
Partial Pathfinding Using Map Abstraction and Refinement

Nathan Sturtevant and Michael Buro
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{nathanst,mburo}@cs.ualberta.ca

Abstract

Classical search algorithms such as A* or IDA* are useful
for computing optimal solutions in a single pass, which can
then be executed. But in many domains agents either do not
have the time to compute complete plans before acting, or
should not spend the time to do so, due to the dynamic na-
ture of the environment. Extensions to A* such as LRTA*
address this problem by gradually learning an exact heuristic
function, but the learning process is quite slow. In this pa-
per we introduce Partial–Refinement A* (PRA*), which can
fully interleave planning and acting through path abstraction
and refinement. We demonstrate the effectiveness of PRA*
in the domain of real–time strategy (RTS) games. In maps
taken from popular RTS games, we show that PRA* is not
only able to cleanly interleave planning and execution, but it
is also able to do so with only minimal losses of optimality.

Introduction and Related Work
Consider the problem of driving a car from Los Angeles to
New York. A human approaching this task would likely be-
gin by first answering high-level questions, such as which
states to drive through. But low-level decisions such as
which lane on the highway to drive in will not even be con-
sidered until moments before it is necessary. Furthermore,
if we take a short detour around traffic in Tulsa, we will not
have to revise any computed plans about what to do after
leaving Tusla. Similarly, if we change our final destination
in New York, we do not have to re-plan our entire route;
just the last few steps. In fact, we do not even have to con-
sider these details until we arrive in New York. This plan-
ning involves several levels of reasoning. First, it requires
an abstract model of the world, so we can reason at both low
levels (what lane to drive in) as well as high levels (what
cities to visit en route). It also involves planning and exe-
cuting partial plans or paths through the world. It would be
unreasonable to consider planning every lane change for the
entire trip before setting out. Yet, this is exactly how tradi-
tional search algorithms have approached the task, building
a complete plan before starting. In this paper, we introduce
the Path-Refinement A* (PRA*) algorithm which can build
high-level plans about the world, and progressively refine
them into low-level actions as needed. Partial-path refine-
ment means building paths in a manner that interleaves act-
ing and planning, and thus spreading cost of path compu-
tation more evenly over the path execution time. This is a

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

highly desirable property, providing robustness in the face
of a dynamic environment and minimizing the amount of re-
computation that needs to be done when the world changes.

One application we are particularly interested in is real-
time strategy (RTS) games. RTS games make up a signif-
icant portion of the computer game market; titles such as
Starcraft and Warcraft by Blizzard Entertainment have sold
millions of copies. RTS players are assisted by the computer
in tasks such as pathfinding, yet pathfinding also tends to be
one of the most criticized parts of many games, because ex-
isting pathfinding systems can easily be confused. Addition-
ally, the real-time graphics and simulation demands of RTS
games leave only a small portion of the CPU for AI tasks,
meaning that pathfinding must be extremely efficient. RTS
games can also be viewed as abstract simulations in which
robots move around and interact. Therefore, robot naviga-
tion can also benefit from pathfinding algorithms which can
interleave pathplanning and plan execution.

Related Work
A* (Hart, Nilsson, & Raphael 1968) and IDA* (Korf 1985)
have been explored thoroughly with regard to finding opti-
mal paths in a well-known and stationary environment. D*-
Lite (Koenig & Likhachev 2002) is able to do limited re-
planning if the world changes, but it can’t handle changes
like a moving target. Furthermore, these algorithms are not
necessarily well-suited for acting in dynamic environments,
because they cannot fully interleave planning and acting.
LRTA* (Korf 1990), which learns a perfect heuristic func-
tion, is more suited for this, but it can take a significant
amount of time for LRTA* to learn an accurate heuristic
function. A comparison of D*-lite and LRTA* can be found
in (Koenig 2004). LRTA* is shown to work well in envi-
ronments where there are only minor obstacles between the
start and goal, which means the heuristic is very accurate
to begin with. But, in domains where the initial heuristic
is poor, LRTA* also performs quite poorly. Thus, if we are
in a non-stationary environment, do not have a good initial-
heuristic (cannot guarantee heuristic quality is high), or we
do not have time to do full planning before starting to act,
we need something better than these algorithms.

While the ideas of abstraction and path refinement are
not new, they have not previously been developed and an-
alyzed with regard to partial solution generation. There is,
however, a wide body of work related to speeding up A*
search. (Botea, Müller, & Schaeffer 2004) does an excel-
lent job of reviewing research on pathfinding, and (Reese
& Stout 1999) also contains an overview of different met-

rics that we may want to optimize during search. Notably
absent from the overview is partial pathfinding. Similar to
our work, (Holte et al. 1996a) uses abstraction and refine-
ment in a graph representation of the problem space to speed
solution time. Abstraction and refinement can also be used
to build heuristic functions for unabstracted space (Holte et
al. 1996b). Instead of abstracting directly from a graph
representation, Hierarchical Pathfinding A* (HPA*) (Botea,
Müller, & Schaeffer 2004) overlays a map with large sec-
tors and calculates optimal paths between limited sets of
entrances and exits to the sectors. Through the process of
smoothing, high quality paths can be obtained. Beyond sim-
ple pathfinding, abstraction has been investigated in other
areas such as robotics (Fernandez. & Gonzalez 2001) and
planning (Yang, Tenenberg, & Woods 1996).

The remainder of the paper is organized as follows: we
first present the spatial abstraction technique we are using
and the partial pathfinding algorithm. Then, we show em-
pirical performance results of PRA* in various settings, and
conclude by outlining future work.

Abstractions
In order for a search algorithm that only calculates partial
solutions to be complete, it must have some higher-level in-
formation about the structure of the world. For instance, if
we try to use A* for partial planning by limiting the search
to some depth d, we are vulnerable to being trapped in a
dead-end of size d + 1, unless the terrain is pre-defined in
a way that guarantees we can avoid such traps. Instead of
relying on specific problem features, we instead rely on the
abstractability of the problem space. In pathfinding, for in-
stance, we can treat four neighboring tiles as a single ab-
stract tile located at the center of the original tiles. By build-
ing an abstraction hierarchy of the world, any problem can
be quickly solved in abstract space. If we then use the ab-
stracted solution as a guide for generating a solution in the
actual problem space, we are guaranteed to never get trapped
in local dead-ends, and to generate feasible solutions. We
will discuss the full PRA* algorithm that uses abstractions
in the next section, but first we will cover how abstractions
can be built and used.

Automatically Building Abstractions
A search problem is traditionally defined as a tuple,
{S,s,G,O,H}, where S is the set of all states, s is a start
state, G is the set of goal states or a goal test function, O is
a set of operators, and H is a heuristic function. In order to
build an abstracted space from a search problem, we need to
enhance this problem representation. A search problem can
be described as or transformed into a graph, where nodes
are states and edges are operators. An abstract graph is a
reduction of the full state graph, where each node represents
one or more states in the lower level graph, and an edge ex-
ists between two nodes if there is any operator which can
be applied to any state abstracted by the first node which
will take you into any other state abstracted by the second
node. We define an abstractable search problem as the tu-
ple {S0, s,G,O,Hk,A}. The abstractable search problem

Figure 1: Abstracting tiles into a hierarchy

is enhanced from a standard search problem in the follow-
ing ways: a state is now associated with an abstraction level,
so Sk is the set of states that has been abstracted at the k th

level. S0 must be defined as part of the problem, but all
other levels of abstraction can be built given an abstraction
function A(sk

1 ...sk
i) → sk+1

j , which takes i states at the kth

level of abstraction and maps them to a single state at the
abstraction level k + 1. Each node is only abstracted once.
Finally, the heuristic function must be enhanced to take two
states at any level of abstraction, k, and return an estimate
of their distance. Given an abstractable search problem we
can automatically build abstractions of S0 using a variety of
methods. While an abstraction function may be able to take
any arbitrary set of states and abstract them, in practice we
generally want to abstract states that are local to each other.

Abstractions for Pathfinding
For pathfinding, the world is commonly discretized into
tiles, which we then abstract based on their octile connectiv-
ity; that is their connectivity with respect to the eight imme-
diately adjacent tiles. A simple example for an empty map is
shown in Figure 1. Abstraction can be seen as the process of
reducing the resolution of the map, while maintaining con-
nectivity information in the abstraction. In an empty map,
a grid of sixteen tiles is quite similar to an abstract grid of
just four tiles, which again can be represented by a single
tile. In practice we only use the tile representation at the
bottom level of the hierarchy, and use a graph representation
at higher levels of abstraction. Instead of overlaying some
structure upon the search space — like in HPA* — we in-
stead abstract states based on local features of states. We
abstract nodes based on two patterns: cliques and orphans.
The largest clique we look for in this domain is a 4-clique.
When building static abstractions, we first iterate through
the space looking for cliques in the nodes that have yet to be
abstracted. These cliques are reduced to a single node in the
parent abstraction. By abstracting cliques we are guaranteed
that all nodes in an abstraction are able to reach any other
state in the abstract node within a single step, except or-
phaned nodes. An orphan is a node that can only be reached
by a single operator. When abstracting the graph, we just
join them into the same abstracted node as their neighbor.

We demonstrate these methods in Figure 2. In this exam-
ple we start with a graph containing twelve nodes and 18
edges. There are two cliques of (maximal) size 4, so those
are reduced into sets A and B. Connected to the clique in set
A there is also an orphan that can only be reached through
that set, so it is merged into A as well. There are single
nodes connecting sets A and B. Node D has no neigh-
bors, so it remains alone, but node C has a single orphan,
which also forms a 2-clique, so these nodes are abstracted
together. The final abstracted graph has four nodes and

A B

C

D
A B

C

D

Figure 2: Abstracting a general graph

four edges. While we do not show the process explicitly,
we could repeat the reduction twice more, first creating a
graph with two nodes and one edge, and then reducing the
graph to a single node. In our pathfinding domain, given
an abstracted node, we define the abstracted position to be
the average position of all nodes abstracted by that graph.
The heuristic distance between any two nodes is then the
octile distance between the abstract location of those nodes,√

2 · min(|∆x|, |∆y|) + | |∆x| − |∆y| |.

Abstraction Costs
Given n nodes at the bottom level of an abstraction hierar-
chy, the expected height of the hierarchy will be O(log n).
There are pathological orderings that will create a hierarchy
of height Θ(n), but they do not occur in practice. To ab-
stract a single graph g, we will visit each node in g at most
a constant number of times, assuming the graph is sparse.
So, the total time to build the hierarchy will be O(n). If our
knowledge of the world is incomplete or the world topology
is dynamic, it is possible to repair abstractions in O(log n)
time per update. A full description of these methods, how-
ever, is beyond the scope of this paper.

Pathing Through Refinement
In this section we demonstrate a simple method, QuickPath,
for finding plausible paths in the world without doing any
significant search. After building an abstraction hierarchy,
all connected nodes will be abstracted into a single node at
the highest level of abstraction. Thus, to check if any two
nodes are connected, we can simply check to see if they ever
merge into the same parent within the abstraction hierarchy.
If the base-level graph has n nodes, this will take O(log n)
time. This can be used as a quick check for pathability be-
tween two nodes, but can also be expanded for generating
full paths, which we demonstrate in Figure 3. In this fig-
ure, we wish to find a path between A and D. In practice
there will be many more nodes at each level, but we only
show the nodes relevant to this example. As a first step, we
simply traverse the hierarchy looking for a common parent
for A and D. We find this in abstraction level 2 at node
ABCD. Because AB and CD are part of the same abstract

A B C D

CDAB

ABCD

Level 1

Level 0

Level 2

Figure 3: Using abstraction to quickly refine a path

PRA*(abstractGraph, start, goal, k)
GetAbstractionHierarchy(start, goal)
s = GetStartLevel(start, goal)
empty path
for each level i=s..1
path = RefinePath(path, start[i], tail(path))
truncate path to length k

return path

RefinePath(path, start, goal)
return aStar(start, goal) subject to nodes in path

Figure 4: PRA*(k) Pseudo-Code

node and not orphans, they must have an edge between each
other at abstraction level 1. We are then faced with the gen-
eral problem of refining the path. There are two components
of a path that must be refined in order to create a path at a
lower level of abstraction, nodes and edges. To refine the
edge between AB and CD we must look at the nodes in
AB and see which of them has an edge connecting to any
node in CD. In this case, node B in AB connects to node
C in CD. Then, we must refine the portion of the path that
passes through nodes AB and CD. But, because each node
is made of cliques, this is trivial, since we are guaranteed by
our abstraction mechanism that there is an edge between A
and B, and similarly between C and D.

Function QuickPath returns a path between any two nodes
as described above. In the worst case, the total time to build
this path will be O(

∑log n

i=1 |pi|), where pi is the refined path
at level i. QuickPath will find a path between two nodes,
but the path generated could be highly suboptimal. Still,
we use this method as a stepping stone to introduce Partial-
Refinement A*, which refines this simple method to produce
higher-quality results.

Partial-Refinement A*
We show the pseudo-code for Partial-Refinement A*
(PRA*) in Figure 4. PRA* works similarly to QuickPath,
but it contains four enhancements which we describe here.
First, it uses a heuristic to guide search at any level of ab-
straction, instead of just refining the nodes on a path. Sec-
ond, it allows path refinement to occur in a corridor or swath
outside of the abstract path. Third, it does not start planning
from the top of the abstraction hierarchy. Finally, it only
does partial pathfinding at each step.

Replacing Refinement with Search
The QuickPath algorithm does not perform search like clas-
sical A*. There may be multiple ways of doing refinement
of a path, but it makes no effort to find better ways of re-
finement. Instead of generating any candidate path between
nodes as QuickPath does, we instead use a single A* search
through an abstracted level, using the abstract heuristic func-
tion Hk. We minimize the cost of search by only allowing
A* to generate nodes whose parents are part of the abstract
path we are refining. So, each abstract path defines a swath
of nodes in a lower level of abstraction, through which A*
finds an optimal path. However, finding an optimal path

through this swath does not guarantee global optimality.

Choosing Abstraction Levels
One explanation for the sub-optimality is that we are begin-
ning our pathfinding at a level that is too abstract. If we
instead begin on the finest grid, we would be able to find an
optimal path. Thus, we would like to dynamically find an
abstraction level that is neither too coarse to introduce sig-
nificant sub-optimality nor too fine to introduce significant
search costs. In the previous section we demonstrated how
traversing the parents of any two nodes will determine the
pathability between those nodes. In the worst case this op-
eration will take O(log n) time, but, if we assume that any
given node has an equal probability of being merged with
any of its neighbors in any abstraction step, then the ex-
pected level at which two nodes are merged is Θ(log |p|),
where p is the path between those nodes. So, the process
of traversing the parents of two nodes until they merge is
not only a quick check for pathability, it is also a very coarse
heuristic measure of the path length between two nodes. Ad-
ditionally, in any abstraction hierarchy there will always be
at least two nodes who are adjacent in the original problem
graph, which do not merge until the last step of abstraction.
So, we can increase the accuracy of this heuristic by measur-
ing the level in the abstraction at which two nodes are first
connected by a single edge. We currently use this heuris-
tic to choose to select the level at which we begin our ini-
tial path, as we can balance between too granular a starting
level, which leads to suboptimal results, and too fine a start-
ing level, which leads to slower performance. We opt for the
level of abstraction half-way between where two nodes are
first connected by an edge in the abstraction hierarchy, but it
is a point of future research to investigate this in more detail.

Partial Refinement
The final enhancement of PRA* over QuickPath is that in-
stead of refining the entire abstract path from beginning to
end, we instead only refine a partial segment of the abstract
path at each step. We do this by truncating the path we are
refining to a fixed length, and then searching for an optimal
path to the last node in this truncated path. We also exit as
soon as we find an optimal path to any node that is abstracted
by the goal state. Because we always have a complete path
from the start to goal state at some level of abstraction, we
can guarantee that we will eventually reach our goal state.
As an additional optimization, we can cache some of the
high-level planning that is done in partial refinement to make
the process as efficient as PRA* with full refinement. The
version of PRA* which does not do partial refinement, we
refer to as PRA*(∞). Otherwise, PRA*(k) refers to the fact
that we are refining k nodes out of each abstract path.

Experiments
In this section we present empirical performance results of
PRA* when neglecting the time it takes to build map ab-
stractions. In a future paper we will analyse the performance
of a dynamic PRA* variant applied to dynamic environ-
ments. Here, we will first demonstrate that PRA*(∞) has
similar performance properties as HPA*: it is much faster

than A* in static pathfinding setups — while its solution
quality is very close to optimal with high probability. In a
second set of experiments we will measure the PRA*(k) par-
tial pathfinding performance on the complete path problem
and when planning and execution can be interleaved.

In a first phase, we extracted maps from the popular
games Baldur’s Gate and Warcraft 3, discarding those that
were either too small or consisted of only one large con-
nected area. We then scaled up the resulting 116 maps to size
512×512 while retaining their topological structure. In a fi-
nal preprocessing step, we generated a large number of ran-
dom location pairs and saved ten optimal paths for each map
and every path bucket i between 0 and 127 (a path of length l
belongs to bucket i if and only if i = bl/4c). This procedure
generated 1160 paths in each bucket of the 128 buckets we
considered totaling 148480 paths with length between 0 and
511. Maps are represented as square tile grids with the com-
monly used octile neighborhood relation. Blocked tiles are
marked as such. At any given time during pathfinding the
moving object is located on an unmarked tile and is allowed
to proceed to one of its up to eight unmarked neighbors. We
are not allowed to cut corners diagonally, i.e. in case of three
unmarked tiles in a 2× 2 block, diagonal moves through the
center are not possible. All experiments are single-threaded
and were run on a dual-CPU Power-Mac running at 2 GHz
with 1 GB of RAM using gcc 3.3.

PRA*(∞) Complete Path Performance
The first set of experiments examines how PRA*(∞) per-
forms on the classic pathfinding problem — namely to find
a shortest path between two locations on a static map — if
one exists. We use A* as a benchmark algorithm to judge
the quality of PRA*(∞) paths and its runtime. Neither A*
nor PRA* have been fully optimized for speed. Our A* im-
plementation, however, utilizes a heap for the open list and a
look-up table for the closed list. Figures 5a) and b) show in-
teresting percentiles of the A* and PRA*(∞) runtime with
respect to the (optimal) A* path length, which we use as
a simple path complexity measure. Fig. 5a) demonstrates
that A* for increased path length eventually explores large
fractions of the search space which here is roughly of size
5122/2. The median (50% percentile) not being centered
between the 5th and 95th percentiles indicates that A*’s run-
time distribution is skewed, meaning the mean and variance
are not adequate to describe the results. PRA*’s runtime
grows more slowly with respect to the path length, which
is what was to be expected from the analyses in the previ-
ous sections. Its variance is also much smaller. We also
measured runtime in terms of expanding nodes in both algo-
rithms, which also is the number of calls to the h function.
Both measures are highly correlated. On the computer we
used for the experiments one micro second of execution time
on average corresponds to 2.2 expanded nodes. For a more
detailed runtime comparison, we have plotted percentiles for
runtime ratios based on individual paths in Fig. 5c). Again,
the result is in favour of PRA*(∞), whose gains appear to
increase approximately linearly with longer paths. However,
only looking at the runtime does not convey the entire pic-
ture because PRA* computes approximate paths. Fig. 6a)

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250 300 350 400 450 500 550

A
*

ti
m

e
(m

il
li

 s
ec

on
ds

)

A* path length

a) A* time percentiles

95%
50%
5%

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450 500 550

P
R

A
*(

in
f)

 t
im

e
(m

il
li

 s
ec

on
ds

)

A* path length

b) PRA*(inf) time percentiles

95%
50%
5%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 50 100 150 200 250 300 350 400 450 500 550

P
R

A
*(

in
f)

 s
pe

ed
-u

p
ov

er
 A

*

A* path length

c) PRA*(inf) speed-up percentiles

95%
50%
5%

Figure 5: Runtime performance of A* and PRA*(∞)

 1
 1.01
 1.02
 1.03
 1.04
 1.05
 1.06
 1.07
 1.08
 1.09
 1.1

 1.11
 1.12
 1.13
 1.14

 0 50 100 150 200 250 300 350 400 450 500 550P
R

A
*(

in
f)

 p
at

h
le

ng
th

 /
 A

*
pa

th
 l

en
gt

h

A* path length

a) PRA*(inf) path length ratio percentiles

max
99.5%

98%
95%

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18
 1.2

 1.22

 0 50 100 150 200 250 300 350 400 450 500 550P
R

A
*(

k)
 p

at
h

le
ng

th
 /

 A
*

pa
th

 l
en

gt
h

A* path length

b) 98th PRA*(k) path length ratio percentiles

k=2
k=4
k=8

k=16

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 50 100 150 200 250 300 350 400 450 500 550

to
ta

l
P

R
A

*(
k)

 t
im

e
(m

il
li

 s
ec

on
ds

)

A* path length

c) 95th percentile of total PRA*(k) time

k=2
k=4
k=8

k=16

Figure 6: PRA*(∞) and PRA*(k) path quality, total PRA*(k) runtime

shows that PRA*(∞) is very accurate with high probability.
For instance, we can see that 98% of the time the PRA*(∞)
path length is within 1% of optimal, and 95% of the time it
is better than 1.005 × optimal. Looking at the maximal ratio
values, it appears that PRA*(∞) paths more than 10% above
optimal are very rare. (Botea, Müller, & Schaeffer 2004) re-
port similar performance – maximum 10 times speed up and
less than 1% error from optimal.

PRA*(k) Complete Path Performance
In the following experiment we determined the quality of
complete paths constructed by PRA*(k) for k = 2, 4, 8, 16.
Fig. 6b) shows the 98th percentile of the path length ratio
when computing the full path with PRA*(k). The paths
are longer compared with PRA*(∞), but still short enough
to be acceptable for many purposes. The total runtime
of PRA*(k) is super-linear in the path length (Fig. 6c),
which is caused by the increasing number of planning steps
(≈C·length/k), the longer time for top-level searches, and
more levels to be searched. Increasing k reduces the to-
tal runtime considerably, but it would increase the cost of
individual planning steps and thus decrease performance if
replanning was triggered by external events such as chang-
ing the target location. The total runtime of PRA*(16) for
paths of length 508–512 is roughly equal to the PRA*(∞)
time (≤ 60 msec in 95% of the cases). The difference is that
PRA*(k) can spread this computation time over the entire
path, which we consider next.

Interleaving Path Planning and Excecution
To measure PRA*’s performance in environments which
permit simultaneous pathfinding and execution, we model

the timing conditions in RTS games. Because RTS games —
which at their core are clocked simulations — often feature a
large number of moving objects and large terrains, pathfind-
ing is currently one of the most time-consuming RTS AI
tasks. In each simulation frame, game objects can receive
instructions from players or AI modules, which then get ex-
ecuted. In the following timing model we account for the
fact that object motion and path planning can be interleaved.
Assuming a static environment, the total cost in simulation
cycles, tsim, to move a unit to a goal location has three com-
ponents: 1) the initial planning time, 2) the sum of maxima
of the planning time for the next step and the execution time
for the previous step, and 3) the time to execute the last step
in the world. To formalize this definition, ti (1 ≤ i ≤ n)
is the time used for planning move sequence i of Euclidean
length li measured in tile-widths, tf is the simulation frame
period, tm is the maximal time in a frame that can be used
for pathfinding for a single object, and s is the speed of the
object (tile-widths per second). Thus,

tsim = d t1
tm

e +

n∑

i=2

max(d ti
tm

e, d li−1

s · tf
e) + d ln

s · tf
e (1)

Note that this timing model is quite general and also applies
to “real” robot motion planning.

For the experiments we chose tf = 100 msec (i.e. 10
frames per second) which is typical for RTS games. A small
tm value forces the pathfinding system to spread path plan-
ning over multiple simulation cycles, if more time than tm is
required. This technique — which is commonly used in RTS
games in conjunction with regular A* — limits the load of
the CPU caused by pathfinding and frees it up for other time
consuming tasks such as graphics. As a baseline we com-

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 0 50 100 150 200 250 300 350 400 450 500 550

ex
ec

ut
io

n
ti

m
e

/
m

in
im

al
 e

xe
c.

 t
im

e

A* path length

a) tm = 10 msec

s-A*
s-PRA*

PRA*(2)

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0 50 100 150 200 250 300 350 400 450 500 550ex
ec

ut
io

n
ti

m
e

/
m

in
im

al
 e

xe
cu

ti
on

 t
im

e

A* path length

b) tm = 2 msec

s-A*
s-PRA*

PRA*(2)
PRA*(4)
PRA*(8)

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 50 100 150 200 250 300 350 400 450 500 550

ex
ec

ut
io

n
ti

m
e

/
m

in
im

al
 e

xe
c.

 t
im

e

A* path length

c) tm = 1 msec

s-A*
s-PRA*

PRA*(2)
PRA*(4)
PRA*(8)

PRA*(16)

Figure 7: 98th percentile curves of path execution slowdowns in clocked RTS game simulations for tm = 10, 2, and 1 msec

pare PRA*(k) to versions of A* and PRA*(∞), which we
call s-A* and s-PRA*, that do all their planning in the first
step which gets spread over multiple frames if necessary.

Unit speed s influences the total path execution time in
equation (1) directly: the faster units are, the more thinking
time contributes to tsim. The way popular RTS games are de-
signed, the choice of s = 10 tiles/sec is quite high and lead-
ing us to more conservative conclusions. In Fig. 7 the sim-
ulation timing results for s-A*, s-PRA*, and PRA*(k) with
caching are summarized in form of 98th percentile curves.
Here we consider the ratio of tsim and the minimal possible
path execution time in the clocked simulation, i.e. disregard-
ing thinking time in (1). The spread-execution variants of
A* and PRA*(∞) plan only once per path, so n is set to 1.
As seen in all graphs in Fig. 7, for short paths the initial plan-
ning step outweights the path execution time resulting in a
singularity-like relation around 0. For longer paths spread-
ing the path computation does not help s-A* or s-PRA* any-
more because the runtime of A* and PRA*(∞) is super-
linear in the path length (Fig. 5 a,b). It is also apparent that
frequent partial refinement comes at a price, especially when
the paths are long. However, choosing k = 16 results in an
excellent real-time performance for the large maps we con-
sidered. The path execution time is better than for s-A* and
s-PRA* and replanning triggered by external events will not
slow PRA*(k) down as much as s-PRA*. Even if the plan-
ning time is restricted to just 1% (1 msec/frame), long paths
generated by PRA*(16) are less than 5% away from opti-
mal in 98% of the cases. The remaining CPU time (99%)
is available for other game tasks including simultaneously
finding paths for more objects.

Conclusions and Future Work
In this article we have presented an A* variant, Path-
Refinement A*, which speeds up pathfinding both in com-
plete path generation and in partial-path generation, at the
cost of a slight decrease in path quality. This is the first time
that partial pathfinding methods have been implemented and
analyzed. Our results show that partial refinement is quite
effective at interleaving planning and acting, and thus can
free up CPU time for other tasks. Our current implemen-
tation treats all other agents in the world as static obstacles
to be avoided. Given the success of PRA*, we would like
to extend our implementation to allow cooperative behavior
between agents in the world, as well as investigating other

scenarios, such as chasing games. Other topics of interest
are establishing tight theoretical average and worst case time
and quality bounds for PRA*, improving the computation
of the start level and refinement parameter k, and applying
PRA* to other planning domains.

Acknowledgments
We thank Markus Enzenberger for valuable feedback on this
paper. Financial support was provided by NSERC and Al-
berta’s Informatics Circle of Research Excellence (iCORE).

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. J. of Game Develop. 1(1):7–28.
Fernandez., A., and Gonzalez, J. 2001. Multi-Hierarchical
Representation of Large-Scale Space. Kluwer.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cybern. 4:100–107.
Holte, R.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996a. Speeding up problem solving by abstraction:
A graph oriented approach. Artif. Intell. 85(1–2):321–361.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A.
1996b. Hierarchical A*: Searching abstraction hierarchies
efficiently. In AAAI/IAAI Vol. 1, 530–535.
Koenig, S., and Likhachev, M. 2002. Improved
fast replanning for robot navigation in unknown terrain.
http://citeseer.ist.psu.edu/koenig02improved.html.
Koenig, S. 2004. A comparison of fast search methods
for real-time situated agents. In Proceedings of the Third
International Joint Conference on Autonomous Agents and
MultiAgent Systems, 864–871. ACM.
Korf, R. 1985. Depth-first iterative-deepening: an optimal
admissible tree search. Artif. Intelligence 27(1):97–109.
Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2-3):189–211.
Reese, B., and Stout, B. 1999. Finding a pathfinder
http://citeseer.ist.psu.edu/reese99finding.html.
Yang, Q.; Tenenberg, J.; and Woods, S. 1996. On the im-
plementation and evaluation of ABTweak. Computational
Intelligence Journal 12(2):295–318.

