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Abstract—Perfect information Monte Carlo (PIMC) search
is the method of choice for constructing strong AI systems
for trick-taking card games. PIMC search evaluates moves in
imperfect information games by repeatedly sampling worlds
based on state inference and estimating move values by solving
the corresponding perfect information scenarios. PIMC search
performs well in trick-taking card games despite the fact that
it suffers from the strategy fusion problem, whereby the game’s
information set structure is ignored because moves are evaluated
opportunistically in each world. In this paper we describe
imperfect information Monte Carlo (IIMC) search, which aims
at mitigating this problem by basing move evaluation on more
realistic playout sequences rather than perfect information move
values. We show that RecPIMC — a recursive IIMC search
variant based on perfect information evaluation — performs
considerably better than PIMC search in a large class of synthetic
imperfect information games and the popular card game of Skat,
for which PIMC search is the state-of-the-art cardplay algorithm.

I. Introduction

In recent years AI research in the area of imperfect in-
formation games has flourished. For instance, in 2008 Poker
program “Polaris” defeated a group of six strong human players
in two-player limit Texas hold’em in a duplicate match setting
[1], and in 2009 “Kermit” reached expert playing strength in
Skat, a popular trick-based card game similar to Bridge [2].
The considerable progress in Poker is due to new techniques
such as counter factual regret minimization for approximating
Nash equilibrium strategies in smaller, abstract versions of
the game [3], whereas in Skat fast perfect information Monte
Carlo (PIMC) search combined with explicit state inference
and heuristic state evaluation elevated programs to the next
level.

Both approaches have distinct advantages and disadvan-
tages. For instance, solving abstracted game versions off-line
leads to fast on-line move computation because, essentially,
available moves only have to be sampled from pre-computed
probability distributions. However, finding good game abstrac-
tions that allow us to approximate move distributions in the
original game well isn’t trivial. A property of Poker is that the
set of legal moves in each game state doesn’t depend on the
cards players are holding. Therefore, we only need to consider
state abstractions (such as hand-strength bucketing) and we
don’t have to deal with move abstractions.

By contrast, in trick-based card games such as Bridge,
Spades, and Skat, legal moves are defined by the cards players
hold. Therefore, abstracting such games with the intent of
using pre-computed move probabilities is non-trivial. PIMC
search deals with this problem by sampling game states in

accordance with observed moves and private state information,
revealing game states to all players, and then evaluating moves
by using search algorithms tailored for the perfect information
setting. The obvious drawback is that this method blatantly
ignores players’ ignorance and, consequently, for example has
no concept of information gaining moves [4]. However, on the
positive side, perfect information search algorithms such as
alpha-beta search can be quite fast and, therefore, it may be
possible to compensate for PIMC’s shortcomings with regard
to imperfect information game aspects by tactical performance.

In this paper we focus on PIMC search and show how it can
be improved by using move evaluators that are based on actual
game play rather than analyzing perfect information scenarios.
We begin by formalizing PIMC search and discussing related
work. We then proceed by introducing imperfect information
Monte Carlo search and presenting performance evaluations
using a synthetic game tree model and the game of Skat.
Finally, we conclude the paper with a summary and suggestions
for future research.

II. Related Work

PIMC search is one of the most widely used algorithms
for imperfect information games. It was first proposed by
Levy [5] in the context of Contract Bridge, and successfully
implemented in Ginsberg’s Bridge program GIB [6]. PIMC
search has also been applied to other trick-taking card games
such as Skat [2], [7], Hearts, and Spades [8]. To this day, the
world’s best Bridge and Skat programs are based on PIMC
search. Given this success, the question arises why PIMC
search performs so well even though it ignores seemingly
essential imperfect information game-aspects. The first to study
this question were Frank and Basin [4], who identified two
types of problems PIMC search suffers from: strategy fusion
(i.e., cherry-picking moves in nodes belonging to the same in-
formation set), and non-local dependencies between potentially
distant nodes in the tree. Long et al. [9] present arguments why
PIMC search is very successful in games in which, during the
course of the game, more and more information is revealed
(like in trick-based card games), but doesn’t perform as well
in other imperfect information games.

Another relevant part of AI literature deals with Monte
Carlo Tree Search (MTCS) applied to imperfect information
games, in which PIMC’s top-level Monte Carlo search is
replaced by UCT [10] variants acting on information sets,
rather than game states [11], [12], [13], [14]. We will discuss
how UCT is generalized to searching over information sets in
the experimental section, where we compare it with our new
recursive imperfect information Monte Carlo search method.
Although in Skat, UCT was unable to defeat PIMC search



1 PIMC (InfoSet I , int N )
2 for each m ∈ Moves (I) do
3 let val[m] = 0
4 end
5 for each i ∈ {1..N} do
6 let x = Sample(I);
7 for each m ∈ Moves(I) do
8 let val[m] += PerfInfoValue(x,m);
9 end

10 end
11 return argmax

m

{val[m]}

Algorithm 1: PIMC search pseudo-code.

[11], in Hearts it proved to be stronger than the previous best
known computer Hearts players [12].

Lastly, Cazenave’s nested Monte Carlo search for single-
agent problems [15] is also highly relevant to this paper. One
can think of the recursive IIMC algorithm presented here
as a generalization of nested Monte Carlo search applied to
imperfect information games with more than one player.

III. PIMC Search

The PIMC search algorithm presented below returns a
move with the highest perfect information evaluation, given in-
formation set I and the number of samples N . An information
set is a set of game tree nodes (sometimes also called worlds)
the player to move in the current state of the game cannot
distinguish, assuming we represent the game in extensive form.
Function Moves returns the set of moves available to the
player to move in a given information set I . Note that all
move sets are identical across all nodes in I . Function Sample
samples a node from I according to some state inference
mechanism. This inference mechanism can take into account
the game history, as known by the player to move. Function
PerfInfoValue computes the perfect information value of
making a move — again, with respect to the current player.

The strength of PIMC hinges on the quality of the
state inference module used by Sample and the speed of
PerfInfoValue. In the best case, when only one node is
to be considered and all players share that knowledge, the
game turns into a perfect information game, and thus, PIMC
computes optimal moves. Furthermore, sampling more nodes
improves move value estimates.

The shown basic algorithm can be improved in many ways:
In a tournament setting, checking a fixed sample size N can be
replaced by an anytime algorithm that continues sampling until
a given time threshold is reached. Also, if PerfInfoValue
is fast, PIMC can easily be parallelized by assigning sampling
and node solving to different cores or computers in a network.
In the case where computing perfect information values takes
considerable time, one can resort to parallelizing this task
as well, for instance by using an efficient parallel alpha-beta
search algorithm. Finally, it seems to be wasteful to continue
evaluating moves that are likely inferior, if so implied by the
sampling history. Using importance sampling, applying UCB
[16] at the root node, or utilizing budget allocation algorithms
such as OCBA [17] may improve basic PIMC performance in
a given domain.

1 IIMC (InfoSet I , int N , Player P )

2 for each m ∈ Moves (I) do
3 let val[m] = 0
4 end
5 for each i ∈ {1..N} do
6 let x = Sample(I);
7 for each m ∈ Moves(I) do
8 let v = FinishedGameValue(x,m, P );
9 let val[m] += v;

10 end
11 end
12 return argmax

m

{val[m]}

13 FinishedGameValue (Node x, Move m, Player P )

14 let y = MakeMove(x,m);
15 while y is not a terminal node do
16 let y = MakeMove(y,ComputeMove(P, I(y)));
17 end
18 return value of y in view of the player to move in x

Algorithm 2: Imperfect Information Monte Carlo search
pseudo-code.

IV. Imperfect Information Monte Carlo Search

In general one may consider replacing PIMC’s perfect
information move evaluation with an arbitrary evaluation
function. In the imperfect information Monte Carlo (IIMC)
algorithm shown above, we pass on an additional parame-
ter: a player module used to finish playing out (imperfect
information) games. This playout occurs immediately after
sampling a node and making the particular move we wish
to evaluate. This computation is encapsulated in function
FinishedGameValue. Note that the player module can
range from random players, over rule-based systems, to quite
sophisticated systems that execute PIMC or IIMC searches
themselves. Recursive IIMC thus refers to an IIMC player
using IIMC as a playout module, with the “recursion level”
denoting the maximum recursive depth. For instance we may
define R0 as PIMC search, R1 as IIMC calling PIMC, R2 as
IIMC calling R1, etc. In even more general settings, one could
specify player modules as a collection of individual players,
which then would allow us to bias games to either exploit
observed move biases or cooperate with partners in multi-
player settings. Another important point is that IIMC suffers
less from strategy fusion compared to PIMC provided we do
not leak game state information to the player in the course of
finishing games.

The concept of running MCTS on information sets —
which collect game states the player to move can’t distinguish
— is quite similar to IIMC [11], [13]. In this setting the usual
nodes of the MCTS tree instead correspond to information
sets, and playouts involve sampling a world at the root and
then playing the MCTS move for previously observed states.
Outside of the tree a fast rule-based agent or random player
can be used to complete the game. One important difference
to IIMC lies in the fact that running MCTS on information
sets leaks game state information implicitly, for if, at the
root, we sample worlds consistent with the current player’s
view, and play out those worlds according to information set
constraints, the other players will never see actions inconsistent



with the true hand — their strategies will implicitly converge
to “knowing” it. Moreover, the zero leakage “solution” of
sampling inconsistent worlds is so detached from the real world
as to be tactically hopeless for all but small endgames. By
contrast, IIMC, at least at the top-level, does not leak game
state information because the agents’ playout policies do not
adapt across playouts. Another difference is that IIMC can use
its playout module’s inference mechanism in ComputeMove

at any node during the search (because game tree nodes imply
their game histories), whereas MCTS players we are aware of
either sample nodes only at the root or simply assume uniform
distributions for hidden state variables.

As an example of IIMC, consider an IIMC player that uses
PIMC player P as its player module. We call the resulting
player “Recursive P” or RP for short. RP has two parameters:
number N of top-level nodes it samples, and number M of
nodes it samples in the process of finishing games. For any top-
level move m and sampled node x, RP completes the game by
repeatedly calling PIMC (I(y),M), which computes a move in
information set I(y) by sampling worlds and evaluating moves
using perfect information search. Naturally, RP will be slow,
as its runtime is roughly C · N · M at the beginning of the
game, for a suitable constant C that estimates the average time
it takes to solve positions along game trajectories. However, RP
will suffer less from strategy fusion. So, it will be interesting
to see for which choices of N and M RP can surpass P
(which itself samples K nodes). Perhaps it is even possible
to show that RP surpasses P’s saturation point — the point at
which increasing the number of sampled nodes K no longer
increases P’s performance significantly. In this case RP can
benefit from hardware acceleration, but P cannot. We’ll address
these questions and more in the following sections.

V. IIMC Performance in Synthetic Trees

To investigate the asymptotic behaviour of the IIMC algo-
rithm with PIMC as the base player, we used the generative
tree model proposed by Long et al. [9]. This model defines
a family of binary two-player zero-sum synthetic game trees
parameterized by their bias, correlation, and disambiguation
(BCD). Bias and correlation are properties defined in terms
of the parents of the terminal nodes — they do not affect
the correlation/bias of higher level tree branchings directly.
Correlated leaves have the same values for their left and right
actions. Non-correlated leaves have player-to-move left/right
action values of (1,−1) or (−1, 1), chosen uniformly at ran-
dom. Bias affects only correlated leaves, and assigns left/right
values of (1, 1) with probability bias , and (−1,−1) otherwise.
Disambiguation is a global property that affects how quickly
an information set shrinks. A disambiguation value of dis = 0
results in maximum confusion, with information sets maintain-
ing their full size throughout the game, while dis = 1 results
in a perfect-information game.

We divided the BCD parameter space into a number
of triplets. For each triplet we generated several thousand
synthetic trees and computed the policies produced by all
recursion levels of IIMC (each level consumes one ply of
the game tree), with R0 = PIMC, R1 = IIMC(R0), etc. We
also refer to R1 as RecPIMC. At each information set we ex-
haustively sample all consistent worlds, assigning equal weight
to each (i.e., uniform inference). Where the playout/PIMC
evaluations are the same, we assign equal weight to each move,

otherwise the policy deterministically selects the move with
the highest evaluation. Because each recursive policy uses
the evaluations of the previous iteration, we may efficiently
compute each policy in time proportional to the game tree size.
For consistency with Long et al. [9], we chose a tree height
of 8, with 8× 8 nodes at the root (a chance node where each
player can distinguish only 8 information sets). Experiments
with tree heights of 7 and 9 showed no substantial differences.

To measure the exploitability of each R∗ policy, we com-
pute a corresponding best response player — this is simply
the expectimax strategy, given a fixed opponent strategy. To
eliminate any first-player bias, we evaluate with players in both
positions and report the sum of the scores (thus the maximum
possible exploitability is 4). Because the trees are sufficiently
small and we have each player’s policy, we compute the game
theoretic score for each tree directly, rather than sampling
playouts. In Fig. 1 we show the exploitability for R0 and R1 at
various disambiguation levels. For low-disambiguation (poker-
like) games, R1 performs notably worse than R0. The precise
reason for this is unclear, but we will discuss some possibilities.

First, consider the family of BCD trees with dis = 0 and
corr = 0 (bias is irrelevant when corr = 0). The leaf player
always has one move which wins and one which loses. Thus,
to an R0 player, the leaf player always has a winning strategy
(it “knows” the true world and can always guess correctly).
However, since all paths appear to lead to wins (losses), R0
views all moves equally, except at the leaves. At the leaves, the
R0 player chooses the move which wins most often on average
(over the nodes in the current information set).

Now consider the R1 player on the same BCD family.
Because R1 is performing playouts using R0 as a playout
module, it sees (at all nodes) that not all moves lead to wins.
Thus the R1 policy becomes biased towards certain regions of
the tree. It may be that it is simply the presence of deterministic
moves which is allowing it to be exploited. Forcing R∗ players
to select an arbitrary (but fixed) move when both actions
appear equal may shed light on the issue, since the number
of deterministic actions would be more similar.

A second reason may be that the lack of an inference
model is affecting our results. The nature of such an effect
is non-obvious, but the possibility of its existence cannot be
ignored. That said, any negative effects of using R1 seem
to disappear once disambiguation exceeds 0.3. Based on the
measurements by Long et al. [9], disambiguation in trick-
taking card games such as Hearts and Skat can be expected
to lie somewhere in the region of 0.6, with some noise due
to structural discrepancies between the generative model and
the real games. Thus we expect to see significant reductions in
exploitability for this class of games by adding a single level
of recursion to existing PIMC agents.

To gain a fuller understanding of what each level of
recursion provides, Fig. 2 shows the pairwise R∗ performance,
and the exploitability of each player. The largest drop in ex-
ploitability comes from the first level of recursion, with minor
improvements occurring until R5. This is promising, since
going beyond R1 or R2 with current commodity hardware
seems unlikely. There are clear signs that R1 is exploiting R0,
perhaps due to a good implicit opponent model, but as it is
less exploitable itself, this seems a very fair tradeoff.
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resembling Hearts. Scores are with respect to the column
player.

VI. IIMC Performance in Skat

In this section we conduct several experiments with the
purpose of measuring the playing strength of PIMC-/IIMC-
based players in a real game, under various world-sampling
parameter settings. We start by giving a short introduction to
the game of Skat — the application area we chose. We then
discuss the Skat AI systems we used in our experiments, de-
scribe the experimental setup, and finally present and interpret
the tournament results we obtained.

A. Skat

The following brief overview of Skat is based on the
description given in [2]. We have omitted many of Skat’s more
detailed rules from this summary. For an in-depth description,
we refer the reader to www.pagat.com/schafk/skat.html.

Skat is a popular trick-taking card game for three players. It
is played by more than 40,000 players worldwide organized in
the International Skat Players Association (www.ispaworld.org).
Skat uses a short 32-card playing deck, which is similar to
the standard 52-card deck, but without ranks 2 through 6. A
hand begins with dealing 10 cards to each of the players, and
the remaining two cards (the Skat) dealt face-down. Playing
the hand consists of two phases: bidding and cardplay. In
the bidding phase, players compete to become the soloist, a
position analogous to the declarer in Bridge. Unlike Bridge,
there are no permanent alliances of players between hands,
but the two players who lose the bidding will become partners
for the remainder of the current hand. The soloist will then
usually pick up the Skat and discard any two cards face-down
back to the table. The soloist then announces the game type,
which will determine the trump suit and how many points the
soloist will earn if she wins the game. There is one game type
for each of the four suits (♦♥♠♣), in which the named suit
and the four jacks form the trump suit. These four types are
referred to as suit games. Other game types include grand, in
which only the four jacks are trump, and null, in which there is
no trump and the soloist attempts to lose every trick. Cardplay
begins after the soloist’s game announcement, and consists of
10 tricks, which are played in a manner similar to Bridge and
other trick-taking card games. The soloist’s objective is to take
61 or more of the 120 available card points.

From an AI perspective, Skat has many challenging as-
pects. In the bidding phase it constitutes a full-fledged three-
player game that turns into a one-versus-two team game in the
cardplay phase, in which coordination among the defenders is
essential. Moreover, Skat is not even a zero-sum game, which
complicates computing Nash equilibrium strategy profiles even
further. Unlike many other popular card games, Skat contains
hidden information not only from chance moves, but also from
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Fig. 1: Exploitability of PIMC (R0) and RecPIMC (R1) on synthetic trees with varying levels of disambiguation.



player moves in form of the soloist’s two-card discard. Lastly,
as with many imperfect information games, there is a need for
players to infer state properties, which creates opportunities
for signalling and information sharing that would not exist in
a two-player game.

B. Skat AI Systems

Skat program Kermit has reached expert playing strength
in 2008 [2] by combining fast PIMC search with card inference
and heuristic state evaluation whose parameters were fitted us-
ing millions of Skat games played by human players. Kermit’s
card inference is based on tracking void suits and learned
histograms for important hand features such as suit length
and high-card distributions given players’ maximum bids. This
inference module is used to sample information set nodes
which are then passed on to a fast perfect information solver.
To speed up solving, pre-computed trick-6 and trick-7 endgame
tables (partial and full) are used, as well as ProbCut forward
pruning, payoff-similarity, and a fastest-cut-first heuristic [18],
[19]. With these improvements Kermit’s suit game solver is
capable of computing exact cardpoint scores for all legal moves
at a rate of approximately 68 worlds per second (at the start of
the cardplay phase — 30 cards to play) on a single Intel i7 core
running at 4 GHz. With forward pruning this number increases
to 237 all-move approximate evaluations per second (K exact
evaluations are playing-strength equivalent to K approximate
evaluations).

The second Skat AI system we use in our experiments
is XSkat. XSkat is a free software Skat program written
by Gunter Gerhardt (www.xskat.de). It is essentially a rule-
based system that does not perform search at all and plays
very quickly, which makes it well suited for our recursive
PIMC search framework. The third and last Skat program we
consider here is Bernie, which runs the UCT MTCS algorithm
on information sets, choosing consistent worlds uniformly at
random and using XSkat as playout module [11].

C. Experimental Setup

We measured the cardplay strength of the different players
using a common set of 18,962 games produced by 3 Kermits
bidding, discarding, and declaring. There were initially 20,000
deals, but some led to all players passing during bidding.
These passed games are not included in the scores presented.
All games were scored using the widely used Fabian-Seeger
tournament scoring method.

When sampling consistent worlds from an information set,
Kermit’s inference module takes the bidding history and game
declaration (but not cardplay) into account to bias worlds. Our
recursive players use this inference module when sampling
worlds at the top level.

Cardplay matches were run on heterogeneous hardware,
with differences in speed not affecting our results. When we list
timing information it is with respect to an Intel i7 core running
at 4 GHz. In the interest of speed we reuse a player’s move
selections across matches when encountering a previously seen
information set. Correctness is not affected, as inference does
not consider the names of the other players. Moreover, we
expect that, by correlating games in this manner, we increase
the statistical significance when varying one player.

TABLE I: Recursive XSkat (RXSkat, with and without world
inference) versus UCT on information sets (Bernie). RXSkat
samples 160 worlds, while Bernie uses 1,600 playouts. The
confidence interval is two standard deviations. The results
indicate that RXSkat is considerably stronger than Bernie.

Soloist Defenders Soloist Score

Bernie RXSkatinfer=0 61.34± 1.30

RXSkatinfer=0 Bernie 74.14± 1.12

Bernie RXSkatinfer=1 53.99± 1.97

RXSkatinfer=1 Bernie 74.37± 1.58

D. Information Set UCT vs. RecPIMC

In this subsection we compare the playing strengths of
information set UCT player Bernie and IIMC player RXSkat
which both use the same fast player module — XSkat.

Our recursive XSkat agent (RXSkat) samples consistent
worlds (either with or without Kermit world inference), and
uses XSkat completions to evaluate the effect of playing each
possible move. We gave Bernie a budget of 1600 playouts and
RXSkat a budget of 160 worlds (with up to 10 legal moves in
each world). Thus, Bernie always uses at least as many XSkat
playouts, although starting from varying depths. RXSkat is on
the order of 35 times faster than Bernie, although presumably
the UCT implementation could be improved. XSkat is fast
enough that playing entire hands with three RXSkat players
takes on the order of 1 second, using one CPU core.

Bernie’s lack of informed world inference puts it at a dis-
advantage compared to RXSkat which uses Kermit’s inference
module — especially considering that the model of the bidding
matches the actual process used for generating hands. Thus, we
include results when RXSkat’s inference module is disabled
and replaced with uniform random as well.

To examine the difference between Bernie and RXSkat we
use pair games, where copies of both agents take the roles of
soloist and defender, playing each deal from both perspectives.
Given Skat’s three player nature, it is non-trivial to extrapolate
tournament scores from pair matches.

Assuming equivalent bidding, we expect a single player to
take the role of soloist one third of the time, or 12 hands in a
36-hand tournament list. Thus, an increase of 10 tournament
points as soloist corresponds to 120 list points. However,
stronger soloist play also has the effect of decreasing the
number of hands successfully defended, effectively reducing
the expected score of the other players.

We show in Table I the expected declarer points for
each matchup. Not shown is the change in expected defender
tournament points, which goes from 7.05 to 4.81 in favour of
RXSkatinfer=0 versus Bernie. Over 24 hands (as defender), this
corresponds to RXSkat gaining 53.76 list points from defender
wins alone. Combined with an expected gain of 12.8 × 12 =
153.6 declarer points, RXSkat can acquire over 200 points
more than Bernie in a list, due to improved cardplay. A 200
point difference in a 36-deal list is roughly what separates
World Championship calibre players from average club players.
Recursive XSkat is therefore considerably stronger than Bernie,
which is based on information set UCT.
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Fig. 4: Recursive Kermit with varying numbers of first- and second-level worlds vs. Kermit using 160 worlds. Soloist scores are
shown, relative to a baseline Kermit vs. Kermit score of 55.19. One standard deviation is about 0.5 points for all entries. The
same 18,962 games were used for each data point. The (1600,10) entries indicate that Recursive Kermit is considerably stronger
than PIMC-based Kermit at its saturation point. Lower scores are better when acting as a defender.

E. RecPIMC vs. PIMC

As seen in Fig. 3, increasing the number of worlds sampled
by PIMC player Kermit beyond 160 does not significantly
improve playing strength with respect to either other Kermits
nor a perfect-information player (which cheats by observing
the true world).

To overcome this plateau, we can observe in Fig. 4 the
effects of applying RecPIMC (a.k.a. R1) with Kermit playout
modules. Playing against Kermit, both as soloist and defender,
recursive Kermit achieves significantly stronger performance.
For instance, RK160,10 with 160 level-1 worlds, and 10 level-2
worlds gets about 7 points more per game than Kermit, when
playing as soloist, which roughly corresponds to an 80 point
gain in a list — a substantial performance increase, given that
Kermit at the PIMC saturation point is currently the strongest
Skat program playing at human expert level [2].

We estimate that this playing strength increase makes
RK160,10 competitive with the strongest human players, but

further experiments have to be conducted with other opponents
to see exactly how much of the performance gain can be
attributed to having a good opponent model. Before arranging
human-machine matches, which need to consist of hundreds
of games to generate statistically significant results, we have
to create a distributed version of RK160,10 to offset its roughly
8-fold slowdown compared to Kermit — a PIMC-based player
considering 160 worlds. Running RK160,10 on 32 Intel x86
cores will suffice to let it play under tournament conditions
(≈ 3 seconds per move on average). As indicated by the
(1600,10) entries in Fig. 4, increasing the hardware speed by
another factor of 10 leads to an additional playing strength
gain of roughly 2 points per game versus Kermit. This is
exciting, because unlike PIMC-based Kermit, which doesn’t
benefit from further hardware acceleration, we anticipate being
able to run RK1600,10 under tournament conditions in the near
future. As RK160,10 is almost suitable for real-time usage, we
will use it when discussing recursive Kermit unless otherwise
stated.
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mistakes. The confidence intervals indicate two standard deviations. The declarer sits in front of defender 1.

F. Implicit Opponent Modelling Effects

We can see in Fig. 5 evidence that a non-trivial portion of
RXSkat’s strength derives from accurately modelling its op-
ponents. Observe that RX320 as soloist performs substantially
better than Kermit, but only when XSkat is the defender. In
the presence of stronger defense, the situation reverses, with
Kermit outperforming RXSkat. However, there is a general
trend that RXSkat is stronger than XSkat, for sufficiently many
top-level worlds. As evidence that the gains of RK are not all
due to modelling we present data (not plotted) for RK160,10

playing against two XSkat defenders: whereas Kermit and
Perfect had declarer scores of 80.7 and 80.9 respectively, RK
had a score of 83.8. Since Kermit is a poor model for XSkat,
we believe that the gains against XSkat were due to increased

imperfect information performance, rather than exploiting a
good opponent model. This effect is also visible in Fig. 5:
against two K160 defenders, RXSkat with a small number
of worlds is weaker than XSkat, but then catches up and
eventually outperforms XSkat when using 80 worlds or more.
When defending against K160, all considered RXSkat versions
are stronger than XSkat.

G. Perfect Information Post Mortem Analysis

Fig. 6 shows the perfect information post mortem analysis
(PIPMA, [20]) error rates for Kermit vs. Recursive Kermit
tournaments. Errors are defined as moves that go from a
winning open-handed position to a losing one. Positions where
no errors are possible do not affect the error rates. A general



trend of making fewer perfect information mistakes towards
the end of the game is clearly visible. What is interesting is
that defenders’ error rates are higher when recursive Kermit
is the soloist. This indicates that RecPIMC based players may
be able to increase confusion on the defender side. Another
interesting observation is that although recursive Kermit seems
to have higher error rates during the first half of the game,
it is still winning against Kermit overall. Whether this is an
artifact of PIPMA or indicating that recursive Kermit is trading
“optimality” for creating confusion will be the subject of future
work.

VII. Conclusion and Future Work

In this paper we have introduced imperfect information
Monte Carlo search which can combine the tactical strength of
perfect information move evaluation with superior modelling
of imperfect information aspects. As a result IIMC search
players are less prone to strategy fusion effects, compared
to PIMC search, and they are also capable of increasing
opponents’ confusion by accurately anticipating their reaction
to played moves. IIMC also appears to significantly outperform
information set UCT on the domains we examined.

The results we obtained for RecPIMC, a IIMC variant using
perfect information playouts, on synthetic games suggest that
its performance is correlated with the game’s disambiguation
factor: the more information is revealed in course of the
game, the better RecPIMC performs compared to PIMC. This
corresponds to a broad class of games, notably trick-based card
games, where we expect RecPIMC to perform well.

The results of the extensive tests we conducted suggest
that in our domain — computer Skat — the playing strength
gain achieved by using RecPIMC search can be substantial
and that it in fact surpasses the strength of regular PIMC
search at its saturation point. This is good news for future
developments because with faster multi-core processors on the
horizon, RecPIMC in Skat will likely become fast enough to
defeat PIMC based players under tournament conditions within
a few years time.

RecPIMC search has the potential to push the state-of-the-
art in trick-based card game AI even further. For example,
one can imagine that playing better in Skat’s cardplay phase
can be compounded with more aggressive bidding to obtain
even higher scores, because stronger card players can get away
with weaker hands more often. Also, RecPIMC search opens
the door to actively deceiving opponents and cooperating with
partners beyond what simple state inference can accomplish,
simply by gauging the merit of every move in an imperfect
information setting. Lastly, according to Fig. 6, non-recursive
Kermit has a lower PIPMA error rate than recursive Kermit in
the early game. This suggests the creation of a hybrid player
that uses recursive evaluations only in the late game. However,
the PIPMA rate is only a proxy for measuring how exploitable
an agent is by a true best-response player — one that is
constrained by imperfect information. It is possible that by
playing “losing” moves, recursive Kermit is gaining important
information about the hidden distribution, and/or “confusing”
the defenders by directing play to positions where they are
likely to make mistakes.

We have shown that recursive Kermit is significantly
stronger than Kermit against a range of opponents, but it

remains to be seen how well this technique generalizes to other
domains where PIMC search performs well, such as Hearts or
Bridge. The promising results we obtained for synthetic games
with high disambiguation factors make us confident that this
will indeed be the case.
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