
Robust Continuous Build-Order Optimization in
StarCraft

David Churchill
Computer Science

Memorial University
St. John’s, NL, Canada

dave.churchill@gmail.com

Michael Buro
Computing Science
University of Alberta

Edmonton, AB, Canada
mburo@ualberta.ca

Richard Kelly
Computer Science

Memorial University
St. John’s, NL, Canada
richard.kelly@mun.ca

Abstract—To solve complex real-world planning problems it is
often beneficial to decompose tasks into high-level and low-level
components and optimize actions separately. Examples of such
modularization include car navigation (a high-level path planning
problem) and obstacle avoidance (a lower-level control problem),
and decomposing playing policies in modern video games into
strategic (“macro”) and tactical (“micro”) components. In real-
time strategy (RTS) video games such as StarCraft, players
face decision problems ranging from economic development to
maneuvering units in combat situations. A popular strategy
employed in building AI agents for complex games like StarCraft
is to use this strategy of task decomposition to construct separate
AI systems for each of these sub-problems, combining them
to form a complete game-playing agent. Existing AI systems
for such games often contain build-order planning systems that
attempt to minimize makespans for constructing specific sets of
units, which are typically decided by hand-coded human expert
knowledge rules. Drawbacks of this approach include the human
expert effort involved in constructing these rules, as well as a
lack of online adaptability to unforeseen circumstances, which
can lead to brittle behavior that can be exploited by more
advanced opponents. In this paper we introduce a new robust
build-order planning system for RTS games that automatically
produces build-orders which optimize unit compositions toward
strategic game concepts (such as total unit firepower), without the
need for specific unit goals. When incorporated into an existing
StarCraft AI agent in a real tournament setting, it outperformed
the previous state-of-the-art planning system which relied on
human expert knowledge rules for deciding unit compositions.

I. INTRODUCTION

Real-Time Strategy (RTS) games have become a popular
test-bed for modern state-of-the-art artificial intelligence sys-
tems. With their real-time computational constraints, imperfect
information, simultaneous moves, and extremely large state
and action spaces, they have proven to be an excellent domain
for testing AI systems in preparation for real-world scenarios
[1]. In the past few years, large companies such as Google
DeepMind, Facebook AI Research, and OpenAI have each
been developing AI systems for strategic video games, which
could lead to more powerful AI solutions for their real-world
industry problems [2].

The goal of any RTS game is to defeat the forces of your
enemy, and in order to achieve that goal a player must first
construct an army with which to fight. These armies must
be built by the player by first using worker units to gather
resources, then using these resources to construct additional

buildings and infrastructure, which can then produce an army
of combat units such as soldiers or tanks. The sequence
of actions taken to arrive at a given set of goal units is
called a build-order. Professional human players learn and/or
memorize several proven build-order sequences for the initial
few minutes of a game, which they then later adapt on the fly
based on information obtained about their opponent. Build-
order planning and resource gathering make up the economic,
or “macro” (as it is known to RTS players) part of the game,
which is the most important aspect of overall strategic play.
Widely considered the best StarCraft player of all time, Lee
“Flash” Young Ho was known for his strong macro play, which
many have said was the key to his dominance throughout his
career1. It is therefore very important that any competitive
StarCraft AI agent must have a strong macro decision making
systems, for which build-order planning plays a large part.

The earliest solutions for StarCraft AI build-order planning
were simple rule-based systems in which human experts
assigned priority values to various in-game unit types, which
were then constructed in order of priority. The most well-
known of these solutions was the BWAPI Standard Add-on
Library (BWSAL)2, which allowed AI programmers to use
hard-coded priorities to construct given unit types, however
the build-orders it produced were quite slow in comparison
to expert humans. Since then, several automated planning
systems have been developed which attempt to minimize total
build-order construction time (makespan), however they all
require that a goal set of units be given to the underlying
search algorithm, usually given by human expert knowledge
in the form of a rule-based system. This reliance on human-
coded rules for unit goals ultimately makes such systems less
adaptable to online observations within a game, and come at a
significant authorship cost. It is our goal to construct a build-
order planning system which relies on as little human-coded
information as possible, which can adapt automatically to its
environment during a game.

In this paper we introduce a new robust build-order planning
system for RTS games that automatically produces build-
orders which optimize unit compositions toward strategic

1https://liquipedia.net/starcraft/Flash
2https://github.com/Fobbah/bwsal

game concepts (such as total unit firepower) continuously
throughout the game, without the need for specific unit goals,
with the option for specifying additional constraints if desired.
In the following section we will describe background and
related work in the area of build-order planning for RTS
games. We then give the details of our proposed new robust
continuous build-order planning system, and the experiments
carried out to compare it to previous state-of-the-art methods.
We then finish with a discussion of the results, and ideas for
future work in the area.

II. BACKGROUND AND RELATED WORK

In this section we summarize previous work on build-order
optimization and describe in more detail the formalism and
branch-and-bound algorithms presented in [3] on which our
work is based.

A. Prior Work on Build-Order Optimization

Build-order optimization problems are constraint resource
allocation problems featuring concurrent actions for which we
seek to minimize makespans to achieve given build goals.
Initial work on build-order optimization in the context of RTS
games focused on modeling them in PDDL so that solutions
could be found by off-the-shelf planning software [4], and
on studying ordering heuristics in concurrent action execution
environments [5]. Build-order optimization problems were first
tackled by employing means-end analysis (MEA), followed
by a heuristic rescheduling phase to shorten makespans [6].
This method generates satisficing action sequences quickly,
but the resulting plans are not necessarily optimal. Their
technique was extended in [7] by incorporating best-first
search and solving intermediate goals to reduce makespans
further. Branquinho and Lopes [8] extended this line of work
by combining two new techniques called MeaPop (MEA with
partial order planning) and Search and Learning A* (SLA*).
Their results improve on the makespans generated by MEA
but are too slow to be used in real-time games. To address
this problem a branch-and-bound algorithm was introduced
in [3] which presents various heuristics and abstractions that
reduce the search effort for solving build-order problems
in complex games such as STARCRAFT significantly while
producing near optimal plans in real-time. Their build-order
search system (BOSS) software3 is freely available and being
used in many STARCRAFT AI systems. Because our robust
build-order optimization system is based on BOSS and uses
its simulator we will describe it in more detail in the next
subsection.

In recent years genetic algorithm based approaches have
also been successfully applied to build-order optimization
problems. Blackford and Lamont [9] present a precise math-
ematical formalization of the heuristics presented in [3] and
solve the resulting multi-objective optimization problem with
a genetic algorithm. [10] show how full-game strategies can
be evolved including macro- and micro-level decisions. The

3https://github.com/davechurchill/ualbertabot

evolved strategies, however, are fixed, and therefore cannot be
adjusted during gameplay. Justesen and Risi [11] solve this
problem by applying continual online evolutionary planning.
Their method is able to defeat basic scripted STARCRAFT bots,
but relies on a complex approximate economic forward model
and a handcrafted fitness function.

B. BOSS

The focus of build-order optimization is on actions related
to producing units and structures in the shortest possible
time. More formally, we want to minimize the makespan of
concurrent action plans that transform the current abstracted
RTS game state into a given abstracted goal state with cer-
tain properties. To make real-time planning feasible, classic
build-order planning abstractions disregard the opponent and
concentrate on unit counts and resource gathering aggregate
statistics rather than low-level game state features such as
unit positions and actual resource gatherers’ travel times. In
a typical STARCRAFT build-order planning scenario we start
with 4 workers, sufficient resources (which can be gathered by
workers), and a resource depot, and ask the planner to compute
the build-order which produces a given goal set of units with
the shortest makespan (e.g., a goal of 6 Terran Marines with
the intent to rush the opponent’s base).

The build-order search system BOSS [3] which we will
use in this work contains a simulator which models economic
features of STARCRAFT. Its simulator uses resource income ab-
stractions, macro actions, and multiple lower bound makespan
heuristics which reduce the search space significantly. In
addition, a fast-forwarding approach decreases the branching
factor and eliminates the need for addressing the subset action
selection problem which arises in concurrent action planning
problems. Using these enhancements the depth-first branch-
and-bound planner included in BOSS is capable of producing
plans in real-time which are comparable to professional STAR-
CRAFT players. BOSS is an open source software project and
part of the UAlbertaBot StarCraft AI agent [12]. For more
details we refer the reader to the original paper.

C. AlphaStar

Recently, Google DeepMind have had success in applying
Deep Reinforcement Learning to the full game of StarCraft II
without the need for the same technique of task decomposition
which has so far been used in the RTS AI research community.
The agent they created is named AlphaStar4, and plays the
game of StarCraft II at a professional (but not world champion)
human level on a single small 2-player map, with a single
race combination (Protoss vs. Protoss). While full details have
not been released about the exact methods used, they have
claimed that their research team consisted of more than 30
Google DeepMind employees, which when coupled with the
extraordinary amount of computation required to train their
agent yields a lower bound cost of several million dollars to
accomplish this task. While these results are impressive, the

4https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-
starcraft-ii/

excessive costs and computation time mean that video game
companies cannot yet use these methods for developing AI
systems for retail games. In order for an AI method to be
useful in current commercial RTS video games they must be
faster and cheaper to develop than AlphaStar, and ideally run
in real-time - properties held by the new method we propose.

III. ROBUST CONTINUOUS BUILD-ORDER OPTIMIZATION

Previous work on build-order optimization has focused on
minimizing the makespan of concurrent action plans that
achieve given unit counts. This is useful in situations for
which goals are known, such as scripted high-level AI sys-
tems, because achieving unit production goals faster usually
correlates with better performance in competitive real-time
domains. However, formulating and testing high-level strate-
gies including subgoals is a non-trivial task which requires
considerable domain knowledge and time. So, an interesting
research question is whether heuristic search can be used in
a more direct and abstract fashion that requires less domain
knowledge and is less dependent on subgoal engineering.

In the domain of RTS games, or more generally military-
style confrontations, firepower advantage is highly correlated
with winning. This suggests that it may be possible to con-
struct AI systems for such domains by applying heuristic
search to abstract concepts such as firepower maximization.
Concretely, instead of achieving specific unit-count goals (such
as producing 6 tanks) we may be able to design an opti-
mizer that finds concurrent action sequences which maximize
firepower directly. When doing this continually while taking
scouting information about the enemy into account, there is
a good chance that such an optimizer can discover ways of
increasing firepower which have escaped human AI script
designers or subgoal authors.

For this approach to work we need to concretely specify
what we mean by “firepower”, and how to optimize it. The
following subsections address these tasks.

A. Army Value Functions

For our initial feasibility study we chose STARCRAFT as our
application domain, due to its long-established competitiveness
in both human and AI tournaments. In this popular RTS
game unit firepower and abilities have been shown to be
well correlated (balanced) to the unit’s overall resource cost,
meaning that the amount of resources spent on units is a
good game-state independent proxy for the ability to deal
damage to enemy units. In the experiments reported later we
use the army value (AV), i.e., the resource aggregate spent
on military units (non-worker units which can both move and
attack), as the firepower measure to be maximized. This is
a coarse approximation which disregards weapon types (e.g.
anti-air/anti-ground) and close-range and area effects, which
determine the actual unit effectiveness against a set of enemy
units. Constructing more robust and dynamic AV functions is
left to future work.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2500 3000 3500 4000 4500

A
rm

y
 V

a
lu

e
 (

A
rm

y
 R

e
so

u
rc

e
 S

u
m

)

Time (StarCraft Frames)

Max Army Value Obtainable
Army Value - BOSS-AV
Army Value - BOSS-IM

Fig. 1. Shown are three lines which demonstrate the results of army value
maximization build-order search, up to a maximim of 4500 STARCRAFT game
frames. The red line is the maximum possible army value obtainable by any
build-order at a given time. The green line is the army value at any given
time for the single build-order which maximizes the army value at time 4500
(BOSS-AV with T = 4500). The blue line is the army value for the single
build-order which maximizes the area under the army value curve (BOSS-IM
with T = 4500).

B. Army Value Optimization

The AV functions we just described are one-sided heuristic
evaluation functions that allow us to use efficient single-
agent search to optimize actions sequences (build-orders) for
individual players. To be useful in 2-player games requires that
maximizing AV correlates with maximizing the AV difference
between both players, which itself is often correlated with
winning. At least during the opening phase of RTS games
before player units interact, the above assumption is warranted.
For the single-agent AV optimization to also work well in
later game stages, AVs should reflect relative strength against
opponent units the player is aware of.

Assuming that single-agent AV maximization is useful, what
does an optimal action sequence look like when planning to
maximize AV for a set number of time steps T in the future? If
T is long we expect optimal build-order plans to create a large
army by initially producing many worker units to increase
income, then build factories, and only in the final stages to
produce many attack units in parallel. The green line in Figure
1 depicts a graph of AV over time for a build-order which
maximizes AV at T = 4500 BOSS simulation frames (184
seconds in STARCRAFT game time) in which the AV more
than doubles during the last 200 frames. The red line shows
the maximum possible AV obtainable by any build-order at any
time, calculated by running BOSS-AV for each time step T .
It is apparent that using the first (green) build-order computed
by the BOSS-AV algorithm (which maximises AV at T =
4500) can be easily countered by optimizing for T = 3500
and attacking at that time, since it will have an AV of 300 vs.
100 and have a large military advantage. In general, for each
fixed time T there may be an earlier time for the opponent
to optimize AV for, attack, and win, making BOSS-AV highly
exploitable.

To overcome this exploitability, we could define a 2-player

Algorithm 1 BOSS Recursive DFS (Generalized)
Require: Initial State I , Frame T , TimeLimit L
Require: BuildOrder B ← EmptyStack()
Require: BuildOrder Best← EmptyStack()

1: procedure BOSS-RDFS(State S)
2: if St > T or TimeElapsed ≥ L then
3: return . search termination criteria
4: if Eval(B, I) > Eval(Best, I) then
5: Best← B
6: for Action a ∈ S.legalActions do
7: S′ ← S.doAction(a)
8: B.push(a)
9: BOSS-RDFS(S′)

10: B.pop()

Algorithm 2 BOSS-AV Max Army Value Evaluation
1: procedure EVAL-AV(Initial State S, BuildOrder B)
2: for Action a ∈ B do
3: S ← S.doAction(a)
4: return ArmyValue(S)

AV game in which two players pick their respective optimiza-
tion time T , optimize their AV accordingly, and engage in
battle at the earliest time, and compute a Nash equilibrium
strategy for both players. However, the dynamics of a full-
fledged RTS game are not that simple, and we may not have
time to compute a Nash equilibrium in real-time. Instead, we
concentrate on more robust build-orders that can be found with
single-agent search. Our idea is to instead find a build-order
with smaller exploitation potential by minimizing the area
between its AV curve and the red line whose AV values (by
definition) are maximal. This is equivalent to maximizing the
area under the AV curve. We call this integral maximization
algorithm BOSS-IM. The blue line in Figure 1 depicts the
BOSS-IM AV curve for a build-order which maximizes the
area under its AV curve up to T = 4500. This BOSS-IM build-
order is more robust than the BOSS-AV solution for T = 4500,
since it obtains a max AV very near that of BOSS-AV at the
final T , while also constructing army units much earlier in the
game, leaving it less vulnerable to early attack. There may also
be other exploitation metrics (such as the maximum distance
between both curves) that we could try to optimize, but we
will leave studying those again to future work and just use the
more robust BOSS-IM for our experiments in Section IV.

C. Search Algorithm & Evaluation Functions

To implement both BOSS-AV and BOSS-IM, the same
high-level search algorithm can be used, with calls to different
evaluation functions to maximize for AV or IM. This generic
search algorithm can be implemented in a number of different
ways, and is shown in Algorithm 1 as a recursive depth-
first search (DFS) function. On line 4 of this algorithm, an
evaluation function is called in order to determine the value
which is to be maximized. Line 7 of the algorithm constructs

Algorithm 3 BOSS-IM Army Integral Evaluation
1: procedure EVAL-IM(Initial State S, BuildOrder B)
2: IntegralValue I ← 0
3: PreviousActionTime T ← St

4: PreviousArmyValue V ←ArmyValue(S)
5: for Action a ∈ B do
6: S ← S.doAction(a)
7: δ ← St − T
8: I ← I + δ × V
9: V ←ArmyValue(S)

10: T ← St

11: return I

a new state S′, which is the result of issuing action a at the
input state S. The action performed is then pushed onto the
build-order stack B, and the function is recursively called.
After a recursive level unrolls, the action is popped from the
stack, which results in the current build-order being stored in
variable B at all times, the best of which is stored in variable
Best which is returned after the search episode has terminated.

To implement BOSS-AV or BOSS-IM, this search algorithm
calls the specific evaluation functions Eval-AV or Eval-IM,
shown in Algorithms 2 and 3 respectively. Eval-AV accepts as
input an initial game state S and a build-order B, performs
all actions of the build-order on the state, and returns the
AV computed at the final state. Eval-IM computes the area
under the AV curve by computing the time deltas between
issuing each action, multiplying by the previous state’s AV,
and summing over all actions.

D. RTS AI Agent Architecture

The algorithms presented in this section could be integrated
into an RTS AI agent in a number of ways, either as a mid-
level module which can replace an existing build-order plan-
ning system, or as a more high-level architecture for the rest of
a bot to be based upon. One of the main advantages of BOSS-
IM is that it frees RTS AI bot authors from spending time on
authoring specific unit goals or strategic army compositions
by producing units which automatically suit the current state
of the game. As a mid-level module replacement, BOSS-IM
could take the place of existing build-order planning systems
such as the previously mentioned BWSAL, or more complex
search-based planning systems like the one present in current
StarCraft AI agents such as UAlbertaBot (explained further in
Section IV-A). As a high-level architecture, an RTS AI agent
could be made which instead of using predetermined strategies
that dictate unit compositions, uses a system like BOSS-IM
to produce units it feels are best for a given situation, and
then act appropriately with those units. For example, if the
algorithm produced more worker units it would use them to
expand economically, or if it produced more military units it
would decide to attack.

Fig. 2. A class diagram of UAlbertaBot, showing its modular design which facilitates AI task decomposition. We can easily substitute BOSS-IM or BOSS-UG
within the UAlbertaBot framework above by replacing the “BOSS Project” module without modifying any other bot behavior, which allows us to isolate the
performance difference of the build-order planning system on its own.

IV. EXPERIMENTS

In order to evaluate the effectiveness of BOSS-IM, two
experiments were performed in which it integrated into an
existing StarCraft AI agent and played in real-time in a
competitive setting, comparing its performance to the previous
state-of-the-art method of BOSS-UG. The StarCraft AI agent
used for these experiments is UAlbertaBot (UAB)5, a com-
petitive bot which has participated in all major StarCraft AI
tournaments, has been the architectural basis for many current
top-performing bots, and won the 2013 AIIDE StarCraft AI
Competition. UAlbertaBot uses a modular hierarchical archi-
tecture specifically designed for easy modification of specific
game play behaviors such as build-order planning, resource
gathering, or combat, making it an ideal way to test the
effectiveness of BOSS-IM to BOSS-UG.

A. UAlbertaBot Integration

In both experiments we used the 2017 AIIDE StarCraft
AI Competition version of UAlbertaBot, with some minor
changes to suit the experiments. During the 2017 competition,
UAlbertaBot played Random race, meaning that each time
a game started it would be randomly assigned one of the
3 StarCraft Races: Protoss, Terran, or Zerg. For each race,
it had a number of strategies which were chosen based on
several factors such as: opponent race, opponent name, and
the map that was being played. In order to produce more
reliable results for this paper and eliminate the hard-coded
strategy selection mechanisms present in the bot for the 2017
competition, we removed the Random element of the race

5https://github.com/davechurchill/ualbertabot

selection by limiting UAlbertaBot to only play the Protoss
race, and limited it to only playing its strongest strategy: the
Zealot rush. This 2017 version of the bot used the BOSS-UG
build-order search system, with unit goal compositions decided
by its StrategyManager module, consisting of a dozen or so
human crafted hard-coded rules based on several factors such
as: time of game, number of expansions, enemy army unit
compositions, etc. New instances of the BOSS-UG search are
triggered in the bot based on several possible in-game events
such as: the current build-order queue being empty, one of
its worker or building units being destroyed, or seeing our
enemy build invisible units. The BOSS-UG search instance
was given a time limit of 3 seconds, which was interleaved
over multiple frames of computation during the game, with
the resulting build-order being carried out by the bot as soon
as the search episode terminated. UAlbertaBot implements the
returned build-order by constructing each successive action as
soon as possible in-game.

Combat in UAlbertaBot is handled in a generic manner
that does not rely on any hard-coded attack timings or event
triggers. As soon as any military unit is constructed, it is
immediately sent to attack the opponent’s base. Each second,
UAlbertaBot uses its SparCraft combat simulation module
[13] to simulate the outcome of its currently attacking units
vs. scouted opponent units, and either retreats to regroup if
it predicts it will lose the battle, or continues attacking if
it believes it will win. This system eliminates the need for
human-coded rules for engaging or disengaging the enemy,
relying entirely on simulation, making it an ideal fit for
use with BOSS-IM. Full details about all systems used in

UAlbertaBot can be found on GitHub6.
These described modifications to UAlbertaBot will be re-

ferred to as UAB-BOSS-UG in the experimental results, and
is the baseline version we will compare against.

To test BOSS-IM we created UAB-BOSS-IM from UAB-
BOSS-UG by removing the BOSS-UG build-order search
and replacing it entirely with BOSS-IM. Every other system
of UAlbertaBot remained exactly the same, including com-
bat, unit positioning, building placement, build-order search
instance triggers, base expansion logic, scouting, resource
gathering, etc. The only difference being that when an event
triggers a new build-order search episode, BOSS-IM search
was used in place of the original BOSS-UG search. Since
BOSS-IM does not require specific unit goals like BOSS-
UG, the unit goal decision logic system in UAlbertaBot went
unused in UAB-BOSS-IM.

B. Search Parameters and Hardware

A search look-ahead limit of t=3000 in-game frames (125
human-play seconds) was used for UAB-BOSS-IM, with a
search instance time-out of 3000ms (same as UAB-BOSS-
UG), staggered across multiple frames in the same way as
BOSS-UG to prevent any single frame from going over
the competition-enforced rule of 55ms of computation per
frame. UAB-BOSS-IM was also limited to producing armies
consisting of Protoss Zealot and Dragoon units, which was
the same constraint placed on UAB-BOSS-UG by the human-
coded rules for selecting unit goals.

All experiments were performed using several identical
computers running games in parallel, each running Windows
10 Professional edition with an Intel i7-7700k processor and
16gb of RAM. UAlbertaBot (including all search algorithms)
runs in a single thread, so only one core of each processor was
being used at any given time. Experiment 2 made extensive use
of the AIIDE StarCraft AI Competition Tournament Manager
Software7.

C. Experiment 1: Retail StarCraft AI

The first experiment tested how UAB-BOSS-IM performed
against the built-in retail StarCraft AI agents in comparison
to UAB-BOSS-UG. For this experiment, each version of the
bot played 50 games against each of the 3 races of the built-
in StarCraft AI on each of the 10 maps used in the 2017
StarCraft AI Competition, for a total of 1500 games each.
As the retail AI for StarCraft is known to be quite weak in
comparison to modern competitive StarCraft AI agents, it is
expected that both versions of the bot should win close to
100% of the games played. After 1500 games each, UAB-
BOSS-UG won 1494 games, while UAB-BOSS-IM won 1488
games. Upon inspection of game replays, the extra few losses
of UAB-BOSS-IM occurred to the retail AI’s Protoss Dark
Templar strategy, in which it makes invisible units to attack
its opponent. Since UAB-BOSS-UG’s unit goal-based search
included human-coded rules to make invisibility detecting

6https://github.com/davechurchill/ualbertabot/wiki
7https://github.com/davechurchill/StarcraftAITournamentManager

20

25

30

35

40

45

50

0 10 20 30 40 50

B
o

t
W

in
 P

er
ce

n
ta

ge

Tournament Round Number

Bot Win Percentage Over Time

UAB-BOSS-IM

UAB-BOSS-UG

Fig. 3. Shown are results for the tournament run as part of Experiment 2,
with 50 total rounds of round-robin play. All games for both versions were
played against the same opponents - the top 10 ranked bots from the 2017
AIIDE StarCraft AI Competition.

units upon seeing the opponent construct such invisible units,
it did not lose to this strategy, unlike UAB-BOSS-IM which
had no logic for making invisibility detection. So while this
experiment showed that UAB-BOSS-IM was not significantly
weaker than UAB-BOSS-UG against the retail AI, it did show
one of its current possible weaknesses in that it did not tailor
its build-orders to specific enemy strategies such as making
invisible units. This problem can be rectified in the future
by including invisibility detection as part of the heuristic
evaluation that BOSS-IM attempts to maximize. However,
such modifications may be seen as going counter to its initial
purpose of avoiding the inclusion of such human-coded rules.

D. Experiment 2: AIIDE StarCraft AI Competition

The second experiment tested both versions of UAlbertaBot
in a real tournament setting, playing them against each of the
top 10 ranked bots from the 2017 AIIDE StarCraft AI Com-
petition for 50 rounds of round-robin play (5 rounds against
each bot on each of the 10 tournament maps). These top 10
bots were chosen for this experiment for two main reasons.
First, running all 28 bots would take an exceedingly long time,
with the 2017 competition taking nearly 3 full weeks to run to
completion. Second, there was a significant gap in win rate be-
tween the 10th and 11th place bots Steamhammer and AILien,
so we felt it was a good round number for a cut-off point.
The exact conditions and rules of the 2017 competition were
used8, using the exact same hardware that the competition was
played on, with the only difference being that the 2017 version
of UAlbertaBot was replaced with both UAB-BOSS-UG, and
then with UAB-BOSS-IM. This experiment was performed in
order to compare the performance of BOSS-IM versus BOSS-
UG under strict real-time computational constraints against
the current state-of-the-art in StarCraft AI agents. At the
time of running this experiment, these were the 10 strongest
publicly known StarCraft AI bots in the world, and since this

8http://www.starcraftaicompetition.com/rules.shtml

0 20 40 60 80 100

ZZZKBot

PurpleWave

Iron

cpac

Microwave

CherryPi

McRave

Arrakhammer

Tyr

Steamhammer

Experiment 2 Win % vs. Specific Bots

UAB-BOSS-IM
UAB-BOSS-UG

Fig. 4. Shown are win percentages for both versions of UAlbertaBot against
each specific opponent in Experiment 2. Bots are listed in order of their
placement in the 2017 AIIDE StarCraft AI Competition, from 1st place on top
to 10th place on bottom. UAB-BOSS-IM performs better than UAB-BOSS-
UG against these state-of-the-art opponents.

experiment only one bot has been developed which has been
stronger, SAIDA9 bot, which was created in 2018 by Samsung
and won the 2018 AIIDE StarCraft AI Competition.

Results for experiment 2 can be seen in Figure 3, showing
the win rate over time for each of UAB-BOSS-IM and UAB-
BOSS-UG. Results show that that UAB-BOSS-UG obtains
an overall win percentage of 27.66%, while UAB-BOSS-IM
obtains a win percentage of 37.19%, for a total win percentage
gain of 9.53%. This improvement is quite significant in a
tournament setting. For example in the 2017 AIIDE compe-
tition, 4th place and 10th place were separated by less than
7% win percentage. Win rate decreased slowly over time for
both versions due to several opponents implementing strategy
learning over time in their bots, which tends to increase their
win rate slightly vs. bots (like ours) that did not implement
any learning. Note, however, that this decrease over time
is less pronounced for UAB-BOSS-IM, perhaps due to the
more robust build-orders being less exploitable by learning
opponents.

Another interesting result can be observed in the more
detailed results in Figure 4, which shows the win percentages

9https://github.com/TeamSAIDA/SAIDA

for UAB-BOSS-IM and UAB-BOSS-UG against each other
bot in the competition. This figure lists each enemy bot in
the order they placed in the official 2017 AIIDE StarCraft AI
Competition from 1st place on top to 10th place on bottom,
which (intuitively) should correlate highly with overall bot
strength. From this figure we can see that UAB-BOSS-IM
outperforms UAB-BOSS-UG even more against higher ranked
bots. For example, if we calculate the win percentages against
only the top 5 ranked bots from the 2017 AIIDE StarCraft
AI Competition, the win rate for UAB-BOSS-UG is 14.42%,
while the win rate for UAB-BOSS-IM is 32.80%, for a gain
of 18.38% win rate.

It should be noted that even though UAB-BOSS-UG con-
tained human-coded unit goals, as well as specific strategic
responses to given scenarios (such as building invisibility
detectors when noticing invisible units), UAB-BOSS-IM still
outperformed it without these particular expert knowledge /
scripted responses. We suspect that the new BOSS-IM search
system can react more dynamically to these stronger opponents
than BOSS-UG which relies on its less flexible human-coded
rules for its unit goals, which can fall especially easy prey to
bots which learn over time.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have introduced two build-order optimization
methods — BOSS-AV and BOSS-IM — that find action
sequences maximizing the army value and the army value in-
tegral, respectively, for a given game time duration T . BOSS-
AV is motivated by the observation that maximizing army
values can be conceptually easier than minimizing makespans
for achieving certain unit count goals because it may not
be evident how to select such concrete goals depending on
the current RTS game state in the first place. Action plans
computed by BOSS-AV, however, may be prone to opponents
attacking earlier than time T because such plans tend to delay
producing army units. To mitigate this exploitability, while
still using single-agent optimization, we proposed BOSS-IM
which maximizes the integral of the army value curve up until
time T . Our experimental results indicate that STARCRAFT
bots using the newly proposed BOSS-IM search can perform
better against current world-champion StarCraft AI agents than
bots using the previous state-of-the-art unit-count goal-driven
BOSS-UG method, when everything else remains equal. Not
only does BOSS-IM perform significantly better, but it elimi-
nates the previous problem of deciding on army compositions,
by deciding which unit types to build automatically.

These promising initial results encourage us to explore
multiple possible enhancements of BOSS-IM search in future
work. For instance, refining the notion of army value to
differentiate anti-air and anti-ground weaponry may be useful,
as well as adjusting the army value definition depending on
scouting information to bias search results towards countering
enemy units. It may also be possible to combine search and
learning techniques by automatically learning effective army
value functions from human game replay files in order to
completely remove the need for any human knowledge.

REFERENCES

[1] S. Ontanón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill,
and M. Preuss, “A survey of real-time strategy game AI research
and competition in StarCraft,” TCIAIG, 2013. [Online]. Available:
http://webdocs.cs.ualberta.ca/∼cdavid/pdf/starcraft survey.pdf

[2] O. Vinyals et al., “StarCraft II: A new challenge for reinforcement
learning,” 2017. [Online]. Available: https://arxiv.org/abs/1708.04782

[3] D. Churchill and M. Buro, “Build order optimization in StarCraft,” in AI
and Interactive Digital Entertainment Conference, AIIDE (AAAI), 2011,
pp. 14–19.

[4] M. Buro and A. Kovarsky, “Concurrent action selection with shared
fluents,” in AAAI Vancouver, Canada, 2007.

[5] A. Kovarsky and M. Buro, “A first look at build-order optimization in
real-time strategy games,” in Proceedings of the GameOn Conference,
2006, pp. 18–22.

[6] H. Chan, A. Fern, S. Ray, N. Wilson, and C. Ventura, “Online planning
for resource production in real-time strategy games,” in Proceedings of
the International Conference on Automated Planning and Scheduling,
Providence, Rhode Island, 2007.

[7] ——, “Extending online planning for resource production in real-time
strategy games with search,” ICAPS Workshop on Planning in Games,
2007.

[8] A. A. Branquinho and C. R. Lopes, “Planning for resource production
in real-time strategy games based on partial order planning, search
and learning,” in Systems Man and Cybernetics (SMC), 2010 IEEE
International Conference on. IEEE, 2010, pp. 4205–4211.

[9] J. Blackford and G. Lamont, “The real-time strategy game multi-
objective build order problem,” in AIIDE, 2014.

[10] P. Garćıa-Sánchez, A. Tonda, A. M. Mora, G. Squillero, and J. J.
Merelo, “Towards automatic StarCraft strategy generation using genetic
programming,” in 2015 IEEE Conference on Computational Intelligence
and Games (CIG), Aug 2015, pp. 284–291.

[11] N. Justesen and S. Risi, “Continual online evolutionary planning for
in-game build order adaptation in StarCraft,” in Proceedings of the
Genetic and Evolutionary Computation Conference, ser. GECCO ’17.
New York, NY, USA: ACM, 2017, pp. 187–194. [Online]. Available:
http://doi.acm.org/10.1145/3071178.3071210

[12] D. Churchill, “UAlbertaBot,” https://github.com/davechurchill/
ualbertabot/, 2016. [Online]. Available: https://github.com/davechurchill/
ualbertabot/

[13] D. Churchill and M. Buro, “Portfolio greedy search and simulation for
large-scale combat in StarCraft,” in IEEE Conference on Computational
Intelligence in Games (CIG). IEEE, 2013, pp. 1–8.

