
Heuristic Search Applied to Abstract Combat Games

Alexander Kovarsky1 and Michael Buro2

University of Alberta, Edmonton, Alberta, Canada
{kovarsky 1,mburo 2}@cs.ualberta.ca

Abstract. Creating strong AI forces in military war simulations or RTS video
games poses many challenges including partially observable states, a possibly
large number of agents and actions, and simultaneous concurrent move execu-
tion. In this paper we consider a tactical sub-problem that needs to be addressed
on the way to strong computer generated forces: abstract combat games in which
a small number of inhomogeneous units battle with each other in simultaneous
move rounds until all members of one group are eliminated. We present and test
several adversarial heuristic search algorithms that are able to compute reasonable
actions in those scenarios using short time controls. Tournament results indicate
that a new algorithm for simultaneous move games which we call “randomized
alpha-beta search” (RAB) can be used effectively in the abstract combat applica-
tion we consider. In this application it outperforms the other algorithms we im-
plemented. We also show that RAB’s performance is correlated with the degree
of simultaneous move interdependence present in the game.

1 Introduction

Abstract combat games — also known as combat attrition scenarios in military lit-
erature — have long been a focus of military research [5]. In the area of computer
generated forces these models can be used to predict the outcome of simulated battles
and to compute actions that would for instance maximize the inflicted damage or unit
survival probability. In order to simplify the problem, states are usually abstracted. For
instance, terrain is often represented as collection of convex cells — typically squares
or hexagons — and objects as vectors that describe attack values, health or so-called
hit-points, position, size, maximum and current speed, heading, and sight-range, etc.

The purpose of this research is to design and study fast heuristic decision procedures
for abstract combat games that belong to the class of two-player simultaneous move
games with otherwise perfect information. Such algorithms have applications in popular
real-time strategy (RTS) video games — such as Warcraft (http://www.blizzard.com) —
which essentially are real-time battle simulations. For instance, incorporating abstract
combat algorithms in graphical user interfaces relieves human players from laborious
unit micro-management and lets them focus on more strategic decisions. In extreme
cases where hundreds of fighting units have to be managed or several separate bat-
tles are fought, issuing fire commands to units manually in timely fashion may not
even be possible. When delegating local fights to AI modules the tactical performance
could even improve because programs may select targets and concentrate fire faster and
more accurate than any human. Increasing the playing strength of allied or opponent

computer players in RTS games to make game playing more challenging is another
immediate application from which military combat simulators can benefit, too.

The central idea of this research is to go beyond established analytical methods —
that model warfare globally with differential equations [11] — by studying adversar-
ial heuristic search techniques in this domain. In general terms, such algorithms con-
duct look-ahead searches in (abstract) two-player state spaces by repeatedly generating
successor states, deciding where to proceed, evaluating states, and propagating those
values in the constructed search graph. Minimax-search and its enhancements, for ex-
ample, fall into this category. Often, deep search can compensate for less than perfect
domain knowledge. A good example is chess, where PC programs now have reached
World-champion-level performance by combining deep search with relatively simple
(fast) evaluation functions. Using the chess example again, it is a non-trivial task to
write an evaluation function that can statically detect and assess capture sequences. On
the other hand, look-ahead search that makes use of simple material features can find
and evaluate capture sequences quickly. Here, too, the hope is that look-ahead search
can overcome the need for accurate evaluation models — which in general are hard to
find — and that search even under real-time constraints produces high-quality actions.

Video games have been the focus of several AI research projects in recent years.
E.g. in [4] evolutionary algorithms are used to enable AI characters to develop novel
behaviours in an RTS-like combat situations. In [8] complex artificial characters for a
custom designed adventure game are developed based on the Unreal Tournament game
engine and the SOAR AI architecture. Stochastic search has been studied in this area,
too (e.g. [9]). However, to our knowledge, no previous research has applied randomized
heuristic search to two player games with simultaneous moves.

The remainder of the paper is organized as follows: first we define the class of com-
bat games we consider. Next, a number of search algorithms are presented for these
games ranging from an optimal solution based on solving linear programs to a Monte
Carlo algorithm. We then describe a new algorithm for simultaneous move games. Fi-
nally, we present and discuss experimental results and conclude the paper with sugges-
tions for future research.

2 Abstract Combat Games

In abstract combat games two players are in control of teams of units which attack
each other in simultaneous move rounds. In each turn, both players give orders to their
units which then are executed simultaneously. Games start with two groups of units and
end after a sequence of rounds when one group is eliminated. We make the following
simplifying assumptions:

– there are no hidden state variables
– all units have the ability to attack any opponent unit at any time
– units are static objects, they cannot move

In the games we consider here units have the following numerical properties:
h : Hitpoints — the defensive strength of a given unit
a : Attack value (const.) — the amount of damage a unit can inflict
c : Cool-down period (const.) — how long to wait before next attack

Team
1

Team
2

Team
2

Team
1

Team
1

Team
2

Team
2

Team
1 h=2 a=2

Unit 1

h=1 a=3

h=1 a=1

Unit 2

h=1 a=1

h=2 a=2 h=3 a=1

h=3 a=3 h=1 a=1

Unit 1 Unit 2b)

h=2 a=2 h=3 a=1

h=3 a=3 h=1 a=1

Unit 1 Unit 2 Unit 1 Unit 2

h=1 a=1

 dead

 dead

h=1 a=2

a)

Fig. 1. State transitions in abstract combat games. Arrows indicate attacks, boxes indicate de-
fensive stance. a) non-defensive scenario. b) defensive scenario. When a unit defends, its attack
value is temporarily added to its hitpoints. This decreases the damage the unit receives in case it
is attacked. If a defending unit is not attacked, its hitpoint value remains unchanged.

Each unit has one weapon with a specific attack value and cool-down period. If the
weapon has cooled down, i.e. the weapon was last fired at least c + 1 rounds ago, it
can fire again. Before attacking, units have to select their target. In the next turn they
can shoot only at that target. If a unit wants to attack another target it needs to aim.
Aiming costs one time step. When a unit gets attacked its hitpoint value is decreased
by the attackers attack value. If a unit’s hitpoint value drops below 1, it is considered
destroyed and removed from the game. A typical state transition is shown in Fig. 1a).

In the basic set-up despite actions being executed simultaneously we theorize that
the success of a player’s action does not strongly depend on what the opponent chooses
to do. I.e., announcing a move hardly hurts. This is because damage is inflicted regard-
less. To study the performance of the heuristic search algorithms we implemented in
more Rock-Paper-Scissor-like scenarios, where announcing moves is foolish, we add
a defensive action and call games with this additional move option “defensive”. The
defensive action enables the unit to use its attack value for defending rather than for
attacking. Specifically, if a unit decides to defend instead of attacking, a certain pro-
portion (possibly > 1) of its attack value is temporarily added to its hitpoints. When
this unit is attacked the attacker will only cause damage to the unit if its attack value is
bigger than the unit’s proportion of attack value used for defence. If a defending unit is
not attacked its hitpoints remain unchanged (i.e. not increased). In addition, a defending
unit can also cause damage to the attacker. There is a certain benefit to take a defensive
stance. But there is also a degree of risk because a unit taking a defensive action might
not be attacked and is therefore risking to waste its turn. A defensive game scenario is
shown in Fig. 1b).

3 Heuristic Search in Abstract Combat Games

The major challenges in the abstract combat games we just described are large branch-
ing factors, limited decision time, and simultaneous move execution. In the simplest
case — simultaneous move zero-sum — games consist of one start state and n × m

successor states which are reached after executing single simultaneous action pairs.
Here, player A has n actions to choose from and player B has m. The values of the
terminal states are given in form of a n × m payoff matrix. Optimal (mixed) strategies
for these games always exist [12] and can be computed by solving a pair of associated
linear programs. Abstract combat games can be viewed as multi-step matrix games and

as such can be solved by dynamic programming [3]. Unfortunately, this technique has
no practical relevance because state spaces — even for small scenarios — are huge.

An alternative approach is to trade solution quality for speed by considering heuris-
tic search algorithms. In the remainder of this section we first present the evaluation
function used in all heuristic algorithms we implemented. Then we will describe all
algorithms in turn.
Evaluation Functions for Abstract Combat Games. The heuristic algorithms we
describe below rely on an evaluation function that measures the goodness of a state
in view of player 1 or 2. The following function estimates the differential of the total
lifetime damage two groups of units can inflict:

n1
∑

i=1

h
(1)
i

× a
(1)
i

c
(1)
i

+ 1
−

n2
∑

i=1

h
(2)
i

× a
(2)
i

c
(2)
i

+ 1
, (1)

where unit attribute superscripts indicate the unit owner and n1, n2 denote the number
of units for player 1 and 2, respectively. Here, hitpoints are used as estimator of the life
expectancy of a unit, while attack value over cool-down plus 1 represents the average
damage a unit will deal during one time step. Evaluation function (1) is monotone in
the h and a values, takes cool-down into account, and can be computed quickly. We
used it for a while in our experiments before a serious weakness became apparent: its
inability to differentiate between hitpoint distributions. In general, it is more beneficial
for a player to have units with a uniform hitpoint distribution than having some units
with low hitpoint values and others with high hitpoint values. This is because units with
low hitpoints values are much closer to elimination. For a fixed average attack value,
evaluation function (1) only considers the sum of hitpoints. Thus, values for widely
varying hitpoint distributions — everything else being equal — could be the same. The
following function fixes this problem at the expense of introducing non-linearity and
departing from modeling the lifetime damage:

n1
∑

i=1

√

h
(1)
i

× a
(1)
i

c
(1)
i

+ 1

−

n2
∑

i=1

√

h
(2)
i

× a
(2)
i

c
(2)
i

+ 1

(2)

By applying the square root to hitpoints the evaluation function implicitly prefers more
uniform hitpoint distributions. Function (2) was used in the experiments reported in
section 5 after initial tournaments indicated that it performs better than function (1). We
have not tried to optimize the evaluation function further — for instance by introducing
parameters and optimizing them, because the focus of this work is search rather than
evaluation function construction, which is a research topic by itself.
Linear Programming (LP). We have seen that solving abstract combat games by
means of dynamic programming and linear programs is impractical. One idea to com-
pute approximate move distributions in this setting is to stop at a certain search depth
and to apply a heuristic evaluation function to the end states reached at that depth. Our
LP player searches at depth 1. I.e. it generates all moves for both players, considers all
possible move pairs, evaluates the reached states using the evaluation function (2), cre-
ates a payoff matrix from these values, and solves the linear program associated with

the player to move (see e.g. [3]). It then draws a move with respect to the computed
optimal move distribution. We limit the search depth to one because depth 2 compu-
tations take too much time in our RTS game setting. This figure may change in future
experiments when using better linear program solvers or faster hardware.
Alpha-Beta Search (AB). Minimax search and its enhancements have been proven
effective in perfect information games where two players alternate turns under moder-
ate real-time constraints (e.g. chess). The minimax search procedure traverses a search
DAG in depth-first order until a certain depth is reached. It then evaluates the result-
ing position and propagates values to the parent node according to the minimax rule,
i.e. maximizing scores in MAX nodes and minimizing scores in MIN nodes. The search
continues until the value of the root node has been established, in which case the move
leading to the best result is chosen. Alpha-beta pruning [7] is an enhancement of the the
minimax algorithm which can reduce the search time exponentially in the depth while
still computing the correct minimax values and moves. It is therefore tempting to apply
alpha-beta search to abstract combat games, even though the algorithm originally was
designed for alternating move games. The way we approximate simultaneous moves
is by postponing the execution of the first player’s action until the second player has
chosen a move. This implicitly gives away the first player’s choice, but there is hope
that this approximation can still lead to strong performance because of deeper searches
compares with other methods. There are many ways to improve the performance of
alpha-beta search. For this application we implemented iterative deepening and sorting
moves based on their 1-ply evaluations.
Monte Carlo Sampling (MC). Monte Carlo methods solve problems by executing a
large number of possibly biased random actions and examining the numerical results
such actions generate. The method is used for finding solutions to problems that are too
complex to solve analytically. In game AI research, Monte Carlo approaches have been
successfully applied to Bridge and recently to the game of Go [2]. In our approach we
play out a game until one player is eliminated. For each of the main player’s (i.e. the
player who performs the simulation) moves at the root, a series of simulations is per-
formed given the available resources. After the runs, the average scores and standard
deviations for each move at the top are computed. The move with the “best” average
score and standard deviation combination is selected by the player to be executed. Score
calculation details are presented in Section 5. In each turn the MC player randomly se-
lects one of the the available actions and then executes it. The run continues in this
fashion with both players executing their randomly selected moves, until one of the
players is eliminated. A score is calculated for the position, propagated to the top node,
and then recorded as one of the values for the selected move.
Move Selection. One way to combat large branching factors in search is to forward-
prune subtrees. In some games (e.g. backgammon [6]), limited-depth searches can pro-
duce a subsets of moves that likely contain the best moves available. We use move
selection for all our search-based methods (i.e. AB, MC, and RAB (described in the
next section). Before the start of each of the proposed methods at each level in the
tree we perform a complete depth one search for each of the successors. After that, the
top N successors are sorted in decreasing order of their scores. Then the search will
concentrate only on those top N successors. Because of the decreased branching factor

the search can go much deeper. For such a move sorting scheme to be successful, it is
important to have an accurate state evaluation function.
Delayed Move Execution. Delayed move execution is required when using algorithms
for alternating move games, such as alpha-beta, in simultaneous move games. In alter-
nating move games, the first player will change the game state by executing a move.
After that the second player will change the state by executing his move. Such a se-
quence of events does not represent the situation accurately, because the state of the
game should have remained the same when the second player decides on its move.
Therefore, in our search algorithms we delay move executions until both players have
committed to an action.

4 Randomized Alpha-Beta Search (RAB)

Our goal when designing the RAB algorithm was to overcome the major disadvan-
tage of the basic alpha-beta algorithm of not addressing possible move dependencies
in simultaneous move games. Alpha-beta is a search algorithm for alternating move
perfect information games in which all actions are observable. Therefore, players have
the advantage of seeing the previous opponent action, which when alpha-beta search
is applied to simultaneous move games results in over- or underestimating the value of
positions. To soften the effect of advance knowledge of opponent’s moves we propose
an algorithm based on alpha-beta search which randomizes the color to move in certain
nodes. Thus, in some nodes in the tree player one will have the advantage of knowing
player two’s move, while in other nodes the situation will be reversed.

The algorithm is quite simple: at even depths the color to move is randomized and
at odd depths the color to move is changed. The only exception occurs at the root of
the tree where the first move always belongs to the player performing the search and its
moves are always followed by opponent moves. A sample RAB tree is shown in Fig. 2.

Our hope is that with RAB the advantage of the second player to move will be re-
duced, because in the whole search tree both players will have equal chances of knowing
the opponent’s moves. In RTS games, however, algorithms need to perform under tight
time constraints. RAB, as opposed to AB is non-deterministic, because every run of
the algorithm is likely to produce different results. Being a sampling-based approach,
it requires multiple runs to be performed for every move that is available to the player
executing the search at the root. For every such move, the best scores will be recorded
for every run. Then, for each move the average score and the standard deviation are cal-
culated. Multiple runs are required for drawing valid conclusions about the quality of

Fig. 2. Sample RAB tree.
Black moves first at the root,
followed by White. At the
next level, the player to move
is randomly selected. This
player’s move is followed by a
move of the opponent. Black to moveWhite to move

randomize

toggle

toggle

moves. The move that is chosen for execution is determined by taking into account the
average scores and standard deviations for each considered move. The move with the
best combination of average score and standard deviation is then executed. Section 5
gives details on score calculation. We think that the score average combined with the
standard deviation for each move simulates the effect of simultaneous move execution
better than a single regular alpha-beta run. However, the main concern with RAB is the
number of runs that it will require to find a good move. Also, if there is very little ad-
vantage of knowing the opponent’s moves in a given game, it is possible that alpha-beta
search can find a good move or possibly the best move in just a single run. It is also
possible that it is more worthwhile to invest the extra resources into deeper searches
than on repeated searches. Fig. 3 shows pseudo-code of the RAB search algorithm.

RAB Implementation and Score Calculation Details. The RAB algorithm is imple-
mented using iterative deepening [10] which is often utilized in environments with
real-time constraints. It performs multiple searches starting with the lowest depth and
increases the search depth at every successive iteration. The rationale behind the tech-
nique is that lower depth searches take only a fraction of the time the next higher depth
search will take and thus not much time will be wasted. The main benefit is that at any

// compute scores for all moves
void TopLevelRAB(State state, vector<double> &moveScores, int depth) {

vector<Move> moves;
moveScores.clear();
GenerateMoves(state, moves);
for i = 1..moves.size() { // evaluate all generated moves once

newState = makeMove(state, moves[i]);
score = RAB(newState, -infinity, infinity, depth, 0);
moveScores.append(score);

}
}

// recursive randomized tree search; uses the negamax variant of alpha-beta
void RAB(State state, int alpha, int beta, int depth, int randGenerate) {

if (terminalNode(state) || depth == 0) return evaluate(state);
if (randGenerate) toMove = random() & 1; // pick 0 or 1 randomly
else toMove = opponent(state); // toggle color to move
randGenerate = 1 - randGenerate; // toggle flag
if (parentPlayerToMove(state) == currentPlayerToMove(state)) {

alpha = -beta; beta = -alpha;
}
SetToMove(state, toMove);
maxScore = -infinity;
GenerateMoves(state, moves);
for i = 1..moves.size() {

newState = MakeMove(state, moves[i]);
// nega-scout alpha-beta variant
value = - RAB(newState, -beta, -alpha, depth-1, randGenerate);
if (value > maxSscore) maxSscore = value;
if (maxSscore > alpha) alpha = maxSscore;
if (maxSscore >= beta) break;

}
if (parentPlayerToMove(state) == currentPlayerToMove(state)) return -score;
else return score;

}

Fig. 3. RAB Pseudo-code

time a reasonable solution is available which makes the search algorithm fit for real-time
applications. At each search depth RAB needs to complete several iterations in order
to gather meaningful statistics. The higher the search depth the more iterations RAB
needs to complete at that depth, because the deeper the search the higher the variability
or standard deviation of the results.

5 Experiments

A tournament environment was set up for performing the experiments and for gather-
ing statistics on the results. A tournament game is a match between two players who
battle with each other until one player is eliminated. At each state both players imple-
ment their respective algorithms to find their best move. Then both moves are executed
simultaneously, the state of the game is updated, and the game continues until one or
both players are eliminated (refer to Section 3 for an example). Given two players A
and B, a win for A(B) occurs when A(B) has unit(s) remaining while B(A) does not. A
draw occurs when both players have no units remaining. Each experiment consists of
200 games. To make the summary of experiments easier to understand and analyze, the
experimental results are presented in terms of the win ratio:

(#wins +0.5·#draws) / (#wins + #losses + #draws)
The number of wins, losses, draws, as well as the average scores achieved in each run is
recorded. To minimize the variance, symmetric starting positions are chosen. The units
in each team are generated randomly within predefined boundaries. There are three
types of units: tanks, marines, and artillery. Each type has the ranges of hitpoints, attack
values and cool-down periods as shown in Table 1.

The node count limits that are used in the experiments were selected in order to
produce acceptable real-time performance on the machines used for the experiments.
Specifically, the experiments are run on Athlon MP/XP 2400+ to 2500+ processors with
512–1024 MBs of memory. For non-defensive experiments the node limit for one move
in a game for each player when set at 200k nodes results in average game durations of
≈4.5 seconds, consisting of ≈5-6 moves for each player. For defensive experiments,
when the node limit is set at 300k nodes, each game lasts on average 9 seconds, con-
sisting of ≈6-7 moves for each player.

To calculate the score in both RAB and MC the setting of (average score – 1 ×

standard deviation) is used. This setting was determined in a preliminary set of exper-
iments and will be used in all of our experiments. For all experiments the square root
evaluation function (2) is used as it performed best in a preliminary experiment. The
empirically values for N — the number of considered moves in the move selection
function — were determined in a series of experiments as well. We chose N = 10 for
3 vs. 3 non-defensive and N = 20 for defensive scenarios. In 4 vs. 4 non-defensive and
defensive scenarios N is set to 40 and 60, respectively.

The two types of starting positions examined in all experiments are the 3 versus 3
units and 4 versus 4 units. In the 3 vs. 3 case teams consist of two marines and one tank.
In the 4 vs. 4 case, teams consist of one artillery unit, two marines, and one tank.
Performance of all Methods. The results of the 3 vs. 3 experiments shown in Table 2
and Table 3 suggest that the RAB and AB players are the best performers in two typical

Table 1. Hitpoint, attack value,
and cool-down period ranges
used in the experiments.

Attribute Tank Marine Artillery
Hitpoints 60..90 30..40 20..30

Attack value 30..45 15..25 40..60
Cool-down period 1 0 2

Table 2. Cumulative win ratios
for each algorithm obtained by
a round-robin tournament for
non-defensive and defensive 3
vs. 3 scenarios.

Algorithm Cumulative Win % Cumulative Win %
non-defensive defensive

RAB 73% 75%
AB 68% 68%
MC 64% 53%
LP 43% 53%

RAND 2% 2%

Table 3. Round-robin tourna-
ment results. Reported are win
percentages in view of the
player named in the left-hand
column for the non-defensive
and defensive 3 vs. 3 scenarios.

Players RAB AB MC LP RAND
RAB — 52%,60% 56%,72% 84%,67% 99%,99%
AB 48%,40% — 53%,67% 75%,66% 97%,99%
MC 44%,28% 47%,33% — 64%,52% 99%,98%
LP 16%,33% 25%,34% 36%,48% — 96%,97%

RAND 1%,1% 3%,1% 1%,2% 4%,3% —

scenarios, with MC coming third. The LP player’s performance is not very close to that
of the best methods, because of its limited search depth. In defensive scenarios LP’s
performance improves significantly, but still is not on par with that of either RAB or
AB. Therefore, the remaining experiments will concentrate only on RAB and AB.

Varying RAB Nodes vs. Constant AB. This experiment, shown in Fig. 4(A,B), is
designed to determine how providing RAB more resources changes its performance.
RAB is playing against the AB algorithm whose maximal node count is held constant,
while the number of nodes assigned to RAB is varied. For 3 vs. 3 defensive and non-
defensive scenarios AB is assigned 50k and 100k nodes, respectively. For both 4 vs. 4
defensive and non-defensive scenarios AB is assigned 200k. The general trend is that
as the number of RAB’s node budget increases, the quality of RAB’s moves increases.
The increase is more gradual in the case of defensive scenarios, as compared to the
non-defensive ones. In non-defensive scenarios there is less interdependence than in
the defensive scenarios, therefore reaching higher depths has more effect on the quality
of the resultant solution.

Strict Constraints Experiment. The results in Fig. 4(C,D) for both defensive and
non-defensive scenarios show that RAB performs better than AB across most of the
settings. The most surprising finding is that given a very limited number of nodes for
both defensive and non-defensive scenarios RAB outperforms AB. This shows that even
though AB can reach greater depth than RAB given the same node limit, investing into
randomization and extra runs rather than into deeper searches pays off very early for
the RAB algorithm. Another general trend observed is the gradual reduction of RAB’s
improvement over AB. The results show that as the number of nodes increased for both
algorithms, RAB reaches a ceiling in its winning percentage over AB.

Degree of Move Interdependence. The independent variable in the experiment shown
in Fig. 4(E,F) is the degree of dependence of a given scenario. This variable can be eas-
ily adjusted in our domain starting with a setting with no defensive actions, and finishing
with the setting where there is a very high potential reward for selecting defensive ac-
tions. Specifically, in a scenario with no reward for the defensive actions units are not
motivated to execute such actions since the defensive actions do not benefit them. The
exact settings for labels in Fig. 4(E,F) are as follows: “no defence”: no defensive action
used; “small defence”: 0.5 × attack value is used for defence and 0.1 to hit back at the
attacker; “medium Defence: 1.0 × attack value for defence and 0.2 to hit back at the

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

20k 50k 100k 200k 400k 600k

W
in

 R
at

io
s

fo
r

R
A

B

Number of Nodes

A) Varying RAB’s Nodes vs Constant AB (Non-Defensive Scenarios)

RAB(over AB) 3 vs 3 wins ratio
RAB(over AB) 4 vs 4 wins ratio

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

50k 100k 200k 400k 600k 800k
W

in
 R

at
io

s
fo

r
R

A
B

Number of Nodes

B) Varying RAB’s Nodes vs Constant AB (Defensive Scenarios)

RAB(over AB) 3 vs 3 wins ratio
RAB(over AB) 4 vs 4 wins ratio

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

10k 20k 50k 100k 200k 400k

W
in

 R
at

io
s

fo
r

R
A

B

Number of Nodes

C) Strict Constraints Experiment (Non-Defensive Scenarios)

RAB(over AB) 3 vs 3 win ratio
RAB(over AB) 4 vs 4 win ratio

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

30k 50k 100k 200k 400k 600k 800k 1000k

W
in

 R
at

io
 f

or
 R

A
B

Number of Nodes

D) Strict Constraints Experiment (Defensive Scenarios)

RAB(over AB) 3 vs. 3 win ratio
RAB(over AB) 4 vs. 4 win ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

No Defence Small Def. Medium Def. High Defence

W
in

 R
at

io
 f

or
 R

A
B

Number of Nodes

E) Dependence Experiment (3 vs. 3)

Win Ratio (RAB over AB)
(Wins+Losses)/Number of Games

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

No Defence Small Def. Medium Def. High Defence

W
in

 R
at

io
 f

or
 R

A
B

Number of Nodes

F) Dependence Experiment (4 vs. 4)

Win Ratio (RAB over AB)
(Wins+Losses)/Number of Games

Fig. 4. Tournament Results: (A,B), (C,D), (E,F)

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

10k 50k 100k 200k 400k 600k 800kW
in

 R
at

io
 f

or
 R

A
B

 w
he

n
st

ic
ki

ng
 to

 ta
rg

et

Number of Nodes

Sticking vs. Re-Aiming Experiment

sticking vs. re-aiming 3 vs. 3
sticking vs. re-aiming 4 vs. 4

Fig. 5. Sticking to target vs. re-aiming results.

attacker; “high Defence”: 1.3 × attack value for defence and 0.3 to hit back. The results
for both 3 vs. 3 and 4 vs. 4 situations show that as the reward for a defensive action
increases so do the win ratios for RAB over AB. This result underpins our initial hy-
pothesis that in highly interdependent scenarios the RAB will perform better. Another
correlation that can be observed in both graphs is between the win ratio of RAB and the
number of wins and losses as a percentage of the number of simulations. This is not sur-
prising, since as the move interdependence increases the success of actions increasingly
depends on what the opponent will choose to do. Therefore, in a highly defensive sce-
nario there is no single move that guarantees at least a draw for a player. The opponent
can counteract most moves taken by the player leading to a higher standard deviation
of the results.
Sticking to Target Improvement. One of the constraints that can significantly reduce
the branching factor is not allowing re-aiming. It means that if a unit has picked a
target it should keep shooting (stick) at that target. That is, from the time the unit has
picked a target until the target elimination, that unit has only one action available to it.
We would like to see whether not allowing units to re-aim could lead to a better real-
time performance. The results in Fig. 5 show a small advantage when units implement
the sticking to the target policy. Because of the reduced branching factor when no re-
aiming is allowed it is more advantageous to stick to the target when the number of
nodes is small. As the node budget increases, the performance of the method that does
not stick to its target slowly increases to over 50% in the 3 vs. 3 case. We can conclude
that sticking to a target is especially useful when there are strict real-time constraints,
however when the node limit is increased the performance of the no-sticking algorithm
improves.

6 Conclusion and Future Work

One of the goals of our research was to examine whether search-based methods can
be used effectively in real-time domains with simultaneous move execution. We have

shown that heuristic adversarial search can be successful in small-scale abstract com-
bat games with real-time constraints. Moreover, experimental evidence suggests that
non-deterministic search methods perform better than traditional minimax algorithms
in games with higher simultaneous move dependence. This result shows that search
depth is not a crucial feature when designing algorithms for simultaneous move games,
as opposed to alternating move perfect information games, where search depth strongly
correlates with the quality of the found solution.

The best overall performer in the field of algorithms we have considered was a
naive implementation of RAB which is based on the idea of combining deep alpha-
beta searches with sampling to robustly compute actions in case of simultaneous move
dependencies. This result is very promising and encourages us to look at RAB improve-
ments that make better use of gathered sample data and would allow the algorithm to
return better estimates of the current state value. Scalability to larger problem instances
should also be addressed in order to make RAB truly suitable for handling close-combat
scenarios in RTS games. Another interesting line of future research could address more
theoretical aspects of generalized abstract combat games such as their computational
complexity and how to define the degree of simultaneous move interdependence rigor-
ously. Our next step will be to incorporate our methods into an ORTS [1] client, either as
part of a stand-alone RTS game AI or as a helper module in the graphical user interface
to alleviate the burden of manually micro-managing units in RTS game combat.

Acknowledgments

Financial support was provided by the Natural Sciences and Engineering Research
Council of Canada (NSERC).

References

1. ORTS — a free software RTS game engine: http://www.cs.ualberta.ca/˜mburo/orts.
2. B. Bouzy. Associating domain-dependent knowledge and Monte Carlo approaches within a

go program. In Proc. of the Joint Conf. on Information Sciences, pages 505–508, Cary, 2003.
3. M. Buro. Solving the Oshi-Zumo game. In Proceedings of the 10. Advances in Computer

Games Conference, pages 361–366, Graz, 2003.
4. B. Fogel, T. Hays, and D. Johnson. A platform for evolving characters in competitive games.

In Proceedings of CEC2004, pages 1420–1426, 2004.
5. R. Gozel. Firepower score attrition algorithms in highly aggregated combat models. RAND,

pages 47–60, 2000.
6. T. Hauk, M. Buro, and J. Schaeffer. *-minimax performance in backgammon. In Proceedings

of the Computers and Games Conference, 2004.
7. D. Knuth and R. Moore. An analysis of alphabeta pruning. Artif. Intell., 6(4):293–326, 1975.
8. J. E. Laird and et al. A test bed for developing intelligent synthetic characters. In Proceedings

of Spring Symposium on Artificial Intelligence and Interactive Entertainment, AAAI, 2002.
9. W. Ruml. Incomplet tree search using adaptive probing. In Proceedings of the International

Joint Conference on AI, pages 235–241, 2001.
10. D. Slate and L. Atkin. Chess 4.5. Springer-Verlag, 1977.
11. J. Taylor. Lanchester models of warfare. In Operations Res. Soc. Vol 1+2, Arlington, 1983.
12. J. von Neumann. Zur Theorie der Gesellschaftsspiele. Math.Ann.100, pages 295–320, 1928.

