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Abstract

Decision-making in large imperfect information games is dif-
ficult. Thanks to recent success in Poker, Counterfactual Re-
gret Minimization (CFR) methods have been at the forefront
of research in these games. However, most of the success in
large games comes with the use of a forward model and pow-
erful state abstractions. In trick-taking card games like Bridge
or Skat, large information sets and an inability to advance
the simulation without fully determinizing the state make for-
ward search problematic. Furthermore, state abstractions can
be especially difficult to construct because the precise hold-
ings of each player directly impact move values.
In this paper we explore learning model-free policies for
Skat from human game data using deep neural networks
(DNN). We produce the new state-of-the-art bot for bidding
and declaration by introducing methods to a) directly vary
the aggressiveness of the bidder and b) declare games based
on expected value while mitigating issues with rarely ob-
served state-action pairs. Although cardplay policies learned
through imitation are slightly weaker than the current best
search based method, they run orders of magnitude faster. We
also explore how these policies could be learned directly from
experience in a Reinforcement Learning setting and discuss
the value of incorporating human data for this task.

1 Introduction
Decision-making in large imperfect information games can
be difficult. Techniques based on Counterfactual Regret
Minimization (CFR) (Zinkevich et al. 2008) are currently
considered state-of-the-art, but a forward model and expert
abstractions are often required to scale these techniques to
larger games. Some games are simply too large to solve with
CFR methods on current hardware. For instance, in the pop-
ular 3-player card game of Skat there are 64,512,240 pos-
sible information sets for the first decision point right after
the initial deal. Each of these information sets is comprised
of 646,646 states. Overall, there are ≈ 4.4 · 1019 terminal
histories in the pre-cardplay portion alone and many more
when taking cardplay into account.

The general approach for solving larger games with these
methods is to first abstract the game into a smaller ver-
sion of itself, solve that, and then map those strategies
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back to the original game. This process implies a game-
specific tradeoff between abstraction size and how well the
strategies computed on the abstraction translate to the real
game. Recent advances in Poker (Moravčı́k et al. 2017;
Brown and Sandholm 2017) highlight the effectiveness of
this approach in some games. In Skat and Contract Bridge,
however, the values of actions in an information set are
highly dependent on the interactions between cards within a
player’s hand and the exact cards which each opponent pos-
sesses. This makes it difficult to construct abstractions that
are small enough to use with CFR methods, but expressive
enough to capture the per-card dependencies that are vital to
success in the full game.

Good forward models are also difficult to produce in Skat
due to the imperfect information nature of the game. In order
to advance the model, the state must be “determinized” from
the root information set. The current state-of-the-art in Skat
uses a combination of open-handed simulation and a table-
based state evaluator learned from human games (Buro et
al. 2009). It relies on a forward model to perform the open-
handed simulations and hand-based abstractions to build the
state evaluator used for bidding. Open-handed simulations
have been rightfully criticized across the literature (Frank
and Basin 1998; Russell and Norvig 2016) because they as-
sume that a strategy can take different actions in different
states that are part of the same information set.

In this paper we focus on learning model-free policies for
Skat from human-generated data. Abandoning the use of a
forward model for Skat is complicated, but may be worth-
while not only because it alleviates many of the aforemen-
tioned problems, but also because it allows policies to be
trained or improved directly through experience. In partic-
ular, techniques that alleviate some of the issues with learn-
ing from expert data are explored. We present a method for
varying the aggressiveness of the bidder by viewing the out-
put of the network as a distribution of the actions of the hu-
mans and selecting the action that maps to the percentile of
bidder aggression we desire. Imitation policy performance is
further improved by accounting for rarely-seen state-action
pairs without generating new experience. Our contributions
lead to a new state-of-the-art bidding system for Skat, and a
reasonably strong cardplayer that performs orders of magni-
tude faster than search based methods. Finally, we explain
how these policies could be learned directly from experience
and discuss the value of incorporating human data into this



process.

2 Background and Related Work
In this section we provide the reader with the necessary
background related to the game of Skat. We also discuss
previous work related to AI systems for Skat and similar do-
mains.

Skat
Our domain of choice is a 3-player trick-taking card game
called Skat. Originating in Germany in the 1800s, Skat is
played competitively in clubs around the world. The fol-
lowing is a shortened explanation that includes the neces-
sary information to understand the work presented here. For
more in-depth explanation about the rules of Skat we refer
interested readers to https://www.pagat.com/schafk/
skat.html.

Skat is played using a 32-card deck which is built from a
standard 52-card by removing 2,3,4,5,6 in each suit. A hand
consists of each of the three players being dealt 10 cards
with the remaining two kept face down in the so-called skat.

Games start with the bidding phase. The winner of this
phase plays as the soloist against the team formed by the
other players during the cardplay phase of the game. Upon
winning the bidding, the soloist decides whether or not to
pickup the skat followed by discarding two cards face down,
and then declares what type of game will be played during
cardplay. The game type declaration determines both the
rules of the cardplay phase and also the score for each player
depending on the outcome of the cardplay phase. Players
typically play a sequence of 36 of such hands and keep a
tally of the score over all hands to determine the overall win-
ner.

The game value, which is the number of points the soloist
can win, is the product of a base value (determined by the
game type, see Table 1) and a multiplier. The multiplier is
determined by the soloist having certain configurations of
Jacks and other high-valued trumps in their hand and pos-
sibly many game type modifiers explained in Table 2. An
additional multiplier is applied to the game value for every
modifier.

After dealing cards, the player to the right of the dealer
starts bidding by declaring a value that must be less than or
equal to the value of the game he intends to play — or simply
passing. If the soloist declares a game whose value ends up
lower than the highest bid, the game is lost automatically.
Next, the player to the dealer’s left decides whether to ac-
cept the bid or pass. If the player accepts the bid, the initial
bidder must proceed by either passing or bidding a higher
value than before. This continues until one of the player’s
decides to pass. Finally, the dealer repeats this process by
bidding to the player who has not passed. Once two play-
ers have passed, the remaining player has won the bidding
phase and becomes the soloist. At this point, the soloist de-
cides whether or not to pick up the skat and replace up to two
of the cards in his hand and finally declares a game type.

Cardplay consists of 10 tricks in which the trick leader
(either the player who won the previous trick or the player
to the left of the dealer in the first trick) plays the first card.

Table 1: Game Type Description

Base Soloist Win
Type Value Trumps Condition

Diamonds 9 Jacks and Diamonds ≥ 61 card points
Hearts 10 Jacks and Hearts ≥ 61 card points
Spades 11 Jacks and Spades ≥ 61 card points
Clubs 12 Jacks and Clubs ≥ 61 card points
Grand 24 Jacks ≥ 61 card points
Null 23 No trump losing all tricks

Table 2: Game Type Modifiers

Modifier Description
Schneider ≥90 card points for soloist
Schwarz soloist wins all tricks

Schneider Announced soloist loses if card points < 90
Schwarz Announced soloist loses if opponents win a trick

Hand soloist does not pick up the skat
Ouvert soloist plays with hand exposed

Play continues clockwise around the table until each player
has played. Passing is not permitted and players must play
a card of the same suit as the leader if they have one —
otherwise any card can be played. The winner of the trick is
the player who played the highest card in the led suit or the
highest trump card.

In suit and grand games, both parties collect tricks which
contain point cards (Jack:2, Queen:3,King:4,Ten:10,Ace:11)
and non-point cards (7,8,9). Unless certain modifiers apply,
the soloist must get 61 points or more out of the possible 120
card points in the cardplay phase to win the game. In null
games the soloist wins if he loses all tricks.

Previous Work
Previous work on Skat AI has applied separate solutions for
decision-making in the pre-cardplay and cardplay phases.
The cardplay phase has received the most attention — prob-
ably due to its similarity to cardplay in other trick-taking
card games.

Despite its shortcomings, Perfect Information Monte-
Carlo (PIMC) Search (Levy 1989) continues be the state-
of-the-art cardplay method for Skat and other trick-taking
card games like Bridge (Ginsberg 2001) and Hearts (Sturte-
vant 2008). Later, Imperfect Information Monte-Carlo
Search (Furtak and Buro 2013) and Information Set Monte
Carlo Tree Search (Cowling, Powley, and Whitehouse 2012)
sought to address some of the issues inherent in PIMC while
still relying on the use of state determinization and a forward
model.

The current state-of-the-art for the pre-cardplay phase
(Buro et al. 2009) uses forward search — evaluating leaf
nodes after the discard phase using the GLEM framework
(Buro 1998). The evaluation function is based on a gen-
eralized linear model over table-based features indexed by
abstracted state properties. These tables are computed using
human game play data. Evaluations take the player’s hand,
the game type, the skat, and the player’s choice of discard
into account to predict the player’s winning probability. The
maximum over all player choices of discard and game type
is taken and then averaged over all possible skats. Finally,



the program bids if the such estimated winning probability
is higher than some constant threshold.

3 Learning Bidding Policies from Human
Data

In this section we train pre-cardplay policies for Skat us-
ing human data. First, we present a simple policy learned
through direct imitation of human play. Next, we study
the issue of trying to imitate an action from supervised data
when intent is not visible. This is a problem when learning
policies for Skat’s bidding phase because the data doesn’t
show how high the player was willing to bid with their hand.
Finally, we explore using a value network in conjunction
with a policy for the declaration/pickup phases.

The pre-cardplay phase has 5 decision points: max bid for
the Bid/Answer Phase, max bid for the Continue/Answer
Phase, the decision whether to pickup the skat or declare
a hand game, the declaration and the discard. The bid-
ding phases display sequential bids between two players,
but further bids can only be made if the other player has
not already passed. This allows a player to effectively pre-
determine what their max bid will be. This applies to both
the Bid/Answer and Continue/Answer phases. However,
in the Continue/Answer phase remaining players must con-
sider which bid caused a player to pass in the first bidding
phase. The Declaration and Discard phases happen simul-
taneously and could be modelled as a single decision point,
but for simplicity’s sake we separate them.

For each decision point, a separate DNN was trained us-
ing human data from a popular Skat server (DOSKV 2018).
For discard, separate networks were trained for each game
type except for Null and Null Ouvert. These were combined
because of their similarity and the low frequency of Ouvert
games in the dataset.

The features for each network are one hot encoded. The
features and the number of bits for each are listed in Table 3.
The Bid/Answer network uses the Player Hand, and Player
Position features. The Continue/Answer network uses the
same features as Bid/Answer, plus the Bid/Answer Pass Bid,
which is the pass bid from the Bid/Answer phase. The
Hand/Pickup network uses the same as Continue/Answer,
plus the Winning Bid. The Declare network uses the Player
Hand + Skat feature in place of the Player Hand feature, as
the skat is part of their hand at this point. The Discard net-
works use the same features as the Declare network.

Note that the game type is not included in the feature set
of the Discard networks because they are split into differ-
ent networks based on that context. Assuming no skip bids
(not normally seen in Skat) these features represent the min-
imum information needed to reconstruct the game state as
observed from the player (except for the ambiguity between
Null and Null Ouvert in the Discard phase). Thus abstrac-
tion and feature engineering in our approach is limited.

The outputs for each network correspond to any of the
possible actions in the game at that phase. The legality of the
actions depend on the state, however, this is only enforced
during actual gameplay and not during training. Table 4 lists
the actions that correspond to the outputs of each network,
accompanied by the number of possible actions.

Table 3: Network input features

Features Width
Player Hand 32

Player Position 3
Bid/Answer Pass Bid 67

Winning Bid 67
Player Hand + Skat 32

Table 4: Corresponding actions to Network Outputs

Phase Action Width
Bid/Answer MaxBid 67

Continue/Answer MaxBid 67
Hand/Pickup Game Type or Pickup 8

Declare Game Type 7
Discard Pair of Cards 496

Table 5: Pre-cardplay training set sizes and imitation accu-
racies

Train Size Train Test
Phase (millions) Acc.% Acc.%

Bid/Answer 23.678 83.5 83.3
Continue/Answer 23.678 80.0 79.8

Pickup/Hand 23.647 97.4 97.3
Declare 22.112 85.6 85.6

Discard Diamonds 2.375 75.6 75.2
Discard Hearts 3.048 75.8 75.6
Discard Spades 3.801 75.9 75.4
Discard Clubs 4.984 76.1 75.9
Discard Grand 5.621 71.2 70.5
Discard Null 1.424 83.4 82.9

The networks are all identical, except for the input and
output layers. Each network has 5 fully connected hidden
layers with RELU (Nair and Hinton 2010) activation gates.
The network structure can be seen in Figure 1. Tensorflow
(Abadi et al. 2016) was used for the entire training pipeline.
Networks are trained using the ADAM optimizer (Kingma
and Ba 2014) to optimize cross-entropy loss with a constant
learning rate set to 10−4. The middle 3 hidden layers incor-
porate Dropout (Srivastava et al. 2014), with keep probabili-
ties set to 0.6. Each network was trained with early stopping
(Prechelt 1998) for at most 10 epochs. The size of the train-
ing sets, and accuracies after the final epoch are listed for
each network in Table 5. These accuracies appear to be quite
reasonable, given the number of options available at each de-
cision point. The test dataset sizes were set to 100,000, with
the exception of the Null Discard network which was limited
to 50,000 samples.

The goal of these networks is to imitate the human play-
ers. One issue is that while the exact actions during the bid-
ding phase are captured, the intent of how high the player
would have bid is not. The intent is based largely on the
strength of the hand, but how high the player bids is depen-
dent at what point the other player passed. For example, if
a player decided their maximum bid was 48 but both other
players passed at 18, the maximum bid reached is 18. For
this reason, the max bid was trained on the pass bids of the
players. We know what the max bid for these players is be-
cause they either passed at that bid (if they are the player to
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Figure 1: Network architecture used across all game types for both soloist and defenders.

bid) or at the next bid (if they are the player to answer).
The output of this network corresponds to the probability

the player should pass at a certain level. The argmax would
provide the most likely bid, but it would not utilize the se-
quential structure of the bids. What we propose is to take the
bid that corresponds to a given percentile, termed A. In this
way, the distribution of players aggressiveness in the human
population can be utilized directly to alter the aggressive-
ness of the player. Let B be the ordered set of possible bids,
with bi being the ith bid, with b0 corresponding to passing
without bidding. The maxbid is determined using

maxbid(s,A) = min(bi) s.t. Σi
j=0p(bj ; θ|I) ≥ A (1)

Given the returned maxbid is bi and the current highest bid
in the game is bcurr, the policy for the bidding player is

πbid(bi, bcurr) =

{
bi+1 if bi > bcurrent
pass otherwise (2)

while the policy for the answer player is

πans(bi, bcurr) =

{
yes if bi ≥ bcurrent
pass otherwise (3)

Another limiting factor in the strength of direct imitation
is that the policy is trained to best copy humans, regardless
of the strength of the move. While the rational player would
always play on expectation, it appears there is a tendency
for risk aversion in the human data set. For example, the
average human seems to play far fewer Grands than Kermit.
Since Grands are high risk / high reward, they are a good
indication of how aggressive a player is. To improve the pre-
cardplay policy in the Hand/Pickup and Declare phases, we
can instead select actions based on learned values for each
possible game type. Formally, this policy is

πMV (I, a; θ) = argmax(v(I, a; θ)) (4)

where v is the value of the game for the given Information
Set I , action a, pair, and parameters θ in the trained network.

We trained two additional networks, one for the
Hand/Pickup phase and one for the Declare phase. These
networks were identical to the previous ones, except linear
activation units are used for the outputs. The network was
trained to approximate the value of the actions. The value la-
bels are simply the endgame value of the game to the soloist.
The loss was the mean squared error of prediction on the ac-
tual action taken. For the Hand/Pickup network, the train
and test loss were 993 and 1004 respectively. For the De-
clare network, the values were 855 and 860. These values
seem quite large, but with the high variance and large scores
in Skat, they are in the reasonable range.

The πMV seen in Equation 4 is problematic. The reason
for this that a lot of actions, while legal, are never seen in
the training data within a given context. This leads to action
values that are meaningless, which can be higher than the
other meaningful values. For example, Null Ouvert is rarely
played, has high game value and is most often won. Thus
the network will predict a high value for the Null Ouvert
action in unfamiliar situations which in turn are not appro-
priate situations to play Null Ouvert. This results in an over
optimistic player in the face of uncertainty, which can be
catastrophic. This is demonstrated in the results section.

To remedy this issue, we decided to use the supervised
policy network in tandem with the value network. The prob-
ability of an action from the policy network is indicative
of how often the move is expected to be played given the
observation. The higher this probability is, the more likely
we have seen a sufficient number of ”relevant” situations in
which the action was taken. With a large enough dataset, we
assume that probabilities above a threshold indicate that we
have enough representative data to be confident in the pre-



dicted action value. We chose 0.1 as the threshold. There
is no theoretical reason for this exact threshold, other than it
is low enough that it guarantees that there will always be a
value we are confident in. Furthermore, the probability used
is normalized after excluding all illegal actions.

The policy for the Hand/Pickup and Declare phases using
the method described above is

πMLV (I, a; θ) = argmax(vL(I, a; θ)) (5)

where
vL(I, a) =

{
v(I, a; θ) if plegal(a; θ|I) ≥ λ
−∞ otherwise (6)

in which plegal is the probability normalized over all legal
actions and λ is a constant set to 0.1 in our case.

4 Bidding Experiments
The current strongest Skat bot is Kermit which plays at hu-
man expert strength (Buro et al. 2009). Kermit’s bidding
is based on estimating winning probabilities during bidding
and thresholding the estimates to decide to increase the bid,
to accept a bid, or to pass. As this algorithm is the state-
of-the-art for pre-cardplay phase of Skat, it is used as the
baseline for the rest of this paper. Since the network-based
player learned off of human data, it is assumed that defeat-
ing Kermit is indicative of the overall strength of the method,
and not based on exploiting it.

Because Skat is a 3-player game, each match in the tour-
nament is broken into six games. In a match, all bot con-
figurations are considered, with the exception of of all three
being the same bot, resulting in six games (see Table 6).
In each game, once the pre-cardplay phase is finished, the
rest of the game is played out using Kermit cardplay, an ex-
pert level player based on PIMC search which samples 160
worlds — a typical setting. The results for each bot is the
resultant average over all the games played. Each tourna-
ment was ran for 3,000 matches. All tournaments featured
the same identical deals in order to decrease variance.

Different variations of the pre-cardplay policies were
tested against the Kermit baseline. Unless otherwise stated,
the policies use the aggressiveness transformation discussed
in the previous section, with the A value following the poli-
cies prefix. The variations are:

• Direct Imitation (DI): selects the most probable action
from the imitation networks

• Aggressive Bidding (AB): like DI, but uses the aggres-
siveness transformation in bidding

• Maximum Value (MV): like AB, but selects the maximum
value action in the Hand/Pickup and Declare phases

• Maximum Likely Value (MLV): like AB but uses the
maximum likely value policy, πMLV , in the Hand/Pickup
and Declare phases

While the intuition behind the aggressiveness transforma-
tion is rooted in increasing the aggressiveness of the bid-
der, the choice for A is not obvious. MLV and AB were
investigated with A values of 0.85, 0.89, 0.925, and 0.95.
Through limited trial and error, these values were chosen to

Table 6: Player configurations in a single match consisting
of six hands (K=Kermit, NW=Network Player)

Game Number Seat1 Seat2 Seat3
1 K K NW
2 K NW K
3 K NW NW
4 NW NW K
5 NW K NW
6 NW K K

approximately result in the player being slightly less aggres-
sive, similarly aggressive, more aggressive, and much more
aggressive than Kermit’s bidding, as measured by share of
soloist games played in the tournament setting. MV was
only tested with A of 0.925 since it was clear that the issues
of overoptimism were catastrophic.

An overview of the game type selection breakdown is pre-
sented in Table 7, while an overview on the performance is
presented in Table 8. To measure game playing performance
we use the Fabian-Seeger tournament point (TP) scoring
system which awards the soloist (50 + game value) points
in case he wins. In case of a loss, the soloist loses (50 + 2·
game value) points and the defenders are awarded 40 points.
All tournament points per game (TP/G) difference values
reported were found to be significant.

Clearly, naively selecting the max value (MV) in the
Hand/Pickup and Declare phases cause the bot to perform
very poorly as demonstrated by it performing 54 TP/G worse
than the Kermit baseline. It plays 25.4 Null Ouvert games
as soloist per 100 games player, which is extremely high to
the point of absurdity. The reason for this overoptimism was
discussed already in the previous section, and these results
bear this out.

Direct Imitation (DI) performed much better, but still per-
formed slightly worse than the baseline by 1.35 TP/G. The
issue with being overly conservative is borne out with the
player being soloist approximately half as often as Kermit.

The direct imitation with the aggressiveness transforma-
tion all performed better than Kermit. The best value for A
was 0.85 (AB.85) which leads to +2.86 TP/G against Ker-
mit. The advantage decrease with increasing A values. At
the 0.85 A value, the player is soloist a fewer of 1.81 times
per 100 games played, indicating it is a less aggressive bid-
der than Kermit.

The players selecting the max value declarations within
a confidence threshold (MLV) performed the best overall,
outperforming the AB players at each A value level. The
best overall player against Kermit is the MLV.85 player. It
outperforms Kermit by 3.65 TP/G, 0.79 TP/G more than the
best AB player.

The actual breakdown of games is quite interesting, as
it shows that the AB and MLV players are drastically dif-
ferent in their declarations. Across the board, AB is more
conservative as it plays more Suit games and less Grand
games (worth more and typically more risky) than the corre-
sponding MLV player. Kermit falls somewhere in between.
One other trend is that as the A values increase, the share of
soloist games increases, but the majority of the extra games
are Suit. There is a diminishing returns in the number of



Table 7: Game type breakdown by percentage for each
player, over their 3,000 match tournament. First player
soloist games are broken down into types. Defense games
(Def) and games that were skipped due to all players passing
(Pass) are also included. The K vs X entries list breakdowns
of Kermit playing against player(s) X with identical bidding
behavior.

Match Grand Suit Null NO Def Pass
DI vs K 5.9 13.2 0.5 0.7 66.7 13.0
MV.925 vs K 7.0 1.8 0.1 25.4 64.0 1.6
AB.85 vs K 8.4 20.8 1.2 1.0 65.6 3.0
AB.89 vs K 8.7 21.8 1.3 1.1 64.9 2.2
AB.925 vs K 9.0 22.9 1.3 1.2 64.0 1.6
AB.95 vs K 9.5 23.8 1.5 1.3 62.9 1.1
MLV.85 vs K 11.5 17.5 1.2 1.2 65.6 3.0
MLV.89 vs K 11.9 18.4 1.3 1.2 64.9 2.2
MLV.925 vs K 12.2 19.5 1.4 1.3 64.0 1.6
MLV.95 vs K 12.7 20.4 1.5 1.4 62.9 1.1
K vs DI 10.8 21.7 3.8 2.0 50.5 11.1
K vs *.85 11.0 17.8 2.6 1.8 63.4 3.4
K vs *.89 11.0 17.0 2.3 1.7 65.2 2.7
K vs *.925 11.0 16.2 2.1 1.7 66.9 2.0
K vs *.95 11.0 15.2 1.8 1.7 68.7 1.5

Table 8: Tournament results over 3,000 matches between
learned cardplay polices and the baseline player (Kermit).
All players use Kermit’s cardplay. Rows are sorted by score
difference (TP/G=tournament points per game, S=soloist
percentage)

Player (P) TP/G(P) TP/G(K) diff. S(P) S(K) diff.
MV.925 -21.95 32.06 -54.01 34.4 31.1 3.34
DI 20.53 21.88 -1.35 20.3 38.4 -18.09
AB.95 23.36 21.86 1.50 36.1 29.7 6.35
AB.925 23.83 22.03 1.80 34.4 31.1 3.34
MLV.95 24.12 21.81 2.31 36.1 29.7 6.35
MLV.925 24.55 22.19 2.36 34.4 31.1 3.34
AB.89 24.20 21.72 2.48 32.9 32.1 0.78
AB.85 24.35 21.48 2.86 31.4 33.2 -1.81
MLV.89 24.84 21.84 3.01 32.9 32.1 0.78
MLV.85 25.14 21.49 3.65 31.4 33.2 -1.81

high value Grand games.
One additional tournament was run between the best AB

and MLV players, which are AB.85 and MLV.85. In this
3,000 match tournament, MLV.85 outperformed AB.85 by
0.60 TP/G

5 Learning Cardplay Policies
With drastically improved pre-cardplay policies, the next
step was to create a cardplay policy based off the human
data. To do this, a collection of networks were trained to im-
itate human play using the same network architecture used
for the pre-cardplay imitation networks. Six networks were
trained in all; defender and soloist versions of Grand, Suit,
and Null.

To capture the intricacies of the cardplay phase, we use
handcrafted features — listed in Table 9. Player Hand rep-
resents all the cards in the players hand. Hand Value is the
sum of the point values of all cards in a hand (scaled to the
max possible value). Lead cards represents all the cards the

Table 9: Network input features

Common Features Width
Player Hand 32
Hand Value 1

Played Cards (Player, Opponent 1&2) 32*3
Lead Cards (Opponent 1&2) 32*2

Sloughed Cards (Opponent 1&2) 32*2
Void Suits (Opponent 1&2) 5*2

Current Trick 32
Trick Value 1

Max Bid Type (Opponent 1&2) 6*2
Soloist Points 1

Defender Points 1
Hand Game 1

Ouvert Game 1
Schneider Announced 1
Schwarz Announced 1

Soloist Only Features Width
Skat 32

Needs Schneider 1

Defender Only Features Width
Winning Current Trick 1

Declarer Position 2
Declarer Ouvert 32

Suit/Grand Features Width
Trump Remaining 32

Suit Only Features Width
Suit Declaration 4

Table 10: Cardplay train/test set sizes

Train Size Train Test
Phase (thousands) Acc.% Acc.%

Grand Soloist 5,990 79.9 78.0
Grand Defender 10,210 83.3 82.3

Suit Soloist 14,680 78.8 77.6
Suit Defender 26,650 82.9 81.5
Null Soloist 560 82.7 80.4

Null Defender 950 69.2 65.6

player lead (first card in the trick). Sloughed cards indicate
all the non-Trump cards that the player played that did not
follow the suit. Void suits indicate the suits which a player
cannot have based on past moves. Trick Value provides the
point value of all cards in the trick (scaled to the max possi-
ble value). Max Bid Type indicates the suit bid multipliers
that match the max bid of the opponents. For example, a
max bid of 36 matches with both the Diamond multiplier,
9, and the Clubs multiplier, 12. The special soloist decla-
rations are encoded in Hand Game, Ouvert Game, Schnei-
der Announced, and Schwartz announced. Skat encodes the
cards placed in the skat by the soloist, and Needs Schnei-
der indicates whether the extra multiplier is needed to win
the game. Both of these are specific to the soloist net-
works. Specific to the defenders are the Winning Current
Trick and the Declarer Ouvert features. Winning Current
Trick encodes whether the current highest card in the trick
was played by the defense partner. Declarer Ouvert repre-
sents the soloist’s hand if the soloist declared Ouvert. Trump



Table 11: Cardplay tournament results over 3,000 matches
between bots using pre-cardplay policies from the previ-
ous section and the learned cardplay policies. All variants
were played against the baseline, Kermit (TP/G=tournament
points per game, S=soloist percentage)

Player (P) TP/G(P) TP/G(K) diff S(P) S(K) diff
K+C 21.55 24.59 -3.04 31.6 31.6 0.00
AB.85+C 23.36 24.73 -1.37 31.4 33.2 -1.81
AB.925+C 23.39 24.70 -1.31 34.4 31.1 3.34
MLV.85+C 23.86 24.86 -1.01 31.4 33.2 -1.81
MLV.925+C 24.07 24.66 -0.59 34.4 31.1 3.34

remaining encodes all the trump cards that the soloist does
not possess and have not been played, and is used in the Suit
and Grand networks. Suit Declaration indicates which suit
is trump based on the soloist’s declaration, and is only used
in the Suit networks. These features are one-hot encoded,
except for Trick Value, Hand Value, Soloist and Defender
points, which are floats scaled between 0 and 1. The net-
work has 32 outputs — each corresponding to a given card.

The cardplay network was trained on a subset of the avail-
able data. The top 90 players in the dataset (as determined
by average TP/G over a minimum of 20,000 games played)
were determined, and only data for those players were used.
Further experimentation is needed to determine whether this
was a beneficial decision. The resultant data set sizes, and
accuracies after the final epoch are listed in Table 10. The
test set had a size of 10,000 for all networks. The accuracies
are quite high, however, this doesn’t mean much in isola-
tion as actions can be forced, and the number of reasonable
actions is often low in the later tricks.

6 Cardplay Results

Bidding policies from the previous section, as well as Kermit
bidding, were used in conjunction with the learned cardplay
networks. The cardplay policy (C) takes the legal argmax
of the game specific network’s output, and plays the cor-
responding card. The best bidding policies, AB.85 and
MLV.85 were tested. AB.925 and MLV.925 were also tested
to see the effects of more aggressive bidding within the new
context. Each played against Kermit in the same tournament
setup from the previous section. Again, all TP/G difference
reported were found to be significant. Results are reported
in Table 11.

While performing 0.59 TP/G worse than Kermit, the
strongest full network player was MLV.925+C. MLV.85 was
stronger than MLV.925 in the bidding tournament, so its
not immediately clear how these learned policies for pre-
cardplay and cardplay interact with each other. Again
though, MLV+C was stronger than AB+C at both values of
A. Kermit’s search based cardplay is quite strong, and it is
clearly stronger than the imitation cardplay. One advantage
the imitation network cardplay has is that its much faster,
taking turn at a constant rate of around 2.5 ms, as compared
to Kermit which takes multiple seconds on the first trick, and
an average time of around 650 ms (both using a single thread
on consumer level CPU).

7 Conclusion
In this paper we have demonstrated that pre-cardplay poli-
cies for Skat can be learned from human game data and that
it performs much better than Kermit’s pre-cardplay — the
prior state-of-the-art. Naively imitating all aspects of the
pre-cardplay (DI) resulted in a bidding policy that performed
an average of 1.35 TP/G worse than the Kermit baseline.
Using the novel method to increase the aggressiveness of
the bidder led to it performing 2.86 TP/G better than the
baseline, with A set to 0.85 (AB.85). Using this in conjunc-
tion with game declaration based on the predicted values and
probabilities of actions (MLV.85), resulted in the best over-
all pre-cardplay policy, beating the baseline by 3.65 TP/G.
This is a substantial increase in playing strength. Also, the
time for pre-cardplay decisions are much faster, as it does
not rely on search.

The direct imitation cardplay policy decreases the
strength of the overall player, performing 3.04 TP/G worse
than the Kermit player when utilizing the Kermit bidder.
The best overall full network based player was MLV.925+C,
which only performed 0.59 TP/G worse than Kermit. We ex-
pect the policy can be tuned to perform better than this, and
possibly to be better than Kermit overall. While the learned
cardplay is weaker, it is orders of magnitude faster than Ker-
mit’s search based methods and doesn’t rely on a forward
model.

Future Work
Now that we have established some degree of success train-
ing model-free policies from human data in Skat, the next
logical step is to improve these policies directly through ex-
perience similar to the process shown in the original Al-
phaGo (Silver et al. 2016). In (Srinivasan et al. 2018) re-
gret minimization techniques often used to solve imperfect
information games are related to model-free multi-agent re-
inforcement learning. The resulting actor-critic style agent
showed fast convergence to approximate Nash equilibria
during self-play in small variants of Poker. Applying the
same approach may be difficult because of Skat’s size and
the fact that it is not zero-sum, but starting with learning a
best response to the full imitation player discussed in this
work should be feasible and may yield a new state-of-the-art
player for all phases of the game. However, a fully-fledged
self-play regime for Skat remains as the end goal of this
work.

Learning policies though self-play has shown to yield
strategies that are “qualitatively different to human play” in
other games (Silver et al. 2017). This could be problem-
atic because Skat involves cooperation on defense during the
cardplay phase. Human players use conventions and signals
to coordinate and give themselves the best chance of defeat-
ing the soloist. In order to play well with humans, policies
need to account for these signals from their partner and send
their own. We plan to explore how continually incorporating
labelled data from human games helps alleviate this prob-
lem.
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Moravčı́k, M.; Schmid, M.; Burch, N.; Lisỳ, V.; Morrill, D.;
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