
Evaluating Real-Time Strategy Game States Using
Convolutional Neural Networks
Marius Stanescu, Nicolas A. Barriga, Andy Hess and Michael Buro

Department of Computing Science
University of Alberta, Canada

{astanesc|barriga|athess|mburo}@ualberta.ca

Abstract—Real-time strategy (RTS) games, such as Blizzard’s
StarCraft, are fast paced war simulation games in which players
have to manage economies, control many dozens of units, and deal
with uncertainty about opposing unit locations in real-time. Even
in perfect information settings, constructing strong AI systems
has been difficult due to enormous state and action spaces and
the lack of good state evaluation functions and high-level action
abstractions. To this day, good human players are still handily
defeating the best RTS game AI systems, but this may change
in the near future given the recent success of deep convolutional
neural networks (CNNs) in computer Go, which demonstrated
how networks can be used for evaluating complex game states
accurately and to focus look-ahead search.

In this paper we present a CNN for RTS game state evaluation
that goes beyond commonly used material based evaluations
by also taking spatial relations between units into account. We
evaluate the CNN’s performance by comparing it with various
other evaluation functions by means of tournaments played by
several state-of-the-art search algorithms. We find that, despite its
much slower evaluation speed, the CNN based search performs
significantly better compared to simpler but faster evaluations.
These promising initial results together with recent advances in
hierarchical search suggest that dominating human players in
RTS games may not be far off.

I. INTRODUCTION

The recent success of AlphaGo [1], culminating in the
4-1 win against one of the strongest human Go players,
illustrated the effectiveness of combining Monte Carlo Tree
Search (MCTS) and deep learning techniques. For AlphaGo,
convolutional neural networks (CNNs) [2], [3] were trained to
mitigate the prohibitively large search space of the game of Go
in two ways: First, a policy network was trained, using both
supervised and reinforcement learning techniques, to return
a probability distribution over all possible moves, thereby
focusing the search on the most promising branches. Second,
MCTS state evaluation accuracy was improved by using both
value network evaluations and playout results.

In two-player, zero-sum games, such as Chess and Go,
optimal moves can be computed by using the minimax rule
that minimizes worst case loss. In theory, these games can be
solved by recursively applying this rule until reaching terminal
states. However, in practice completely searching the game
tree is infeasible, the procedure must be cut short, and an
approximate evaluation function must be used to estimate the
value of the game state. Because states closer to the end
of the game are typically evaluated more accurately, deeper
search produces better moves. But as game playing agents

often have to make their move decision under demanding
time constraints, great performance gains can be achieved by
improving the evaluation function’s accuracy.

The size of the state space of the game of Go, although
much larger than that of Chess, is tiny in comparison to real-
time strategy (RTS) games such as Blizzard’s StarCraft. In
the game of Go, at every turn, a single stone can be placed
at any valid location on the 19×19 board and the average
game length is around 150 moves. In RTS games, each player
can simultaneously command many units to perform a large
number of possible actions. Also, a single game can last for
tens of thousands of simulation frames, with possibly multiple
moves being issued in each one. Moreover, RTS game maps
are generally much larger than Go boards and feature terrain
that often affects movement, combat, and resource gathering.
Therefore, for RTS games, good state evaluations and search
control, such as using policy networks, plays an even greater
role.

CNNs are adept at learning complex relationships within
structured data due to their ability to learn hierarchies of
abstract, localized representations in an end-to-end manner [3].
In this paper we investigate the effectiveness of training a
CNN to learn the value of game states for a simple RTS game
and show significant improvement in accuracy over simpler
state-of-the-art evaluations. We also show that incorporating
the resulting learned evaluation function into state-of-the-
art RTS search algorithms increases agent playing strength
considerably.

II. RELATED WORK

Search based planning approaches have had a long tradition
in the construction of strong AI agents for abstract games like
Chess and Go, and in recent years they have progressively
been applied to modern video games, especially the RTS game
StarCraft. This is a difficult endeavor due to the enormous state
and action spaces, and finding optimal moves under tight real-
time constraints is infeasible for all but the smallest scenarios.
Consequently, the research focus in this area has been on
reducing the search space via different abstraction mechanisms
and on producing good state evaluation functions to guide this
search effort.

In this section we briefly discuss some of these attempts,
starting with various methods used for state evaluation in

RTS games. We then present recent research on deep neural
networks and their use in game playing agents.

A. State Evaluation in RTS Games

Playing RTS games well requires strategic as well as
tactical skills, ranging from building effective economies, over
deciding what to build next based on scouting results, to
maneuvering units in combat encounters. In RTS game combat
each player controls an army consisting of different types of
units and tries to defeat the opponent’s army while minimizing
its own losses. Because battles have a big impact on the result
of RTS games, predicting their outcome accurately is very
important, especially for look-ahead search algorithms.

A common metric for estimating combat outcomes is
LTD2 [4], which is based on the lifetime damage each unit
can inflict. LTD2 was used, in conjunction with short deter-
ministic playouts, for node evaluation in alpha-beta search to
select combat orders for individual units [5]. A similar metric
was later used as state evaluation, this time combined with
randomized playouts [6], [7].

Likewise, Hierarchical Adversarial Search [8] requires es-
timates of combat outcomes for state evaluation and uses
a simulator for this purpose. However, because simulations
become more expensive as the number of units grows, faster
prediction methods are needed. For instance, a probabilistic
graphical model trained on simulated battles can accurately
predict the winner [9]. This model, however, has several
limitations such as not modeling damaged units and not
distinguishing between melee and ranged combat. Another
model, based on Lanchester’s attrition laws [10], does not have
such shortcomings. It takes into account the relative strength
of different unit types, their health and the fact that ranged
weapons enable units to engage several targets without having
to move, which causes a non-linear relationship between army
size differences and winning potential. After learning unit
strength values offline using maximum likelihood estimation
from past recorded battles, this improved model has been
successfully used for state evaluation in a state-of-the-art RTS
search algorithm [11].

All mentioned approaches focus on a single strategic com-
ponent of RTS games, i.e. combat, and lack spatial reasoning
abilities, ignoring information such as unit positions and
terrain. Global state evaluation in complex RTS games such
as StarCraft has been less successful [12], likely due to the
limited expressiveness of the linear model used.

B. Neural Networks

In recent years deep convolutional neural networks (CNNs)
have sparked a revolution in AI. The spectacular results
achieved in image classification [3] have led to deep CNNs
being effectively applied to a wide range of domains. For
vision tasks, CNNs have been applied to object localiza-
tion [13], segmentation [14], facial recognition [15], super-
resolution [16] and camera-localization [17] to name just
a few examples, all the while continuing to make further
progress in image classification [18]. Deep CNNs have also

been successfully applied to tasks as diverse as natural lan-
guage categorization [19], [20], translation [21] and algorithm
learning [22].

Deep CNNs owe their success to their ability to learn mul-
tiple levels of abstraction, each one building upon abstractions
learned in previous layers. More specifically, deep CNNs learn
a hierarchy of spatially invariant, localized representations,
each layer aggregating and building upon representations in
previous layers toward the combined goal of minimizing
loss [13].

There is a long history of using simple linear regression and
shallow neural networks to construct strong AI systems for
classic board games such as Backgammon and Othello [23].
However, scaling up state evaluations to more complex games
such as Go only became possible when it was discovered how
to effectively train weights in deep neural networks, which can
be considerably more expressive than shallow networks with
the same number of weights [24].

Since then CNNs have been successfully used to play Atari
video games with a policy network trained by supervised
learning, using training data generated by a slow but strong
UCT player [25]. Similar networks have been trained with
reinforcement learning [26], [27]. Most remarkable, however,
is the recent 4-1 win of AlphaGo [1], a deep CNN based
Go playing program, over one of today’s best Go players Lee
Sedol. AlphaGo combines MCTS with deep CNNs for state
evaluation and move selection that were trained by supervised
and reinforcement learning.

This historic accomplishment sparks hope that CNNs can
also be used for even more complex tasks, such as playing
real-time games with imperfect information — a domain still
dominated by human players.

III. A NEURAL NETWORK FOR RTS GAME STATE
EVALUATION

In this section we describe the dataset, the neural network
structure and the procedure used for training a state evaluation
network for µRTS1, a simple RTS game designed for testing
AI techniques. µRTS provides the essential features of an RTS
game: it supports four unit and two building types, all of them
occupying one tile, and there is only one resource type. The
game state is fully observable. µRTS supports configurable
map sizes, commonly ranging from 8×8 to 16×16 in published
papers. The game user interface and details about the unit types
are shown in Figure 1. µRTS comes with a few basic scripted
players, as well as search based players implementing several
state-of-the-art RTS search techniques [6], [28], [7], making
it an useful tool for benchmarking new AI algorithms.

The purpose of the neural network we describe here is
to approximate the value function v∗(s), which represents
the win-draw-loss outcome of the game starting in state s
assuming perfect play on both sides.

1https://github.com/santiontanon/microrts

Barracks: train attack units
Heavy: powerful slow melee unit
Light: low power fast melee unit

Ranged: long ranged attack unit

Bases: accumulate resources and
train workers
Workers: can harvest minerals and
construct buildings
Minerals: harvested by workers

Fig. 1. Screenshot of µRTS, with explanations of the different in-game
symbols.

In practice we have to approximate this value function
with vθ, for instance by using a neural network with weights
θ. These weights are trained by regression on state-outcome
pairs (s, w), using stochastic gradient descent to minimize the
mean squared error between the predicted value vθ(s) and the
corresponding outcome w. The output of our network will be
the players’ probabilities of winning the game when starting
from the input position.

A. Data

The dataset used for training the neural network was created
by playing round-robin tournaments between 15 different
µRTS bots. Each tournament consists of (15 × 14)/2 = 105
matches. One 8×8 map was used, with 24 different initial
starting conditions. All scenarios start with one base and one
worker for each player, but with different, symmetric, initial
positions. These tournaments were played under four different
time limits: maximums of 100ms, 200ms, 100 playouts and
200 playouts per search episode. In total 105×24×4 = 10 080
different games were played from which draws were discarded
(≈ 8%).

Predicting game outcomes from data consisting of complete
games leads to overfitting because while successive states
are strongly correlated, the regression target is shared for
the entire game. To mitigate the problem, the authors of
AlphaGo [1] add only a single training example (s, w) to
the dataset from each game. Because we have significantly
less data (10 thousand vs. 30 million episodes), we chose to
sample 3 random positions from each game. As a result, for
game i we add {(si1, wi), (si2, wi), (si3, wi)} to the dataset,
and slightly over 25 000 positions are generated.

The dataset was split into a test set (5 000 positions) and
a training set (the remaining 20 000 positions). Finally, the
training set was augmented by including all reflections and
rotations of each position for a total of 160 000 positions.

B. Features

Each position s is preprocessed into a set of 8×8 feature
planes. These features correspond to the raw board represen-
tation and contain information about each tile of the µRTS
map: unit ownership and type, current health points, game
frames until actions are completed and resources.

TABLE I
INPUT FEATURE PLANES FOR THE NEURAL NETWORK.

Feature # of
planes Description

Unit type 6 Base, Barracks, worker, light, ranged, heavy
Unit health 5 1, 2, 3, 4, or ≥ 5
Unit owner 2 Masks to indicate all units belonging to one player
Frames to
completion 5 0−25, 26−50, 51−80, 81−120, or ≥ 121

Resources 7 1, 2, 3, 4, 5, 6−9, or ≥ 10

All integers, such as unit health points, are split into
K different 8×8 planes of binary values using the one-hot
encoding. For example, five separate binary feature planes are
used to represent whether an unit has 1, 2, 3, 4 or ≥ 5 health
points. The full set of feature planes is listed in Table I.

C. Network Architecture & Training Details

The input to the neural network is an 8×8×25 image stack
consisting of 25 feature planes. There are two convolutional
layers that pad the input with zeros to obtain a 10×10 image.
Each then is convolved with 64 and respectively 32 filters of
size 3×3 with stride 1. Both are followed by leaky rectified
linear units (LReLUs) [29], [30]. A third hidden layer con-
volves 1 filter of size 1×1 with stride 1, again followed by
an LReLU. Then follow two fully connected (dense) linear
layers, with 128 and 64 LReLU units, respectively. A dropout
ratio of 0.5 is applied to both fully connected layers. The
output layer is a fully connected layer with two units, and a
softmax function is applied to obtain the winning probabilities
for player 0 and player 1 (P (p0) and P (p1)). All LReLUs have
negative slope of α = −1/5.5. The resulting architecture is
shown in Figure 2.

Our architecture was motivated by current trends toward
the use of small filter sizes (≤ 3×3), few (or no) pooling
layers, and same-padded convolution (multiple layers of the
same width and height, each layer padded with zeros following
convolution) [31], [1]. We were also guided by the principle of
gradually decreasing the dimension of internal representations
as one moves from input toward task; one example being the
reduction from 64 to 32 filters, another being the use of 1×1
convolutions for dimensionality reduction [18]. This principle
can also be seen in the fully connected layers. LReLUs were
used following suggestions from [29] and [30].

Before training, we used Xavier random weight initializa-
tion [32] which equalizes signal variance. During training, the
stepsize alpha was initialized to 0.00001 and was multiplied
by 0.2 every 100K training steps. We used adaptive moment
estimation (ADAM) with default values of β1 = 0.9, β2 =
0.999, ε = 10−8 as suggested in [33]. The network was trained
for 400K mini-batches of 64 positions, a process which took
approximately 20 minutes on a single GPU to converge.

For training, we used the Python (2.7.6) interface to Caffe
[34], utilizing CUDA2 version 7.5 and cuDNN3 version 4. The

2https://developer.nvidia.com/cuda-toolkit
3https://developer.nvidia.com/cudnn

10	

10	

64	

3	

3	 8	

8	

pad	1,	stride	1	

LReLU	 8	

8	

32	

1	

1	

stride	1	

LReLU	 8	

8	

1	
LReLU	

128	

LReLU	
Dropout	0.5	

64	

LReLU	
Dropout	0.5	

D
en

se
	

D
en

se
	

2	

D
en

se
	

So
<
m
ax
	

10	

10	

25	

3	

3	
8	

8	

pad	1,	stride	1	

Input	planes	

P(p0)	
P(p1)	

Output	

Fig. 2. Neural network architecture.

machine used for training the neural network had an Intel(R)
Pentium(R) CPU G2120 3.10GHz processor, 8 GB RAM and
one GeForce GTX 760 GPU (1152 cores and 4 GB memory)
running Linux Mint 17.3.

IV. EXPERIMENTS AND RESULTS

All experiments that are reported below were performed on
Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz with 8 GB RAM
machines running Ubuntu 14.04. The test machines do not
have CUDA capability 3 and the neural network computations
were run solely on the CPU. µRTS software is implemented
in Java and compiled and run with JDK 8u74.

A. Winner Prediction Accuracy

In the first set of experiments we compare the speed and
accuracy of our neural network for evaluating game states
with a Lanchester model [10] and a simple evaluation function
that takes into account the cost and health points of units and
the resources each player has. This is the default evaluation
function that the µRTS search algorithms use. In equation 1
player indices are either 0 or 1: player ∈ {0, 1}.

eval(player) = Eplayer − E1−player (1)

In equation 2, Rp is the amount of resources a player currently
has, Wp is a player’s set of workers, Ru is the amount of
resources each worker unit is carrying, Cu is the cost of
unit u, HPu the current health points of unit u, and MaxHPu
its maximum health points. Wres,Wwork,Wunit are constant
weights.

Ep =WresRp +Wwork

∑
u∈Wp

Ru +Wunit

∑
u∈p

CuHPu
MaxHPu

(2)

Two versions of this simple evaluation functions were used:
one with µRTS’s default weights, and one optimized via
logistic regression on the same training set used for the neural
network. The Lanchester model keeps the two resource terms
of the simple evaluation function but revises the army’s impact.
While the contribution of the buildings is similar to equation 2,
a new term is added for combat units:

E′p =WresRp + Wwork

∑
u∈Wp

Ru + Wbase
HPbase

MaxHPbase
+

Wbarracks
HPbarracks

MaxHPbarracks
+

∑
u∈p

αu
HPu

MaxHPu
N (o−1)
p (3)

In equation 3, αu is a strength value unique to each unit
type, Np is the total number of units of player p and o is the
Lanchester attrition order. For µRTS, our experiments suggest
that an attrition order of o = 1.7 works best on average if
we had to choose a fixed order for all possible encounters.
The four W and four α constants (one for each unit type) are
optimized with logistic regression.

Figure 3 shows the position evaluation accuracy of the
neural network, compared to the default µRTS evaluation
function, the optimized version and the Lanchester model, on
the previously described test set of 5 000 positions sampled

0 10 20 30 40 50 60 70 80 90 100

Game time (as percentage)
40

50

60

70

80

90

100

A
cc

u
ra

cy

Neural Network
Lanchester
Optimized eval.
Simple eval.

Fig. 3. Comparison of evaluation accuracy between the neural network,
µRTS’s built-in evaluation function, its optimized version and the Lanchester
model. The accuracy at predicting the winner of the game is plotted against
the stage of the game, expressed as a percentage of the game length. Results
are aggregated in 5% buckets. Shaded area represents one standard error.

from bot games. A scripted playout evaluation was also
tested, in which the position is played until the end using
the WorkerRush script, described in section IV-B, to generate
moves for both players. Values of 1, 0 or -1 are returned,
corresponding to a player 0 win, draw or loss, respectively.
The WorkerRush script is the strongest of the four scripts
described in the next section, and produces the most accurate
winner prediction function, though slightly worse than the
simple evaluation function. A random playout was also tried,
but it performed even worse.

The neural network is consistently more accurate during the
first half of the game. At the beginning of the game before
any unit has been built, the simple evaluation function and the
Lanchester model mostly predict draws, because they do not
take positional information into account. During the second
half of the game army balance is more relevant, and both the
neural network and the Lanchester model perform better than
the simple evaluation functions.

The average time needed for a single simple evaluation is
0.012µs, the Lanchester model takes 0.087µs, while a full
network evaluation on the CPU takes 147µs. This time in-
cludes processing the games state into feature planes, sending
the data to a Python thread (on the same CPU core as the
search algorithm), running a forward pass on the network and
returning the outcome. The network evaluation takes close to
two thirds of the time, around 102µs. We tested the speed of
the network evaluation on a GPU as well. On a mid-range
NVIDIA GTX 760, the time is slightly shorter than the CPU-
only version (118µs).

However, processing only one position at a time does not
take advantage of the pipelined GPU architecture. To measure
potential gains of evaluating positions in parallel, we ran
batches of 256 positions whose evaluation took 10 707µs, of
which 9 985µs was spent on the CPU (feature planes) and
722µs on the GPU, for an average of 2.8µs of GPU time per
evaluation. A search algorithm — like AlphaGo’s — that can
perform leaf evaluations asynchronously would benefit greatly
from doing state evaluations on the GPU.

B. State Evaluation in Search Algorithms

A second set of experiments compares the performance of
four game tree search algorithms — ε-Greedy MCTS, Naı̈ve
MCTS, AHTN-F and AHTN-P, described below — when
using the simple evaluation function, the optimized evaluation
function, the Lanchester model or the neural network for state
evaluation.

The sixteen resulting algorithms played against the follow-
ing eleven opponents provided by the µRTS implementation,
all using default parameters and the simple µRTS evaluation
function:

WorkerRush: a hardcoded rush strategy that constantly pro-
duces workers and sends them to attack.

LightRush: builds a barracks, and then constantly produces
light military units to attack the nearest target (it uses one
worker to mine resources).

RangedRush: is identical to LightRush, except for produc-
ing ranged units.

HeavyRush: is identical to LightRush, except for producing
slower but stronger heavy units.

MonteCarlo(MC): a standard Monte Carlo search algorithm:
for each legal player action, it runs as many simulations
as possible to estimate their expected reward.

ε-Greedy MC: Monte Carlo search, but using an ε-greedy
sampling strategy.

Naı̈ve MCTS: Monte Carlo Tree Search algorithm with a
sampling strategy specifically designed for games with
combinatorial branching factors, such as RTS games. This
strategy, called Naı̈ve Sampling, exploits the particular
tree structure of games that can be modeled as a Combi-
natorial Multi-Armed Bandit [6].

ε-Greedy MCTS: like Naı̈veMCTS, but using an ε-greedy
sampling strategy.

MinMax Strategy: for a set of strategies (WorkerRush,
LightRush, RangedRush and Random), playouts are run
for all possible pairings. It approximates the Nash equi-
librium strategy using the minimax rule, whereby one
player (Max) maximizes its payoff value while the other
player tries to minimize Max’s payoff [35].

AHTN-P: an Adversarial Hierarchical Task Network, that
combines minimax game tree search with HTN planning
[7]. In this AHTN definition the main task of the game
can be achieved only by three non-primitive tasks (ab-
stract actions that decompose into actions that agents can
directly execute in the game). The tasks are three rushes
with three different unit types.

AHTN-F: a more elaborate AHTN with a larger number
of non-primitive tasks for harvesting resources, training
units of different types, or attacking the enemy.

All search based algorithms (bottom seven in the list above)
evaluate states by running a short playout of 100 frames. The
playouts are performed using a random policy in which non-
move actions (harvest, attack, build) have a higher probability
than moves. The only exception is MinMax, whose playouts
are 400 frames long, because it only does 16 playouts —
one for each pair of strategies — and uses its fixed set of
strategies instead of the random policy. The resulting states are
evaluated with the simple evaluation function in equation 1,
the optimized function, the Lanchester model or the neural
network.

Every player has a computational budget of either a given
time duration or a maximum number of state evaluations per
game frame. Moreover, players can split the search process
over multiple frames; for example, if the game state does not
change during 10 game frames before a player needs to issue
an action, then players have ten times the budget to issue
actions. We call this consolidated budget a search episode.

In the tournament each of the 176 matchups consists of 24
games played on an 8×8 map, with different but symmetric
starting positions. To compute the score, every win is worth 1
point, and if the game reaches 3 000 frames, it is considered
a draw, and awarded 0.5 points.

e-Greedy
MCTS

Naive
MCTS

AHTN-F AHTN-P Average
30

40

50

60

70

80

90

100
W

in
 r

a
te

Simple eval.
Optimized eval.
Lanchester
Neural Network

Fig. 4. Average win rate against all opponents when using the simple
evaluation function described in equations 1 and 2, the same function with
optimized weights, the Lanchester model or the neural network described in
section III. Each algorithm has 200 milliseconds of search time per frame.
Error bars show one standard error.

Figure 4 summarizes the average win rate against all
opponents when using the different evaluation methods. On
average, the neural network shows over 10% higher win rates
than the other methods. Moreover, the performance of the
neural network is consistent across all four algorithms, while
the results of the optimized evaluation and the Lanchester
model fluctuate depending on the underlying search algorithm
type.

Table II shows the average number of nodes expanded per
search episode. The average length of a search episode in
the tournament games was around seven frames. Slow search
algorithms such as AHTNs are less affected by a slow state
evaluation, as most of their computational effort is expended
in the tree phase. As a result, the AHTNs perform better
when using the most accurate functions, regardless of their
speed. The balance on the faster MCTS algorithms is more
delicate, with both the fast optimized evaluation function
and the neural network outperforming the relatively accurate
and fast Lanchester model. The ∼1% accuracy increase in
the first quarter of the game between the optimized simple
evaluation and Lanchester is not enough to offset the ∼15%
less nodes per second. However, the ∼7% accuracy gain of
the neural network more than makes up for its ∼93% speed

TABLE II
NODES EXPANDED PER SEARCH EPISODE, WHEN RUNNING WITH A

MAXIMUM TIME LIMIT OF 200MS PER FRAME.

Average # nodes expanded per search episode

AI Algorithm Simple Evaluation Lanchester Neural Network

ε-Greedy MCTS 16834 14682 1069
Naı̈ve MCTS 16654 13876 1122

AHTN-F 937 969 507
AHTN-P 134 125 123

e-Greedy
MCTS

Naive
MCTS

AHTN-F AHTN-P Average
30

40

50

60

70

80

90

100

W
in

 r
a
te

Simple eval.
Optimized eval.
Lanchester
Neural Network

Fig. 5. Average win rate against all opponents when using the simple
evaluation function described in equations 1 and 2, the same function with
optimized weights, the Lanchester model or the neural network described in
section III. Each algorithm is allowed to expand 200 nodes per frame. Error
bars show one standard error.

loss. Improving the accuracy of the evaluation function at the
beginning of the game is important, as early game decisions
likely have a large impact on the game outcome.

Figure 5 shows a summary of a similar tournament using
a limit of 200 state evaluations per frame, rather than 200
milliseconds. The fastest simple evaluation function shows
significantly worse performance on the MCTS algorithms,
because in this experiment only the evaluation accuracy is
relevant, not the speed.

To scale the neural network to larger map sizes and more
complex games, the size of the network will likely have to
increase, both in the size of each layer and in the number of
layers. This expansion will lead to slower evaluation times.
However, we have shown that a small increase in evaluation
accuracy is able to compensate for several orders of magni-
tude in speed reduction. Furthermore, running the network in
batches on a GPU rather than the CPU should counteract most
of the lost speed. MCTS algorithms can readily be modified to
perform state evaluations in batches, as done for AlphaGo [1],
which would result in several orders of magnitude speed
improvements.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have used deep CNNs to evaluate RTS
game states. We have shown that the evaluation accuracy is
higher than current alternatives in µRTS. This new method
performed better evaluating early game positions which led
to stronger gameplay when used within state-of-the-art RTS
search algorithms.

Even though evaluating our CNN is several orders of
magnitude slower than the other evaluation functions, the game
playing agents based on it were stronger. The accuracy gain
far outweighs the speed disadvantage.

With these promising results, coupled with the fact that
modern CNNs have shown excellent results on large problem

sets [3], we are confident that the presented methods will scale
up to more complex RTS games. StarCraft maps are similar
in size to the images these networks are usually applied to.
Using an MCTS implementation based on game abstractions
similar to µRTS, that allows for asynchronous state evaluations
on multiple GPUs can aid in tackling these larger problems
while meeting real time constraints. Moreover, policy networks
may also be trained to return probability distributions over the
possible moves which can be used as prior probabilities to
focus MCTS on the most promising branches.

Unlike Go, however, even RTS games with professional
leagues such as StarCraft do not make replays of competition
games publicly available. Without a large number of high
quality records, reinforcement learning techniques will likely
need to be considered in future work.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot et al., “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] A. Kovarsky and M. Buro, “Heuristic search applied to abstract combat
games,” Advances in Artificial Intelligence, pp. 66–78, 2005.

[5] D. Churchill, A. Saffidine, and M. Buro, “Fast heuristic search for RTS
game combat scenarios,” in AI and Interactive Digital Entertainment
Conference, AIIDE (AAAI), 2012.

[6] S. Ontañón, “The combinatorial multi-armed bandit problem and its
application to real-time strategy games,” in AIIDE, 2013.

[7] S. Ontañón and M. Buro, “Adversarial hierarchical-task network plan-
ning for complex real-time games,” in IJCAI, 2015, in press.

[8] M. Stanescu, N. A. Barriga, and M. Buro, “Hierarchical adversarial
search applied to real-time strategy games,” in Tenth Annual AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 2014.

[9] M. Stanescu, S. P. Hernandez, G. Erickson, R. Greiner, and M. Buro,
“Predicting army combat outcomes in StarCraft,” in Ninth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2013.

[10] M. Stanescu, N. A. Barriga, and M. Buro, “Using Lanchester attrition
laws for combat prediction in StarCraft,” in Eleventh Annual AAAI Con-
ference on Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 2015.

[11] N. A. Barriga, M. Stanescu, and M. Buro, “Puppet Search: Enhancing
scripted behaviour by look-ahead search with applications to Real-Time
Strategy games,” in Eleventh Annual AAAI Conference on Artificial
Intelligence and Interactive Digital Entertainment (AIIDE), 2015.

[12] G. Erickson and M. Buro, “Global state evaluation in StarCraft,” in Tenth
Artificial Intelligence and Interactive Digital Entertainment Conference,
2014.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[14] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[15] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2015, pp. 815–
823.

[16] C. Dong, C. C. Loy, K. He, and X. Tang, “Learning a deep convolutional
network for image super-resolution,” in Computer Vision–ECCV 2014.
Springer, 2014, pp. 184–199.

[17] A. Kendall, M. Grimes, and R. Cipolla, “Posenet: A convolutional
network for real-time 6-dof camera relocalization,” in Proceedings of
the IEEE International Conference on Computer Vision, 2015, pp. 2938–
2946.

[18] C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet
and the impact of residual connections on learning,” arXiv preprint
arXiv:1602.07261, 2016.

[19] R. Johnson and T. Zhang, “Effective use of word order for text
categorization with convolutional neural networks,” arXiv preprint
arXiv:1412.1058, 2014.

[20] X. Zhang and Y. LeCun, “Text understanding from scratch,” arXiv
preprint arXiv:1502.01710, 2015.

[21] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[22] Ł. Kaiser and I. Sutskever, “Neural gpus learn algorithms,” arXiv
preprint arXiv:1511.08228, 2015.

[23] J. Frnkranz and M. Kubat, Machines that learn to play games. Nova
Publishers, 2001.

[24] Y. LeCun and M. A. Ranzato, “Deep learning,” Tutorial
at ICML, 2013. [Online]. Available: www.cs.nyu.edu/∼yann/talks/
lecun-ranzato-icml2013.pdf

[25] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for
real-time atari game play using offline monte-carlo tree search planning,”
in Advances in Neural Information Processing Systems, 2014, pp. 3338–
3346.

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” in NIPS Deep Learning Workshop, 2013.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[28] A. Shleyfman, A. Komenda, and C. Domshlak, “On combinatorial
actions and cmabs with linear side information,” in ECAI, 2014, pp.
825–830.

[29] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” CoRR, vol. abs/1505.00853,
2015. [Online]. Available: http://arxiv.org/abs/1505.00853

[30] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep
into rectifiers: Surpassing human-level performance on imagenet
classification,” in Proceedings of the IEEE International Conference
on Computer Vision, 2015, pp. 1026–1034. [Online]. Avail-
able: http://www.cv-foundation.org/openaccess/content iccv 2015/html/
He Delving Deep into ICCV 2015 paper.html

[31] ——, “Deep residual learning for image recognition,” arXiv preprint
arXiv:1512.03385, 2015.

[32] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in International conference on artificial
intelligence and statistics, 2010, pp. 249–256.

[33] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[34] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[35] F. Sailer, M. Buro, and M. Lanctot, “Adversarial planning through
strategy simulation,” in Computational Intelligence and Games, 2007.
CIG 2007. IEEE Symposium on. IEEE, 2007, pp. 80–87.

