage a unit could
deal to the enemy during its lifetime. Another feature could be
the cost of building a unit, which takes advantage of the game
balancing already performed by the game designers. Costlier
units are highly likely to be more useful, thus the player that
has a higher total unit cost has a better chance of winning.
[8] describes a state-of-the-art evaluation method based on
Lanchester’s attrition laws that takes into account combat unit
types and their health.

[9] presents a global evaluation function that takes into
account not just military features, but economic, spatial and
player skill as well. [10] implements a Convolutional Neural
Network for game state evaluation that provides a significant
increase in accuracy compared to other methods, at the cost
of execution speed. How much the trade-off is worth depends
on the search algorithm using it.

A somewhat different state evaluation method involves
Monte Carlo simulations. Instead of invoking a static function,
one could have a pair of fast scripts, either deterministic or
randomized, play out the remainder of the game, and assign a
positive score to the winning player [6]. The rationale behind
this method is that, even if the scripts are not of high quality, as
both players are using the same policy, it is likely that whoever
wins more simulations is the one that was ahead in the first
place. If running a simulation until the end of the game is
infeasible, a hybrid method can be used that performs a limited

playout for a predetermined amount of frames, and then calls
the evaluation function. Evaluation functions are usually more
accurate closer to the end of a game, when the game outcome
is easier to predict. Therefore, moving the application of the
evaluation function to the end of the playout often results in
a more accurate assessment of the value of the game state.

F. Long Term Plans

RTS game states tend to change gradually, due to actions
taking several frames to execute. To take advantage of this
slow rate of change, we assume that the game state doesn’t
change for a predefined amount of time and try to perform a
deeper search than otherwise possible during a single frame.
We can then use the generated solution (a series of choices
for a script’s choice points) to control the game playing agent,
while the search produces the next solution. We call this
approach having a standing plan.

Experiments reported in the following section investigate
how advantageous is the trade-off between computation time
and recency of the data being used to inform the search.

III. EXPERIMENTS AND RESULTS

The experiments reported below were performed in µRTS4,
an abstract RTS game implemented in Java and designed to
test AI techniques. It provides the core features of RTS games,
while keeping things as simple as possible. In the basic setup
only four unit and two building types are supported (all of
them occupying one map tile), and there is only one resource
type. µRTS is a 2-player real-time game featuring simultane-
ous and durative actions, possibly large maps (althouth sizes
of 8x8 to 16x16 are most common), and by default all state
variables are fully observable. µRTS comes with a few basic
scripted players, as well as search-based players that imple-
ment several state-of-the-art RTS game search techniques. This
makes it an useful tool for benchmarking new algorithms.
Figure 2 shows an annotated screenshot.
µRTS comes with four scripted players, each implementing

a rush strategy with different unit types. A rush is a simple

4https://github.com/santiontanon/microrts
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strategy in which long term economic development is sac-
rificed for a quick army buildup and early assault on the
opponent’s base. The first Puppet Search version we tested
includes a single choice point to select among these 4 existing
scripts, generating a game tree with constant branching factor
4. We call this version PuppetSingle. A slightly more complex
script was implemented as well. In addition to the choice
point for selecting the unit type to build, PuppetBasic has
an extra choice point for deciding whether to expand (i.e.,
build a second base) or not. Because this choice point is only
active under certain conditions, the branching factor is 4 or
8, depending on the specific game state. Both ABCD and
UCTCD search were used, with and without a standing plan,
leading to a total of eight different agents.

The algorithms used as a benchmark are Naı̈veMCTS and
two versions of AHTNs: AHTN-F, the strongest one on
small maps, and AHTN-P, the more scalable version. These
algorithms are described in detail in section IV.

All experiments were conducted on computers equipped
with an Intel Core i7-2600 CPU @ 3.4 GHz and 8 GB of
RAM. The operating system was Ubuntu 14.04.5 LTS, and
Java JDK 1.8.0 was used.
µRTS was configured in a similar manner to experiments

reported in previous papers. A computational budget of 100ms
was given to each player between every simulation frame. In
[11], [12] games ended in ties after running for 3000 game
frames without establishing a winner, i.e. a player eliminating
all the other player’s units. On bigger maps this produces a
large number of ties, so we used different cutoff thresholds
according to the map sizes:

Size 8x8 16x16 24x24 64x64 >64x64
Frames 3000 4000 5000 8000 12000

Applying these tie rules produced tie percentages ranging from
1.1% to 3.9% in our experiments.

All algorithms share the same simple evaluation function,
a randomized playout policy and a playout length of 100
simulation frames ([11], [12]), which were chosen to easily
compare our new results with previously published results.
The Puppet Search versions that use a standing plan have 5
seconds of planning time between plan switches, which was
experimentally determined to produce the strongest agent. The
UCTCD Puppet Search versions use exploration factor c =
1 for the 8x8 map, 10 for the 16x16 map, and 0.1 for all
others, tuned experimentally. All other algorithms maintain
their original settings from the papers in which they were
introduced.

The following maps were used in the experiments. Starting
positions with a single base were chosen because they are
by far the most common in commercial RTS games. Unless
specified, 24 different starting positions were used for each
map.

8x8: an 8x8 map with each player starting with one base
and one worker. This map has been used in previous
papers ([11], [12]).

16x16: a 16x16 map with each player starting with one base
and one worker. This map was previously used in [12].

24x24: a 24x24 map with each player starting with one base
and one worker.

BloodBath: a port of a well known 64x64 StarCraft: Brood
War map. 12 different starting positions were used.

AIIDE: a port of 8 of the StarCraft: Brood War maps used
for the AIIDE competition5. 54 different starting positions
were used in total.

Figures 3 and 4 show results grouped by algorithm type.
The bars on the left of each group (blue) represent the
average and maximum win rates of the scripts in a round
robin tournament (all versus all). The middle (red) bars show
the average and maximum performance of the benchmark
algorithms (Naı̈veMCTS, AHTN-P and AHTN-F). The bars
on the right of each group (yellow) show the average and
maximum performance of the eight Puppet Search versions
we implemented.

On small maps the performances of Puppet Search and other
search based algorithms are similar. The average performance
of the scripted agents is fairly low, however, on the smaller
maps, there is always one competitive script (WorkerRush
in 8x8 and 16x16, and LightRush in 24x24). On the bigger
maps, no agent comes close to Puppet Search. The differences
between Puppet Search versions are shown below in Figures 5
to 7.

Figure 5 shows similar performance for the UCTCD Puppet
Search versions and the ABCD ones on small maps. On
the bigger maps ABCD has a higher winrate. This uneven
performance by UCTCD can be a result of MCTS algorithms
being designed for games with a larger branching factor. This
weakness is masked on the smaller maps because of the larger
number of nodes that can be explored due to faster script
execution.

Figure 6 shows that PuppetSingle clearly outperforms Pup-
petBasic on the smaller maps, while the opposite is true on
the bigger ones. This exemplifies the importance of design-
ing choice points carefully. They must be potentially useful,
otherwise they are just increasing the branching factor of the
search tree without providing any benefit.

Figure 7 shows that investing time to compute a longer term
plan, and then using it while computing the next plan, is only
useful on big maps. On such maps the playouts are usually
slower and the action consequences are delayed. Therefore,
deep search is important. In smaller maps, however, acting
on recent game state information seems more important, as
the actions’ effects propagate faster. As expected, computing
a plan every time an action needs to be issued instead of re-
using a standing plan leads to better performance.

Table I shows win rates for all algorithms on all map
sets. PuppetABCDSingle consistently outperforms its four con-
stituent scripts in all but the smallest map, in which there
is a clearly dominating strategy, and any deviation from it
results in lower performance. After watching a few games, it
seems clear that this demeanor—the total is more than the sum
of its parts—is driven by some emergent patterns. Behaviors
than were not included in the scripts begin to appear. Two
in particular seem worthy of mention: Puppet Search will

5http://www.starcraftaicompetition.com
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Fig. 3. Average performance of the agents, grouped by algorithm type. Error
bars indicate one standard error.
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Fig. 4. Maximum performance of each type of agent. Error bars show one
standard error.

often start with a WorkerRush and later switch to training
stronger units and use its previously built workers for gathering
resources, thus bypassing the scripts’ hard-coded decision to
only use one gathering worker. Another similar behavior is
that of switching back and forth between a script that trains
ranged units and one that trains stronger melee units. The latter
ones protect the weak ranged units, while both engage enemies
simultaneously.

Table I also shows that Naı̈veMCTS cannot scale to the
larger maps, and corroborates results in [12] that AHTN-F
is stronger than AHTN-P in small maps, but it doesn’t scale
as well (though still better than Naı̈veMCTS). Worth noting
is that two instances of Puppet Search—PuppetABCDSingle
and PuppetUCTCDBasicNoPlan— can outperform almost all
of the non Puppet Search agents in all maps, except for the
WorkerRush on the 8x8 map.

IV. RELATED WORK

Naı̈veMCTS [11] uses smart action sampling for dealing
with large action spaces. It treats the problem of assigning
actions to individual units as a Combinatorial Multi-Armed
Bandit (CMAB) problem, that is, a bandit problem with
multiple variables. Each variable represents a unit, and the
legal actions for each of those units are the values that each
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Fig. 5. Average performance of ABCD and UCTCD versions of Puppet
Search. Error bars show one standard error.
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Fig. 6. Average performance of Puppet Search versions using a single choice
point or the basic script. Error bars show one standard error.
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Fig. 7. Average performance of Puppet Search using a standing plan or
replanning every time. Error bars show one standard error.

variable can take. Each variable is treated separately rather
than translated to a regular Multi-Armed Bandit (MAB) (by
considering that each possible legal value combination is a
different arm) as in UCTCD. Samples are taken assuming
that the reward of the combination of the arms is just the
sum of the rewards for each arm (which they call the naive
assumption). Each arm is treated as an independent local
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TABLE I
AVERAGE TOURNAMENT WIN RATES GROUPED BY MAP TYPE. 95% CONFIDENCE INTERVALS IN PARENTHESIS.

Player 8x8 16x16 24x24 BloodBath AIIDE
WorkerRush 76.5(±4.5) 55.5(±5.3) 30.5(±4.9) 30.4(±6.8) 10.5(±1.9)
LightRush 24.0(±4.5) 46.1(±5.3) 66.2(±5.0) 33.0(±7.1) 46.7(±3.5)

RangedRush 12.6(±3.5) 12.2(±3.5) 23.2(±4.5) 15.5(±5.5) 28.8(±3.2)
HeavyRush 9.2(±3.0) 25.7(±4.6) 46.0(±5.3) 19.9(±6.0) 41.7(±3.4)
NaiveMCTS 53.7(±5.2) 57.4(±5.2) 33.9(±4.9) 3.0(±1.8) 8.2(±1.3)

AHTN-P 54.6(±5.2) 53.0(±5.3) 34.5(±5.1) 28.9(±6.7) 14.7(±2.3)
AHTN-F 73.1(±4.7) 47.8(±5.3) 20.5(±4.3) 36.9(±7.1) 12.0(±2.0)

PuppetUCTCDSingle 65.5(±5.0) 61.2(±5.2) 65.5(±5.1) 69.6(±7.0) 78.5(±2.9)
PuppetABCDSingle 68.5(±4.9) 66.1(±5.0) 68.8(±4.9) 79.5(±6.1) 83.0(±2.7)

PuppetUCTCDSingleNoPlan 70.7(±4.7) 66.5(±5.0) 53.1(±5.3) 62.5(±7.3) 44.9(±3.5)
PuppetABCDSingleNoPlan 70.8(±4.7) 48.8(±5.3) 64.6(±5.1) 75.3(±6.4) 65.7(±3.3)

PuppetUCTCDBasic 21.3(±4.4) 43.3(±5.3) 53.3(±5.3) 65.2(±7.2) 77.2(±3.0)
PuppetABCDBasic 22.6(±4.4) 41.1(±5.2) 52.2(±5.3) 75.6(±6.5) 88.0(±2.3)

PuppetUCTCDBasicNoPlan 63.1(±5.1) 65.5(±5.0) 71.6(±4.8) 69.3(±6.9) 68.3(±3.3)
PuppetABCDBasicNoPlan 63.8(±5.0) 59.8(±5.2) 66.1(±5.0) 85.4(±5.3) 81.8(±2.7)

MAB and the individual samples are combined into a global
MAB. The algorithm (naı̈veMCTS) was compared against
other algorithms that sample or explore all possible low-level
moves, such as ABCD and UCTCD. It outperformed them all,
in three µRTS scenarios, with the biggest advantages found on
the more complex scenarios.

Adversarial Hierarchical Task Networks (AHTNs) [12] are
an alternative approach, that instead of sampling from the full
action space, uses scripted actions to reduce the search space.
It combines minimax tree search with HTN planning.

The authors implement five different AHTNs: 1) one with
only the Low Level actions available in the game, which
produces a game tree identical to one traversed by minimax
search applied to raw low-level actions; 2) Low Level actions
plus Pathfinding; 3) Portfolio, in which the main task of
the game can be achieved only by three non-primitive tasks
that encode three different hard-coded rush strategies, thus
yielding a game tree with only one choice node at the top;
4) Flexible, with non-primitive tasks for harvesting resources,
training units of different types, and attacking the enemy; and
5) Flexible Single Target, similar to Flexible, but encoded
in such a way that all units that are sent to attack are sent
to attack the same target, to reduce the branching factor.
Experiments are presented in µRTS, a small scale RTS game
designed for academic research, against four different scripts:
a random script biased towards attacking, and the three scripts
used by the Portfolio AHTN. The latter three AHTNs show
good results, with some evidence that the Portfolio AHTN is
the most likely to scale well to more complex games. The
experiments presented in the previous section back this claim,
though the performance couldn’t match Puppet Search’s.

The AHTN approach, particularly the portfolio version,
seems to have similar capabilities to Puppet Search. Both
have the ability to encode strategies as high level tasks with
options to be explored by the search procedure. However,
Puppet Search is much simpler to implement, by having the
ability to reuse scripts already present in the game. The full
AHTN framework, including the tree search algorithm, is
implemented in around 3400 lines of Java code, compared to
around 1600 for Puppet Search. The AHTN definitions take
559 lines of LISP for AHTN-F and 833 for AHTN-P, while

Puppet Search’s scripts took 66 lines of Java code for the sin-
gle choice point one (plus 620 reused from the scripts already
provided by µRTS) and 447 lines for the more complex one.
The vast performance discrepancy with PuppetABCDSingle is
due to a key difference between the algorithms. In AHTN,
game tree nodes are the possible decompositions of the HTN
plans, with leaves where no further decomposition can be
performed. In the AHTN-P example, if both players have
three choices in a single choice point, the tree has exactly
9 leaves. In PuppetABCDSingle, the choices are applied, the
game forwarded (Algorithm 1, line 11), and then the choices
will be explored again and the tree will continue to grow as
long as there is time left.

Hierarchical Adversarial Search [13], [14] is an approach
that uses several layers at different abstraction levels, each
with a goal and an abstract view of the game state. The
top layer of their three layer architecture chooses a set of
objectives needed to win the game, the middle layer generates
possible plans to accomplish those objectives, and the bottom
layer evaluates the resulting plans and executes them at the
individual unit level. For search purposes the game is advanced
at the lowest level and the resulting states are abstracted back
up the hierarchy. The algorithm was tested in SparCraft, a
StarCraft simulator that only supports basic combat. The top
level objectives, therefore, were restricted to destroying all
opponent units while defending their own bases. Though this
algorithm is general enough to encompass a full RTS game,
only combat-related experiments were conducted.

An algorithm combining state and action abstractions for
adversarial search in RTS games was proposed in [15], [16].
It constructs an abstract representation of the game state by
decomposing the map into connected regions and grouping
units into squads of a single unit type in each of the regions.
Actions are restricted to squad movement to a neighboring
region, attacking an enemy squad in the same region or staying
idle. The approach only deals with movement and combat, but
in their experiments it was added as a module to an existing
StarCraft bot, so that it could play a full game. However, the
only experiments presented were against the built-in AI, a
much weaker opponent than current state-of-the-art bots.

Finally, the main difficulty with applying PuppetSearch, or
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any look-ahead search technique to a commercial RTS game,
such as StarCraft: Brood War, is the lack of an accurate
forward model or simulator. In contrast with board games,
where the forward model is precisely detailed in the rules
of the game, and everyone can build its own simulator to
use for search purposes, commercial games are usually closed
source, which means we don’t have access to a simulator,
nor can we easily reverse engineer it. An earlier version of
PuppetSearch [3] has been used in StarCraft, with encouraging
results despite to the poor accuracy of the simulator used.
Experiments in the current paper were performed in µRTS to
better evaluate PuppetSearch’s performance without external
confounding elements.

V. CONCLUSIONS AND FUTURE WORK

We have introduced a new search framework, Puppet
Search, that combines scripted behavior and look-ahead
search. We presented a basic implementation as an example
of using Puppet Search in RTS games, with the goal of
reducing the search space and make adversarial game tree
search feasible. The decision tree structure of the scripts
ensures that only the choice combinations that make sense
for a particular game state will be explored. This reduces the
search effort considerably, and because scripts can play entire
games, we can use the previous plan for as long as it takes to
produce an updated one.

Our experiments show a similar performance to top scripted
and search based agents in small maps, while vastly outper-
forming them on larger ones. Even a script with a single choice
point to choose between different strategies can outperform the
other players in most scenarios. Furthermore, on larger maps,
Puppet Search benefits from the ability to use a standing plan
to issue actions, while taking more time to calculate a new
plan, resulting in even stronger performance.

From a design point of view Puppet Search allows game
designers—by using scripts— to keep control over the range
of behaviors the AI system can perform, while the adver-
sarial look-ahead search enables it to better evaluate action
outcomes, making it a stronger and more believable enemy.
Based on promising experimental results on RTS games, we
expect this new search framework to perform well in any game
for which scripted AI systems can be built.

As for the general idea of Puppet Search, we believe it has
great potential to improve decision quality in other complex
domains as well in which expert knowledge in form of non-
deterministic scripts is available.

In the future, we would like to extend this framework to
tackle games with partial observability by using state and
strategy inference similar to Bayesian models for opening
prediction [17] and plan recognition [18], and particle models
for state estimation [19].
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[12] S. Ontañón and M. Buro, “Adversarial hierarchical-task network plan-
ning for complex real-time games,” in Proceedings of the 24th Inter-
national Conference on Artificial Intelligence (IJCAI), 2015, pp. 1652–
1658.

[13] M. Stanescu, N. A. Barriga, and M. Buro, “Introducing hierarchical
adversarial search, a scalable search procedure for real-time strategy
games,” in Proceedings of the Twenty-first European Conference on
Artificial Intelligence (ECAI), 2014, pp. 1099–1100.

[14] ——, “Hierarchical adversarial search applied to real-time strategy
games,” in Proceedings of the Tenth AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE), 2014, pp.
66–72.
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