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Abstract—Decision-making in large imperfect information
games is difficult. Thanks to recent success in Poker, Coun-
terfactual Regret Minimization (CFR) methods have been at
the forefront of research in these games. However, most of the
success in large games comes with the use of a forward model
and powerful state abstractions. In trick-taking card games
like Bridge or Skat, large information sets and an inability to
advance the simulation without fully determinizing the state make
forward search problematic. Furthermore, state abstractions can
be especially difficult to construct because the precise holdings
of each player directly impact move values.

In this paper we explore learning model-free policies for Skat
from human game data using deep neural networks (DNN).
We produce a new state-of-the-art system for bidding and
game declaration by introducing methods to a) directly vary
the aggressiveness of the bidder and b) declare games based
on expected value while mitigating issues with rarely observed
state-action pairs. Although cardplay policies learned through
imitation are slightly weaker than the current best search-based
method, they run orders of magnitude faster. We also explore
how these policies could be learned directly from experience
in a reinforcement learning setting and discuss the value of
incorporating human data for this task.

Index Terms—Game AI, Card Game, Neural Networks, Policy
Learning, Skat

I. INTRODUCTION

Decision-making in large imperfect information games can
be difficult. Techniques based on counterfactual regret min-
imization (CFR) [1] are currently considered state-of-the-art,
but a forward model and expert abstractions are often required
to scale these techniques to larger games. Some games are
simply too large to solve with CFR methods on current
hardware. For instance, in the popular 3-player card game
of Skat the size of the information set for the first decision
point right after the initial deal can be as large as ≈ 4.3 · 109.
Overall, there are ≈ 4.4 · 1019 terminal histories in the pre-
cardplay portion alone and many more when taking cardplay
into account.

The general approach for solving larger games with these
methods is to first abstract the game into a smaller version
of itself, solve that, and then map those strategies back to the
original game. This process implies a game-specific tradeoff
between abstraction size and how well the strategies computed
on the abstraction translate to the real game. Recent advances
in Poker [2], [3] highlight the effectiveness of this approach
in some games. In Skat and Contract Bridge, however, the

values of actions in an information set are highly dependent
on the interactions between cards within a player’s hand and
the exact cards which each opponent possesses. This makes
it difficult to construct abstractions that are small enough to
use with CFR methods, but expressive enough to capture the
per-card dependencies that are vital to success in the full game.

Effective search is also difficult in Skat due to the imperfect
information nature of the game. In order to advance the state,
the state must be “determinized” from the root information
set. The current state-of-the-art in Skat uses a combination
of open-handed simulation and a table-based state evaluator
learned from human games [4]. It relies on a forward model
to perform the open-handed simulations and hand-based ab-
stractions to build the state evaluator used for bidding. Open-
handed simulations have been rightfully criticized across the
literature [5], [6] because they assume that a strategy can take
different actions in different states that are part of the same
information set.

In this paper we focus on learning model-free policies for
Skat from human-generated data. Abandoning the use of a
forward model for Skat is complicated, but may be worthwhile
not only because it alleviates many of the aforementioned
problems, but also because it allows policies to be trained or
improved directly through experience. In particular, techniques
that alleviate some of the issues with learning from expert
data are explored. We present a method for varying the
aggressiveness of the bidder by viewing the output of the
network as a distribution of the actions of the humans and
selecting the action that maps to the percentile of bidder
aggression we desire. Imitation policy performance is further
improved by accounting for rarely-seen state-action pairs
without generating new experience. Our contributions lead to a
new state-of-the-art bidding system for Skat, and a reasonably
strong card player that performs orders of magnitude faster
than search based methods. Finally, we explain how these
policies could be learned directly from experience and discuss
the value of incorporating human data into this process.

II. BACKGROUND AND RELATED WORK

In this section we provide the reader with the necessary
background related to the game of Skat. We also discuss
previous work related to AI systems for Skat and similar
domains.



A. Skat
Our domain of choice is a 3-player trick-taking card game

called Skat. Originating in Germany in the 1800s, Skat is
played competitively in clubs around the world. The following
is a shortened explanation that includes the necessary informa-
tion to understand the work presented here. For more in-depth
explanation about the rules of Skat we refer interested readers
to https://www.pagat.com/schafk/skat.html.

Skat is played using a 32-card deck which is built from a
standard 52-card by removing 2,3,4,5,6 in each suit. A hand
consists of each of the three players being dealt 10 cards with
the remaining two kept face down in the so-called skat.

Games start with the bidding phase. The winner of this
phase plays as the soloist against the team formed by the other
players during the cardplay phase of the game. Upon winning
the bidding, the soloist decides whether or not to pickup the
skat followed by discarding two cards face down, and then
declares what type of game will be played during cardplay.
The game type declaration determines both the rules of the
cardplay phase and also the score for each player depending
on the outcome of the cardplay phase. Players typically play
a sequence of 36 of such hands and keep a tally of the score
over all hands to determine the overall winner.

The game value, which is the number of points the soloist
can win, is the product of a base value (determined by the
game type, see Table I) and a multiplier. The multiplier is
determined by the soloist having certain configurations of
Jacks and other high-valued trumps in their hand and possibly
many game type modifiers explained in Table II. An additional
multiplier is applied to the game value for every modifier.

After dealing cards, the player to the right of the dealer starts
bidding by declaring a value that must be less than or equal to
the value of the game he intends to play — or simply passing.
If the soloist declares a game whose value ends up lower than
the highest bid, the game is lost automatically. Next, the player
to the dealer’s left decides whether to accept the bid or pass.
If the player accepts the bid, the initial bidder must proceed
by either passing or bidding a higher value than before. This
continues until one of the player’s decides to pass. Finally,
the dealer repeats this process by bidding to the player who
has not passed. Once two players have passed, the remaining
player has won the bidding phase and becomes the soloist. At
this point, the soloist decides whether or not to pick up the
skat and replace up to two of the cards in his hand and finally
declares a game type.

Cardplay consists of 10 tricks in which the trick leader
(either the player who won the previous trick or the player
to the left of the dealer in the first trick) plays the first card.
Play continues clockwise around the table until each player
has played. Passing is not permitted and players must play
a card of the same suit as the leader if they have one —
otherwise any card can be played. The winner of the trick is
the player who played the highest card in the led suit or the
highest trump card.

In suit and grand games, both parties collect tricks which
contain point cards (Jack:2, Queen:3,King:4,Ten:10,Ace:11)

TABLE I
GAME TYPE DESCRIPTION

Base Soloist Win
Type Value Trumps Condition

Diamonds 9 Jacks and Diamonds ≥ 61 card points
Hearts 10 Jacks and Hearts ≥ 61 card points
Spades 11 Jacks and Spades ≥ 61 card points
Clubs 12 Jacks and Clubs ≥ 61 card points
Grand 24 Jacks ≥ 61 card points
Null 23 No trump losing all tricks

TABLE II
GAME TYPE MODIFIERS

Modifier Description
Schneider ≥90 card points for soloist
Schwarz soloist wins all tricks

Schneider Announced soloist loses if card points < 90
Schwarz Announced soloist loses if opponents win a trick

Hand soloist does not pick up the skat
Ouvert soloist plays with hand exposed

and non-point cards (7,8,9). Unless certain modifiers apply,
the soloist must get 61 points or more out of the possible 120
card points in the cardplay phase to win the game. In null
games the soloist wins if he loses all tricks.

B. Previous Work

Previous work on Skat AI has applied separate solutions for
decision-making in the pre-cardplay and cardplay phases. The
cardplay phase has received the most attention — probably due
to its similarity to cardplay in other trick-taking card games.

Despite its shortcomings, Perfect Information Monte-Carlo
(PIMC) Search [7] continues be the state-of-the-art cardplay
method for Skat and other trick-taking card games like Bridge
[8] and Hearts [9]. Later, Imperfect Information Monte-Carlo
Search [10] and Information Set Monte Carlo Tree Search [11]
sought to address some of the issues inherent in PIMC while
still relying on the use of state determinization and a forward
model.

The current state-of-the-art for the pre-cardplay phase [4]
uses forward search — evaluating leaf nodes after the discard
phase using the GLEM framework [12]. The evaluation func-
tion is based on a generalized linear model over table-based
features indexed by abstracted state properties. These tables
are computed using human game play data. Evaluations take
the player’s hand, the game type, the skat, and the player’s
choice of discard into account to predict the player’s winning
probability. The maximum over all player choices of discard
and game type is taken and then averaged over all possible
skats. Finally, the program bids if the such estimated winning
probability is higher than some constant threshold.

III. LEARNING BIDDING POLICIES FROM HUMAN DATA

In this section we describe the training of the pre-cardplay
policies for Skat using human data. First, we present a
simple policy learned through direct imitation of human play.
Next, we study the issue of trying to imitate an action from
supervised data when intent is not visible. This is a problem



when learning policies for Skat’s bidding phase because the
data doesn’t show how high the player was willing to bid
with their hand. Finally, we explore using a value network in
conjunction with a policy for the declaration/pickup phases.

The pre-cardplay phase has 5 decision points: max bid
for the Bid/Answer Phase, max bid for the Continue/Answer
Phase, the decision whether to pickup the skat or declare a
hand game, the game declaration and the discard. The bidding
phases feature sequential bids between two players, but further
bids can only be made if the other player has not already
passed. This allows a player to effectively pre-determine what
their max bid will be. This applies to both the Bid/Answer and
Continue/Answer phases. However, in the Continue/Answer
phase remaining players must consider which bid caused a
player to pass in the first bidding phase. The Declaration and
Discard phases happen simultaneously and could be modelled
as a single decision point, but for simplicity’s sake we separate
them.

For each decision point, a separate DNN was trained using
human data from a popular Skat server [13]. For discard,
separate networks were trained for each game type except
for Null and Null Ouvert. These were combined because of
their similarity and the low frequency of Ouvert games in the
dataset.

The features for each network are one-hot encoded. The
features and the number of bits for each are listed in Table III.
The Bid/Answer network uses the Player Hand, and Player
Position features. The Continue/Answer network uses the same
features as Bid/Answer, plus the Bid/Answer Pass Bid, which
is the pass bid from the Bid/Answer phase. The Hand/Pickup
network uses the same as Continue/Answer, plus the Winning
Bid. The Declare network uses the Player Hand + Skat feature
in place of the Player Hand feature, as the skat is part of their
hand at this point. The Discard networks use the same features
as the Declare network, with the addition of the Ouvert feature,
which indicates whether the game is played open.

Note that the game type is not included in the feature set
of the Discard networks because they are split into different
networks based on that context. Assuming no skip bids (not
normally seen in Skat) these features represent the minimum
information needed to reconstruct the game state as observed
from the player. Thus, abstraction and feature engineering in
our approach is limited.

The outputs for each network correspond to any of the
possible actions in the game at that phase. The legality of
the actions depend on the state. Table IV lists the actions that
correspond to the outputs of each network, accompanied by
the number of possible actions.

The networks all have identical structure, except for the
input and output layers. Each network has 5 fully connected
hidden layers with RELU [14] activation gates. The network
structure can be seen in Figure 1. Tensorflow [15] was used
for the entire training pipeline. Networks are trained using the
ADAM optimizer [16] to optimize cross-entropy loss with a
constant learning rate set to 10−4. The middle 3 hidden layers
incorporate Dropout [17], with keep probabilities set to 0.6.

TABLE III
NETWORK INPUT FEATURES

Features Width
Player Hand 32

Player Position 3
Bid/Answer Pass Bid 67

Winning Bid 67
Player Hand + Skat 32

Ouvert 1

TABLE IV
CORRESPONDING ACTIONS TO NETWORK OUTPUTS

Phase Action Width
Bid/Answer MaxBid 67

Continue/Answer MaxBid 67
Hand/Pickup Game Type or Pickup 13

Declare Game Type 7
Discard Pair of Cards 496

TABLE V
PRE-CARDPLAY TRAINING SET SIZES AND IMITATION ACCURACIES

Train Size Train Test
Phase (millions) Acc.% Acc.%

Bid/Answer 23.2 83.5 83.2
Continue/Answer 23.2 79.7 80.1

Pickup/Hand 23.2 97.3 97.3
Declare 21.8 85.6 85.1

Discard Diamonds 2.47 76.3 75.7
Discard Hearts 3.13 76.5 75.0
Discard Spades 3.89 76.5 75.5
Discard Clubs 5.07 76.6 75.8
Discard Grand 6.21 72.1 70.3
Discard Null 1.46 84.5 83.2

Each network was trained with early stopping [18] for at most
20 epochs. The size of the training sets, and accuracies after
the final epoch are listed for each network in Table V. These
accuracies appear to be quite reasonable, given the number of
options available at each decision point. The test dataset sizes
were set to 10,000.

The goal of these networks is to imitate the human players.
One issue is that while the exact actions during the bidding
phase are captured, the intent of how high the player would
have bid is not. The intent is based largely on the strength of
the hand, but how high the player bids is dependent on the
what point the other player passed. For example, if a player
decided their maximum bid was 48 but both other players
passed at 18, the maximum bid reached is 18. For this reason,
the max bid was trained on the pass bids of the players. We
know what the max bid for these players is because they either
passed at that bid (if they are the player to bid) or at the next
bid (if they are the player to answer).

The output of this network corresponds to the probability
the player should pass at a certain level. The argmax would
provide the most likely bid the bid , but it would not utilize the
sequential structure of the bids. What we propose is to take the
bid that corresponds to a given percentile, termed A. In this
way, the distribution of players aggressiveness in the human
population can be utilized directly to alter the aggressiveness
of the player. Let B be the ordered set of possible bids, with
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Fig. 1. Network architecture used across all game types for both soloist and defenders.

bi being the ith bid, with b0 corresponding to passing without
bidding. The maxbid is determined using

maxbid(s,A) = min(bi) s.t. Σi
j=0p(bj ; θ|I) ≥ A (1)

Given the returned maxbid is bi and the current highest bid in
the game is bcurr, the policy for the bidding player is

πbid(bi, bcurr) =

{
bi+1 if bi > bcurrent
pass otherwise (2)

while the policy for the answer player is

πans(bi, bcurr) =

{
yes if bi ≥ bcurrent
pass otherwise (3)

Another limiting factor in the strength of direct imitation
is that the policy is trained to best copy humans, regardless
of the strength of the move. While the rational player would
always play on expectation, it appears there is a tendency for
risk aversion in the human data set. For example, the average
human seems to play far fewer Grands than Kermit. Since
Grands are high risk / high reward, they are a good indication
of how aggressive a player is. To improve the pre-cardplay
policy in the Hand/Pickup and Declare phases, we can instead
select actions based on learned values for each possible game
type. Formally, this policy is

πMV (I, a; θ) = argmax(v(I, a; θ)) (4)

where v is the value of the game for the given Information
Set I , action a, pair, and parameters θ in the trained network.

We trained two additional networks, one for the
Hand/Pickup phase and one for the Declare phase. These
networks were identical to the previous ones, except linear
activation units are used for the outputs. The network was

trained to approximate the value of the actions. The value
labels are simply the endgame value of the game to the soloist.
The loss was the mean squared error of prediction on the actual
action taken. For the Hand/Pickup network, the train and test
loss were 607 and 623 respectively. For the Declare network,
the values were 855 and 898. These values seem quite large,
but with the high variance and large scores in Skat, they are
in the reasonable range.

The πMV seen in Equation 4 is problematic. The reason
for this that a lot of actions, while legal, are never seen in
the training data within a given context. This leads to action
values that are meaningless, which can be higher than the
other meaningful values. For example, Null Ouvert is rarely
played, has high game value and is most often won. Thus
the network will predict a high value for the Null Ouvert
action in unfamiliar situations which in turn are not appropriate
situations to play Null Ouvert. This results in an overly
optimistic player in the face of uncertainty, which can be
catastrophic. This is demonstrated in the results section.

To remedy this issue, we decided to use the supervised
policy network in tandem with the value network. The prob-
ability of an action from the policy network is indicative
of how often the move is expected to be played given the
observation. The higher this probability is, the more likely
we have seen a sufficient number of “relevant” situations in
which the action was taken. With a large enough dataset,
we assume that probabilities above a threshold indicate that
we have enough representative data to be confident in the
predicted action value. We chose 0.1 as the threshold. There
is no theoretical reason for this exact threshold, other than it
is low enough that it guarantees that there will always be a
value we are confident in. Furthermore, the probability used



is normalized after excluding all illegal actions.
The policy for the Hand/Pickup and Declare phases using

the method described above is

πMLV (I, a; θ) = argmax(vL(I, a; θ)) (5)

where
vL(I, a) =

{
v(I, a; θ) if plegal(a; θ|I) ≥ λ
−∞ otherwise (6)

in which plegal is the probability normalized over all legal
actions and λ is a constant set to 0.1 in our case.

IV. BIDDING EXPERIMENTS

The current strongest Skat AI system is Kermit, which plays
at human expert strength [4]. Kermit’s bidding is based on es-
timating winning probabilities during bidding and thresholding
the estimates to decide to increase the bid, to accept a bid, or to
pass. As this algorithm is the state-of-the-art for pre-cardplay
phase of Skat, it is used as the baseline for the rest of this
paper. Since the network-based player learned off of human
data, it is assumed that defeating Kermit is indicative of the
overall strength of the method, and not based on exploiting it.

Because Skat is a 3-player game, each match in the tour-
nament is broken into six games. In a match, all player
configurations are considered, with the exception of of all three
being the same bot, resulting in six games (see Table VI). In
each game, once the pre-cardplay phase is finished, the rest of
the game is played out using Kermit cardplay, an expert level
player based on PIMC search which samples 160 worlds — a
typical setting. The results for each bot is the resultant average
over all the games played. Each tournament was ran for 5,000
matches. All tournaments featured the same identical deals in
order to decrease variance.

Different variations of the pre-cardplay policies were tested
against the Kermit baseline. Unless otherwise stated, the
policies use the aggressiveness transformation discussed in
the previous section, with the A value following the policies
prefix. The variations are:

• Direct Imitation Max (DI.M): selects the most probable
action from the imitation networks

• Direct Imitation Sample (DI.S): like DI.M, but samples
instead of taking the argmax

• Aggressive Bidding (AB): like DI.M, but uses the aggres-
siveness transformation in bidding

• Maximum Value (MV): like AB, but selects the maxi-
mum value action in the Hand/Pickup and Declare phases

• Maximum Likely Value (MLV): like AB but uses the
maximum likely value policy, πMLV , in the Hand/Pickup
and Declare phases

While the intuition behind the aggressiveness transformation
is rooted in increasing the aggressiveness of the bidder, the
choice for A is not obvious. MLV and AB were investigated
with A values of 0.85, 0.89, 0.925. Through limited trial and
error, these values were chosen to approximately result in the
player being slightly less aggressive, similarly aggressive, and
more aggressive than Kermit’s bidding, as measured by share
of soloist games played in the tournament setting. MV was

TABLE VI
PLAYER CONFIGURATIONS IN A SINGLE MATCH CONSISTING OF SIX

HANDS (K=KERMIT, NW=NETWORK PLAYER)

Game Number Seat1 Seat2 Seat3
1 K K NW
2 K NW K
3 K NW NW
4 NW NW K
5 NW K NW
6 NW K K

only tested with A of 0.89 since it was clear that the issues
of overoptimism were catastrophic.

An overview of the game type selection breakdown is
presented in Table VII, while an overview on the performance
is presented in Table VIII. To measure game playing per-
formance we use the Fabian-Seeger tournament point (TP)
scoring system which awards the soloist (50 + game value)
points in case he wins. In case of a loss, the soloist loses
(50 + 2· game value) points and the defenders are awarded
40 points. All tournament points per game (TP/G) difference
values reported were found to be significant, unless otherwise
stated. These tests were done using pairwise TTests, with a
significance level set to p=0.05.

Clearly, naively selecting the max value (MV) in the
Hand/Pickup and Declare phases cause the bot to perform
very poorly as demonstrated by it performing -75.59 TP/G
worse than the Kermit baseline. It plays 96% of its suit games
as hand, which is extremely high to the point of absurdity.
The reason for this overoptimism was discussed already in
the previous section, and these results bear this out.

Direct Imitation Argmax (DI.M) performed much better, but
still performed slightly worse than the baseline by 2.10 TP/G.
Direct Imitation Sample (DI.S) performed 4.14 TP/G worse
than baseline, slightly worse than DI.M. The issue with being
overly conservative is borne out for both these players with
the player being soloist approximately half as often as Kermit.

The direct imitation with the aggressiveness transformation
(AB) performed better than Kermit for the lower values,
but slightly worse for AB.925. None of these values were
statistically significant. The best value for A was 0.85 (AB.85)
which leads to +0.41 TP/G against Kermit. The advantage
decrease with increasing A values. At the 0.85 A value, the
player is soloist a fewer of 1.81 times per 100 games played,
indicating it is a less aggressive bidder than Kermit.

The players selecting the max value declarations within
a confidence threshold (MLV) performed the best overall,
outperforming the AB players at each A value level. The
best overall player against Kermit is the MLV.85 player. It
outperforms Kermit by 1.17 TP/G, 0.76 TP/G more than the
best AB player.

The actual breakdown of games is quite interesting, as it
shows that the AB and MLV players are drastically different in
their declarations. Across the board, AB is more conservative
as it plays more Suit games and less Grand games (worth
more and typically more risky) than the corresponding MLV
player. Kermit falls somewhere in between. One other trend



TABLE VII
GAME TYPE BREAKDOWN BY PERCENTAGE FOR EACH PLAYER, OVER

THEIR 5,000 MATCH TOURNAMENT. FIRST PLAYER SOLOIST GAMES ARE
BROKEN DOWN INTO TYPES. DEFENSE GAMES (DEF) AND GAMES THAT

WERE SKIPPED DUE TO ALL PLAYERS PASSING (PASS) ARE ALSO
INCLUDED. THE K VS X ENTRIES LIST BREAKDOWNS OF KERMIT

PLAYING AGAINST PLAYER(S) X WITH IDENTICAL BIDDING BEHAVIOR.

Match Grand Suit Null NO Def Pass
DI.S 6.8 17.1 1.2 0.8 68.9 5.2
DI.M 6.6 16.0 0.9 0.9 69.3 6.3
MV.89 8.2 25.4 0.0 0.3 64.8 1.4
MLV.85 10.6 19.0 1.6 1.3 65.6 1.9
MLV.89 11.0 19.8 1.7 1.4 64.8 1.4
MLV.925 11.6 20.5 1.8 1.5 63.6 1.1
AB.85 8.7 21.5 1.1 1.2 65.6 1.9
AB.89 9.2 22.3 1.1 1.2 64.8 1.4
AB.925 9.7 23.1 1.2 1.3 63.6 1.1
K vs DI.S 10.7 21.0 3.8 2.0 57.1 5.5
K vs DI.M 10.7 21.6 3.8 2.0 55.5 6.4
K vs *.85 11.0 17.5 2.5 1.8 64.9 2.4
K vs *.89 10.9 16.8 2.2 1.8 66.4 1.9
K vs *.925 11.0 15.8 2.0 1.7 68.0 1.5

TABLE VIII
TOURNAMENT RESULTS OVER 5,000 MATCHES BETWEEN LEARNED

CARDPLAY POLICES AND THE BASELINE PLAYER (KERMIT). ALL PLAYERS
USE KERMIT’S CARDPLAY. ROWS ARE SORTED BY SCORE DIFFERENCE
(TP/G=TOURNAMENT POINTS PER GAME, S=SOLOIST PERCENTAGE)

STARRED DIFF. VALUES WERE NOT FOUND TO BE SIGNIFICANT.

Player (P) TP/G(P) TP/G(K) diff. S(P) S(K) diff.
MV.89 -41.29 34.29 -75.59 33.8 31.7 2.11
DI.S 19.17 23.31 -4.14 25.9 37.2 -11.30
DI.M 20.61 22.70 -2.10 24.3 38.1 -13.77
AB.925 22.41 22.58 -0.18* 35.3 30.5 4.85
AB.89 22.87 22.50 0.37* 33.8 31.7 2.11
AB.85 22.97 22.56 0.41* 32.5 32.8 -0.27
MLV.925 23.04 22.29 0.75 35.3 30.5 4.85
MLV.89 23.28 22.31 0.97 33.8 31.7 2.11
MLV.85 23.59 22.42 1.17 32.5 32.8 -0.27

is that as the A values increase, the share of soloist games
increases, but the majority of the extra games are Suit. There
is a diminishing returns in the number of high value Grand
games.

These results indicate that the MLV method that utilizes the
networks train on human data provides the new state-of-the-art
for Skat bots in pre-cardplay.

V. LEARNING CARDPLAY POLICIES

With drastically improved pre-cardplay policies, the next
step was to create a cardplay policy based off the human data.
To do this, a collection of networks were trained to imitate
human play using the same network architecture used for the
pre-cardplay imitation networks. Six networks were trained in
all; defender and soloist versions of Grand, Suit, and Null.

To capture the intricacies of the cardplay phase, we use
handcrafted features — listed in Table IX. Player Hand rep-
resents all the cards in the players hand. Hand Value is the
sum of the point values of all cards in a hand (scaled to the
maximum possible value). Lead cards represents all the cards
the player led(first card in the trick). Sloughed cards indicate

TABLE IX
NETWORK INPUT FEATURES

Common Features Width
Player Hand 32
Hand Value 1

Played Cards (Player, Opponent 1&2) 32*3
Lead Cards (Opponent 1&2) 32*2

Sloughed Cards (Opponent 1&2) 32*2
Void Suits (Opponent 1&2) 5*2

Current Trick 32
Trick Value 1

Max Bid Type (Opponent 1&2) 6*2
Soloist Points 1

Defender Points 1
Hand Game 1

Ouvert Game 1
Schneider Announced 1
Schwarz Announced 1

Soloist Only Features Width
Skat 32

Needs Schneider 1

Defender Only Features Width
Winning Current Trick 1

Declarer Position 2
Declarer Ouvert 32

Suit/Grand Features Width
Trump Remaining 32

Suit Only Features Width
Suit Declaration 4

TABLE X
CARDPLAY TRAIN/TEST SET SIZES

Train Size Train Test
Phase (millions) Acc.% Acc.%

Grand Soloist 53.7 80.3 79.7
Grand Defender 105.4 83.4 83.1

Suit Soloist 145.8 77.5 77.2
Suit Defender 289.1 82.3 82.2
Null Soloist 5.4 87.3 86.3

Null Defender 10.7 72.9 71.6

all the non-Trump cards that the player played that did not fol-
low the suit. Void suits indicate the suits which a player cannot
have based on past moves. Trick Value provides the point value
of all cards in the trick (scaled to the max possible value).
Max Bid Type indicates the suit bid multipliers that match
the maximum bid of the opponents. For example, a maximum
bid of 36 matches with both the Diamond multiplier, 9, and
the Clubs multiplier, 12. The special soloist declarations are
encoded in Hand Game, Ouvert Game, Schneider Announced,
and Schwartz announced. Skat encodes the cards placed in the
skat by the soloist, and Needs Schneider indicates whether the
extra multiplier is needed to win the game. Both of these are
specific to the soloist networks. Specific to the defenders are
the Winning Current Trick and the Declarer Ouvert features.
Winning Current Trick encodes whether the current highest
card in the trick was played by the defense partner. Declarer
Ouvert represents the soloist’s hand if the soloist declared



Ouvert. Trump remaining encodes all the trump cards that the
soloist does not possess and have not been played, and is used
in the Suit and Grand networks. Suit Declaration indicates
which suit is trump based on the soloist’s declaration, and
is only used in the Suit networks. These features are one-
hot encoded, except for Trick Value, Hand Value, Soloist and
Defender points, which are floats scaled between 0 and 1. The
network has 32 outputs — each corresponding to a given card.

The resultant data set sizes, and accuracies after the final
epoch are listed in Table X. The test set had a size of 100,000
for all networks. The accuracies are quite high, however, this
doesn’t mean much in isolation as actions can be forced, and
the number of reasonable actions is often low in the later tricks.

VI. CARDPLAY RESULTS

Bidding policies from the previous section, as well as
Kermit bidding, were used in conjunction with the learned
cardplay networks. The cardplay policy (C) takes the legal
argmax of the game specific network’s output, and plays the
corresponding card. AB and MLV bidding policies were tested
at all three bidding aggressiveness levels.

Each played against Kermit in the same tournament setup
from the previous section. Again, all TP/G difference reported
were found to be significant. Results are reported in Table XI.

The strongest full network player was MLV.85+C, and
it outperformed Kermit by 1.05 TP/G. All the rest of the
cardplay network players performed worse than Kermit. Like
the bidding results, all MLV players performed better than all
AB players. Kermit’s search based cardplay is quite strong,
and it appears to be stronger than the imitation cardplay, as
demonstrated by it outperforming K+C by 2.61 TP/G. This
substantial difference is probably due to the effectiveness of
search to play near perfectly in the later half of the game when
a lot is known about the hands of the players. In this match-up,
the bidding is the same so the only difference is the cardplay.
While these results are compelling, it should be noted that
further investigation into the interplay between the bidding and
cardplay policies is required to get a better understanding of
their strengths. One advantage the imitation network cardplay
has is that its much faster, taking turn at a constant rate of
around 2.5 ms, as compared to Kermit which takes multiple
seconds on the first trick, and an average time of around 650
ms (both using a single thread on consumer-level CPU).

VII. CONCLUSION

In this paper we have demonstrated that pre-cardplay poli-
cies for Skat can be learned from human game data and that
it performs much better than Kermit’s pre-cardplay — the
prior state-of-the-art. Naively imitating all aspects of the pre-
cardplay by taking the argmax over the legal actions (DI-M)
resulted in a bidding policy that performed an average of 1.35
TP/G worse than the Kermit baseline. The same procedure but
with sampling (DI-S) resulted in the player performing 4.14
TP/G worse than baseline. Using the novel method to increase
the aggressiveness of the bidder led to it performing 0.41 TP/G
better than the baseline, with A set to 0.85 (AB.85). Using this

TABLE XI
CARDPLAY TOURNAMENT RESULTS OVER 5,000 MATCHES BETWEEN

BOTS USING PRE-CARDPLAY POLICIES FROM THE PREVIOUS SECTION AND
THE LEARNED CARDPLAY POLICIES. ALL VARIANTS WERE PLAYED

AGAINST THE BASELINE, KERMIT (TP/G=TOURNAMENT POINTS PER
GAME, S=SOLOIST PERCENTAGE) ALL DIFF VALUES WERE FOUND TO BE

STATISCALLY SIGNIFICANT.

Player (P) TP/G(P) TP/G(K) diff S(P) S(K) diff
K+C 21.94 24.55 -2.61 31.9 31.9 0.00
AB.89 22.42 24.48 -2.05 33.8 31.7 2.11
AB.925+C 22.26 24.20 -1.94 35.3 30.5 4.85
AB.85+C 22.62 24.38 -1.76 32.5 32.8 -0.27
MLV.925+C 22.83 24.14 -1.32 35.3 30.5 4.85
MLV.89+C 23.11 24.41 -1.30 33.8 31.7 2.11
MLV.85+C 23.44 22.39 1.05 32.5 32.8 -0.27

in conjunction with game declaration based on the predicted
values and probabilities of actions (MLV.85), resulted in the
best overall pre-cardplay policy, beating the baseline by 1.17
TP/G. Also, the time for pre-cardplay decisions are much
faster, as it does not rely on search.

The direct imitation cardplay policy decreases the strength
of the overall player, performing 2.79 TP/G worse than the
Kermit player when utilizing the Kermit bidder. The best
overall full network based player was MLV.925+C, which
outperformed Kermit by 1.05 TP/G. This full network player
is order of magnitudes faster than the search based player, and
in this tournament setup, performs better. One drawback is that
while more computation can be done to improve the search
(improving the number of worlds sampled for example), the
same cannot be done for the network player.

A. Future Work

Now that we have established some degree of success
training model-free policies from human data in Skat, the next
logical step is to improve these policies directly through ex-
perience similar to the process shown in the original AlphaGo
[19]. In [20] regret minimization techniques often used to solve
imperfect information games are related to model-free multi-
agent reinforcement learning. The resulting actor-critic style
agent showed fast convergence to approximate Nash equilibria
during self-play in small variants of Poker. Applying the same
approach may be difficult because of Skat’s size and the
fact that it is not zero-sum, but starting with learning a best
response to the full imitation player discussed in this work
should be feasible and may yield a new state-of-the-art player
for all phases of the game. However, a fully-fledged self-play
regime for Skat remains as the end goal of this work.

Learning policies though self-play has shown to yield
strategies that are “qualitatively different to human play” in
other games [21]. This could be problematic because Skat
involves cooperation on defense during the cardplay phase.
Human players use conventions and signals to coordinate and
give themselves the best chance of defeating the soloist. In
order to play well with humans, policies need to account for
these signals from their partner and send their own. We plan
to explore how continually incorporating labelled data from
human games helps alleviate this problem.



ACKNOWLEDGMENT

We acknowledge the support of the Natural Sciences and
Engineering Research Council of Canada (NSERC).
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