On the Complexity of Two-Player Attrition Games Played on Graphs

Abstract

The attrition game considered in this study is a graph based
strategic game which is a movement-prohibited analogue of
small-scale combat situations that arise frequently in popular
real-time strategy video games. We present proofs that the attri-
tion game, under a variety of assumptions, is a computationally
hard problem in general. We also analyze the Invgnit case,
for which we derive optimal target-orderings that can be com-
puted in polynomial time and used as a core for heuristics for
the general case. Finally, we present small problem instances#
that require randomizing moves — a fact that at first glance
seems counter-intuitive.

Introduction

The work on the attrition game we present in this paper wdg
motivated by creating entries for a real-time strategy (RTS
game programming competition. RTS games are fast-pachy
video games in which players create armies that fight ov¢i
resources scattered on the terrain with the ultimate goal [
destroying all enemy units and structures. In these popular
games, units regularly combat others. An example is showRigure 1: A typical RTS game combat scene (StarCYa®).
in Fig. 1. Good RTS game players are able to move dozens of

units into advantageous positions quickly, and coordinate ayjor 1983). Applications of such models include predict-
attacks effectively. Handling this aspect of RTS games isell i winners and estimating inflicted damage in battle simula
crucial to winning, but also tiresome. Itis therefore natio  ions. In commercial RTS video games and recent RTS game
ask how Al modules can be constructed to which time criticaj competitions (Burcet al. 2006) small-scale combat is usu-
tasks such as unit targeting can be delegated, so that humgy e addressed by scripting simple behaviors such askatta
players have more time to focus on more strategic decisiong, g the closest or the weakest target in range. The advantage
_Inthis paper we establish the theoretical foundation &f thisf this approach is fast execution speed and focusing fire im-
line of research by defining simplified versions of the RTSyjicitely. As we will see later, optimal target ordering @eyls
game combat subgame and establishing the computatiolg) the attack value—hit point ratio. In artificial intelliee re-
complexity of solving such games. Our results show thalearch, attrition games have been studied in the settinggsf p
likely no polynomial time algorithms for the general prable 5 RTS video games. For instance, (Kovarsky & Buro 2005)
exist and that in general one has to consider mixed strategie,nq (Balla & Fern 2009) apply heuristic search methods such
We start by d|scussm.g related work and def[nlng t.he clasg alpha-beta, Monte Carlo, and UCT search to small RTS
of attrition games considered here. We then investigate t'g"éme combat scenarios. These methods attempt to produce
basic "1 vs. n” case in some detail before going on to provgnsroyimate solutions, given that the state and actionespac
that solving attrition games is hard in general. After this W gyen for small problems, can be huge, and the available time
determine the computational complexity of some game varyr making tactical decisions in RTS games is usually short.

ants and present small game scenarios that show that mixiRg far as we know, our paper is the first to address theoretical
strategies is sometimes required. We conclude the paper Qé’pects of discrete attrition games.

discussing future research directions in this area. Analysing the computational complexity of games has a
long history (Eppstein 2010). For our proofs we utilize
Related Work known hardness results for the 0-1 knapsack and the quan-

Games of attrition have been studied in military researctified Boolean formula problems whose proofs can be found
in which the main focus has been on modelling warfaren computational complexity text books (e.g. (Arora & Barak
globally by means of differential equations (Gozel 20002009)).



Attrition Games Played on Graphs Proof. a) Fix an arbitrary ordering in which the black targets

The attrition game (AG) we consider in this paper is a graplre being destroyed. Without loss of generality our follogvi
based simultaneous move game in which two players, blate€ of subscripts will refer to a unit's position within ttus
and white, attempt to destroy each other’s nodes. A player §€ring, rather than the initial labelling. We first note titat
said to win if he destroys all opposing nodes while preservinis Sufficient for white to stick to targets, i.e. to attackgié
at least one of his nodes. All nodes have two integer ategut Units without focus change until they are destroyed. To see
health and attack power, denoted by a aira). Each node this, conS|der timé; at which unit; is klllepl inagiven attack
may have distinct health and attack values. The nodes ai@duence fof = 1.n andko = 0. As uniti is destroyed at
arranged in a directed graph in which an edge exists from no§g1€ Stepk;, there is no need to target it any longer. Also,
z to nodey if and only if nodez may attack node. !f between time stepk_i__l and k; a target other 'ghan unit

In the discrete case the game proceeds in a series of rouni§sattacked, it is beneficial for white to attack targétstead.
such that in every round each node may select at most one dpis swap does not influendg for j > i andk; is decreased,
posing node to attack. Attacks are then made simultaneousiyhich lowers the total sustained damage. Iterating thipswa
with the health of a node being decreased by the sum of all k"9 procedure for all results in an attack sequence in which
attacks made against it that round. After all attacks haea beunits are targeted in turn until they are destroyed. Theeefo
computed, nodes which have a health value less than or equé can assumé; = >, [h;/ao|, where[h;/ao] is the
to 0 are removed. time it takes white to destroy unjt and concentrate on opti-

In the continuous case units attack constantly and are imizing target orderings.
mediately removed when their health reaches 0. Also, unitsLetd; = a; - k; be the damage dealt by uribver its life-
are effectively permitted to divide their attack power (¢qg time, given the target ordering. Now consider swapping two
tal damage dealt per second) amongst their legal targés, usadjacent units within the target ordering, say, upigsnd; + 1.
any non-negative weights whose sum totals 1. Let &} andd; be the values resulting from that swap.

The payoff structure ranges from assigniag, 0, +1 to ter- Note thatd; = d; for unitsi ¢ {j,j + 1}. Fork = k;_;
minal nodes depending on whose units have been completélyith k, := 0) and¢; = [h;/ao]| we have:
eliminated, over accumulating rewards for killing indiual ,
units, to assigning payoffs non-linearly depending ontrac 4 = a;(k +1;) dy = a;j(k+tj41+1t5)
position of the standing units. L — . _ _ g .

Action sets seen in popular RTS video games are oftend]Jrl a1kt + i) i1 = @k F 1)
much more complex. For instance, weapons may have co@iRd elementary arithmetic yields:
down periods, units may be repaired, or action effects may be ditdis <d. +d iff
nullified by opponents’ actions. In addition, in RTS games 3L =0T R
units are free to move into or out of attack range, whereas our ajr1t; <ajtjpq  iff
model assumes attack graphs to be static. However, as we will Aj+1 _ 4
see shortly, the basic setting we consider here alreadyg tead H =0
complex decision problems. ’ ’

which gives the desired result.
1 vs.n Units

Consider the case of one white unit versuslack units, with
all units able to attack all opponent units. The strategy f
the black player is obvious — direct all attack power toward . 4 : g
the lone white target. Depending on the specific winning cor]gwae;g;ggagfgEﬁ;gfggﬁ;&'g;gﬁg ;)nﬁ '; (jezss,t;oéegéeB%:t the
dition or scoring function we choose to impose on the sce: ! . . L :
nario, there mag be several (or an infinite nEmber) of equiv%‘-UStaIned t_otal damage is not |ncreased by sticking toesmgl
lent s,trategies for the white player. Most reasonable tivgEs a.rgets until thgy are destroyed.. The final result of apglyin
are satisfied by having the white player minimize the amourifis Procedure is a sequence of time poits= 3;_, h;/ao,

of damage taken by its unit. As the following results shovg th ¢ = 0..n at which uniti has been destroyed (if> 0) andthe
can be accomplished by an easy-to-compute target orderin%ﬁext target will be chosen (if < n). Settingt; = h;/ao and

Theorem 1. Leth; anda; be the health and attack power of ollowing the same steps shown above proves the claim.

the black units, fori = 1..n, andag the attack power of the There is room to generalize these results so that they Hirect
lone white unit. Then apply to real-time strategy video games in which attacks usu
a) in the discrete case, in which units fire in rounds and oni@!!y Proceed in rounds and attack values are independent and

one target can be selected at any given time, to minHniformly distributed:

mize white’s total sustained damage it is sufficient to ordefheorem 2. Let h; be the health and; the expected attack

its targets by decreasing value of/[h;/ag] and never power of the black units, far= 1..n, andp(x) the probability

change targets until they have been destroyed. of the lone white unit inflicting damage Then to minimize
b) Similarly, in the continuous case, in which units fire conwhite’s expected damage it is sufficient to order targetsedy d

tinuously and are able to distribute their attacks over mulcreasing value of;;/t; and never change targets until they

tiple targets, to minimize white’s total sustained damaggave been destroyed. Hetgjs the expected lifetime of uriit

it is sufficient to order its targets by decreasing value ofvhich only depends omandh;.

a;/h; and focus exclusively on single targets until they ar@roof sketch due to space limitatiotve follow the same proof

destroyed. steps as before, now using= E(¢ : unit j dies after exactly

b) In the continuous case white selects a series of time point
hen new sets of targets together with the corresponding at-
O\ge/lck value distributions are chosen. As before, we fix a targe



t steps when attacked) and the fact that the expected lifetimpayoff matrix the standard linear programming formulation
damage unij deals is the product of its expected attack powetan be used to determine the minimax value in each state.
and its expected life timet; only depends op andh; and  Thus, the total runtime of this ad-hoc method is polynomial
can either be determined analyticallypifhas a simple form, inthe game tree size, which by itself can potentially be supe
or estimated using simulation. O  exponential in the input size.

The following results establish that minimax value compu-

The above results can be used to decide whether the Whjlgi, "¢ hasic attrition games in general is computatigna

unit can survive by sorting the targets according to their o4 "2 the proof of part b) describes a faster way of com-
health over (expected) survival time ratios and then comgutdoutin’g the minimax value:
: :

the damage inflicted on the white unit. If this value meets
exceeds white’s health, the unit dies. Otherwise, it sesiv ~ Theorem 4.

Ifthe white unitis unable to survive we shall concentrate og) The decision problem of determining the existence of pure
minimizing the long-term ability of the black units to inflic ~ winning (i.e. minimax value 1) strategies for white (BAG-
damage (say in the case in which another possibly identical \v|N) is PSPACE-hard, and

singleton white unit will arrive after the current batt_lél)h|s b) BAG-WINe EXPTIME
can be modelled by a non-negative reward for white for de- ) j ) _
stroying each of, black units. Clearly if the singleton unit can As an immediate consequence we obtain the following com-
destroy all opposition the maximum profit may be obtained. Iplexity result for general minimax value computations:

the white unit cannot do this then it must select a subset thgbrollary 5. The problem of deciding whether the minimax
it can destroy, so as to maximize the reward. Once a subsgflue for white in a given basic attrition game instanceis
is selected the order in which to destroy those units (assuf-pSPACE-hard.

ing they can all be destroyed) is well-defined by our previou
argument. We can show that this problem is hard in generaI.BrOOf' Setv = 1 and apply Theorem 4 a). H

Theorem 3. Given a discrete AG scenario withblack units  Proof of Theorema) Our plan is to reduce the Quantified
with healthh;, attacka;, and kill rewardr; > 0 for white, and Boolean Formula (QBF) problem, which is known to be
a single white unit with health, and attackay, itis NP-hard PSPACE-complete (Arora & Barak 2009), to BAG-WIN. First
for white to decide what the reward-maximal target orderingve define a small delaying widget shown in Fig. 2. This wid-
is, in case white does not survive. get forces some white node or a set of nodes (not shown), to

deal at least points of damage to node within the first¢

Proof. We show the result by the following reduction to a 0-1., s | this does not happen then an isolated black node
knapsack problem. Intuitively, we will create a collectioh 3) will remain, preventing white from winning. For our pur-

R:aCk umt(? Wt'th m|dn|(rjnal atta;:k fgfsuﬂr:hat Lhte ordi,r |r|!fwh|c oses the white node being forced to attack will have anlattac
ey are destroyed does not affect the white unit's life}im ower of one. Thus, the white node will not be able to attack

each representing a good to be placed in the knapsack, p other nodes for the firstrounds without white losing the

one indestructible black unit to enforce the budget. Speci bame

cally, given a 0-1 Knapsack instance: Next we present two widgets which we will use in our QBF
n n reduction. These widgets allow the “choosing” player to de-

maximizez pjx; Subject toz w;x; <c termine, out of three nodes, which one will survive. Moraove

J=1 J=1 this choice may be made at any time up to a given raundth

2 e{0,1}, j=1,....n no penalty for delaying the choice until that round (i.e., no

J T B information about the choosing player’s strategy is reseal
we construct black unitgw,;,0,p;) for j = 1,...,n and before the choice is made). In the figures depicting both wid-

(0, 1,0), where the elements in the triple are health, attacgets it may be the case that the white nodes have outgoing
power, and the opposing player's reward for destroying thedges which are not shown (specifically from those labetled
unit respectively. The white unit i&, 1). The equivalence and/or—z, but there are no omitted incoming edges to any of
between the two problems is straightforward. 0O  thenodes.

The construction of units with zero attack power in the prooExistential Quantifier Widget. To emulate an existential
may be somewhat unsatisfying. Note, however, that these agantifier we create the widget shown in Fig. 3. The previ-
ros may be replaced with an appropriately small epsilon aralisly defined delaying widget is depicted as a box, with the

then rescaled to integer values. delaying time shown in brackets. A more compact existential
quantifier widget exists, but this version is perhaps maerin
Solving Basic Attrition Games esting in that it lets us make the entire QBF reduction attack

In this section we consider discrete time and attack attriti graph acyclic.

games whose payoffs are limited+td , 0, and+1 (loss, draw,
win) depending on which player is still alive at the end. We
call such games “basic attrition games” and denote their set
by BAG. Computing the minimax value of attrition games
is straight-forward, but slow (Kovarsky & Buro 2005): as 2-
player zero-sum games with simultaneous moves but no statigure 2: A delaying widget. A white node (not shown) must
component hidden from either player, each state consitutdealt points of damage within the firgtrounds. If the in-

a matrix game whose payoff matrix is populated recursivelgoming node has attack power 1, then this node cannot attack
with the minimax values of the successor states. Given &sewhere until round+ 1, lest node 3 survive.

t,1 t+1,1 t42.1
(t.1) <>@> ( )




in which they appear.

The reduction proceeds as follows. For each QBF ex-
istential/universal quantifier, create a correspondingter-
tial/universal attrition widget, shown in Figs. 3 and 4 resp
tively, where “¢” in the widget corresponds to the particular
variable governed by that quantifier. The valuei of each
widget should be equal to the position (from left to right) of
the respective quantifier, starting at 1. In this way a player
may delay choosing within a particular widget until the adwoi
of the previous widget/quantifier is known. Making a choice
garly is never more beneficial than waiting until step

In this manner, white nodes now exist corresponding to
each QBF variable and its negation. Now create one black
node for each QBF clause, with incoming edges from all white
nodes whose label occurs in the clause. In the case/f”
nodes, treat the node as having batland —z labels. The
clause nodes have no outgoing edges, so their attack power
is arbitrary (say 1), but set their health to some large num-
ber such that it is impossible to kill them before the quaentifi
widgets are stable. That is, until any potential sacrificilin
the widgets have been played out and the sacrificed nodes are
dead (assuming optimal play). To accomplish this it is suffi-
cient to use(n + 2) times the number of incoming edges on
the clause node, whereis the number of QBF quantifiers. It
Figure 4:V widget. Black may determine which afor -z s thus apparent that (supporting our previous assertan) s
will die by attacking node 5 or 7 at any time up to step rificing nodes in the existential widgets is not beneficial fo
Making more than one such attack results in node 6 survivinghite.
which is a dominated action in the constructed game. If the existence player has a winning QBF strategy, white

may simply choose to save the correspondingly labelled

This widget allows the white player to save either the nodgodes, delaying each choice as long as possible. It is clear
corresponding ta or the node corresponding tec. Attempt-  that white may kill all black nodes in the quantifier widgets
ing to save both will result in a surviving black node in thewhile making this choice. This leaves only the clause nodes,
delaying widget, and thus in an inability for white to win. Be which by construction must all have a live white node able to
fore the unchosen white node is destroyed, each of nodesflack them. Thus, all black nodes will eventually be killed
and 5 will be able to deal at most- 1 points of damage (via and white will win. Conversely, if the forall player has a win
outgoing edges which are not shown). The remainder of theng QBF strategy, black may choose to save only those white
graph shall be constructed so as to make this damage unifiedes in the universal widgets which correspond to its QBF
portant. All nodes in this widget (except perhaps 3 and Strategy. By construction there must thus be some clause nod
either have only one target or have their actions forced — thehich is unable to be killed, corresponding to an unsatisfied
corresponding strategy for these nodes is obvious. clause in the QBF variable assignment.

Universal Quantifier Widget. To emulate a universal quan- BAG-WIN € EXPTIME. To see that a pure winning strat-

tifier we use the widget shown in Fig. 4. This widget allowse for white can be computed in exponential time.Jidbe
black to kill at most two of nodes 5, 6, and 7 (corresponding t%geyinput length and/ be thFe): maximumpnumber of heélth val-

x, -z, andz A—z). This can be seen by noting that nodes 5, 6, : . : .
and 7 have a combined + 1 hit-points, but black will be able 2% ?gt);lu.rlt (Fﬁ)r;;tag? (tl,'ee .t,htgeSin;:x Olmgsmemggiﬁzlthlz%lr i,gr?_e)
= ) .

to deal no more thari points of damage, since nodes 1 and venience assume that = 2". Then the number of possible

will kill the black nodes on step As in the other widget, the Ids is bounded byl +™ i . fixed t "
white nodes corresponding to truth assignments will each T hs IPS1 ounlde_ ¥ N Zlnce_égl\éeg ah'xﬁ ﬁr]geflng h
able to deal at mostpoints of damage before the black nodegfaPh) the world is uniquely described by the health of eac
are killed. of then + m units. Note that: andm are effectively encoded

. ) in unary form, since each unit requires a separate integer de
QBF Reduction. We will proceed to show that a QBF prob- (ihing its health (and another for its attack).
lem instance may be transformed in polynomial time into @ \ye will compute the value of each world recursively, us-
BAG instance such that the white player has a pure winni g a memoizing lookup table (one entry for each possible

Figure 3: 3 widget. The white player may save either the
or the—x node by attacking node or 2 during roundi. The
node not saved will be killed the next round. The black bo
represents a delay widget with= 7 — 1.

conjunctive normal form, with all variables being goveryd neeq only find a row in the strategy matrix where all the en-
a quantifier, and all quantifiers being at the beginning of th@jes are 1, or show that such a row does not exist. The value of
formula. each matrix entry is determined in the obvious manner — by
At a high level, we will create black nodes correspondingomputing the successor world corresponding to each péayer
to clauses and white nodes corresponding to variable assignw/column action, and then computing whether this succes-
ments (true or false), as in the widget node labels. The whisor has a pure winning strategy. The base case of this recur-
variable nodes will be able to attack only those black clauseion are those states where no unit may attack an opponent, in



which case the winner is determined by which player, if any, Note that the “large” black unitc — n, N) has sufficient

still has standing units. attack power to kill the single white unit in two steps, besmu
Because the number of worlds is bounded by an exponedN = N +30+1 > N +o0+ (0 —n)+ 1. Thus, any winning

tial function of the input lengtt2”(+m) < 2L° we need only Strategy for white must involve killing that large unit oreth

show that the amount of work in each of those worlds (excludirst step. That leaves — (o — n) = n damage to allocate
ing any recursion, since we are memoizing) is also at modfmongst the other black units.

exponential. The number of joint actions in a given world is On the first step black will dedV + o damage, leaving the
bounded byn™ - m” = gmlogntnlogm < 92L% \which is  White unitwitho —n-+1 health at the start of the second round.

obtained when each unit may attack every opponent unit. herefore, if the remaining _blapk units have more thah n .
such, the time required to loop over each row in the strate repower then the white unit will die on the second step. This

matrix is clearly at most exponential. Computing each ssicce an only be the case if, on the first step, white is unable to kil

sor state involves only a polynomial number of poly-time-sub® SUPset of the non-large black units having total heattift

tractions and comparisons (to prevent negative valuesjs THPOWE™. i-€., if a subset of totalling n does not exist. Thus,
procedure is repeated for all table entries until there are f' Summary, the given subset sum problem has a solution if
more changes. Thus, the entire computation (including inf"d onlY if in the corresponding APAG instance white has a

tializing the lookup table) is performed in tin@(27(%)) for pure winning strategy. Because the described transfoomati

a low-degree polynomial, and therefore BAG-WINE EXP- |hsacr:jearly computable in polynomial time, APAG-WIN |sDNP—

TIME. |

Corollary 6. Determining the existence of pure winning Other Object.IV(-:f Fun.ctlpns .
strategies for white in basic AG instances in which attackVé may want to choose winning criteria based on realistic
graphs are acyclic and the maximum health value is polyn@SSumptions about game mechanics (if any) which are ab-

mial in the size of the encoding is PSPACE-complete. stracted away by the graph representation. If we consiger th
case of real-time strategy games, replacement/repairofost

Proof. The attack graphs in the QBF reduction we presentefle ynits that are destroyed/damaged may be important, or we
in the proof of Theorem 4 a) are acyclic. Moreover, the maximay seek to only delay the enemy units until reinforcements
mum health value across all nodes is polynomial in the encogan arrive. We do not even consider the complexity intro-
ing size of the graph. Therefore, determining the exist@iice gyced by allowing unit motion, i.e. changing attack graphs.
pure winning strategies for white in such graphs is PSPACEgnat foliows we will consider two basic additional objeets
hard. Revisiting the algorithm presented in part b) with BP0 \yhich both lead to hard decision problems:

nomial health bound shows that above decision problem l'g%eorem 8. If the AG decision problem is modified to in-

in PSPACE, because at each recursion level only row and ¢ ; . > X
umn indexes have to be maintained whose length is boundgiyde either a maximum number of rounds in which to destroy
the opposing units, or the number of survivors, then decid-

1 m mY <logI! =TlogI. Th isi - . . . . -
Ibeymoii?ﬁiﬁt{e?orén;SLKCE%completg.g e decision pr%b ing whether white can accomplish either of these goals is NP-

hard.
L . P Proof. This can be seen by reducing from subset sum. Sim-
Attrition Games with Attack Partitioning ilar to the attack partitioning case, consider a Sedf pos-
If we discretize kill times but still allow each unit to paitin  itive integers with target sum. Leto := > oz, X =
its attack power amongst all of its potential targets, weefte {{n,1),{c —n, 1)}, andY = {(3,s)|s € S}.
with a problem formulation somewhere between the continu- A subset sum exists iff the AG instance can be worby
ous case and the fully-discrete description (in which &&ac in one round, or the AG instance can be wonywithout
are all-or-nothing). Specifically we do not have to considelbsing any units. In both casés clearly attempts to find a
overkill in the sense that a unit is never forced to commit exXpartition of its units such that each partition’s attack pow
cess attack power to any target. Let APAG denote the set @kactly matches the health of one of the tXounits, killing
all encodings of basic game scenarios in which attack parthem both in the first round. m]
tioning is allowed, and APAG-WIN the subset of APAG in

which white has a pure winning strategy. Then the foIIowingZo see that minimizing the total number of rounds does not
statement is true: ecessarily maximize the number of survivors, consider the

) example in Fig. 5. In this scenario the labelled white node
Theorem 7. APAG-WIN is NP-hard.

Proof. We reduce the subset sum problem, which is a stan-

dard NP-complete problem (Arora & Barak 2009), to APAG

in polynomial time. LetS be a set of positive integer values

andn a non-negative target value, such that the subset sum

decision problem is true if and only if there exists a subset

S" C Ssuchthaty’ g 2 = n. Given such a subset sum

instance, we construct a corresponding APAG instance as fol O_>.<
lows: leto :=_ gz, N := 30 +1, and consider white unit  (177) (n, 1)
(N +0+(c—n)+1,0) and black unitgs, s) for s € S and

(¢ —n, N). Without loss of generalityy > n. Otherwise,

the subset sum problem has the trivial solution of selealhg Figure 5: Example showing the non-equivalence of minimiz-
elements ofS. ing total time and maximizing the number of survivors.




must decide in the first round whether to destroy the left oAG graph shown in Fig. 6. For each player we consider all
the right black node. If the left, then the right black nodd wi possible first moves and show the resulting final game values
destroy one white node each round, far/2] rounds. If the in view of row player black who is attempting to maximize.
right node is destroyed, then the left black node will notsgau An entry of+1 indicates a win for blacks-1 a win for white,
any damage, but cannot be killed untifounds have passed. and0 a draw — namely both players destroying each other. In
this scenario mixing is only required for the first move. The
Mixed Strategies expected score for black increases from 0 (playing a known

. . . . ure strategy) to 0.5 if one or both players choose from their
In this section we provide small examples to show that in gefz,0 non-dominated actions uniformly.

eral in discrete attrition games and those with attack parti’ |1 is also the case that mixed strategies may be necessary

tioning mixed strategies may be necessary for optimal plajy; optimal attack partition play. To see this, consider he
At first this seems counter-intuitive, because here, Uk | arsus 2 case shown in Fig. 7.

the game of rock-paper-scissors, chosen actions always suc
ceed in that they inflict damage irrespective of the oppdsent Conclusion and Euture Work

choice. However, one can imagine cases in which there exiﬁtth's aper we have established computational complexit
multi-step counter strategies with distinct first movesdach Ilt 2053 I::1N'n ;ttr't'on Iame on prua hls hich n&o:j((laly
of the opponent’s choices. ults for playing attrition games on graphs whi

. mbat mechanics seen in popular real-time strategy games.
As an example, consider the 2 versus 2, fully connecte@ur main results indicate that computing winning strategie
for this class of games is computational hard in general.

VIOISC T TING Moreover, playing optimally sometimes requires using rdixe
bl I . 2 . strategies. In practice, we therefore have to resort toceqppr
4,1) (5.;3) | DO | o 1 0 1 mations. As a starting point for the development of heuassti
o we considered the basic 1 ws.case for which we identified
°><° 1 1 1 1 optimal target orderings that are based on attack valuehitver
o e point ratios. We propose replacing simpler measures — sich a
? ? 1 1 0 1 focusing on the weakest or most powerful unit — in existing
o o RTS game Al systems by above ratio to improve combat per-
o o 0 1 1 1 formance.
(4,1) (6,3) gl Although we have shown that computing the existence of

deterministic winning strategies for the basic attriti@mge in
general is PSPACE-hard and in EXPTIME, it remains unclear
(3,1) (2,3) (3,1) (2,3) for which class the problem is complete. Because attrition
games, as we defined them, can last an exponential number of
rounds in case of large health and small attack values, show-
(6,3) (3,1) (3,3) ing PSPACE-completeness could perhaps be achieved by es-
tablishing optimality of macro operators that collapsejlec-
tion chains. Another interesting theoretical question e
(4, 1>®\§<1, 3) (4,1) (1,3) exactly the transition from P to NP-hard occurs, i.e. what is

the smallest: for which thek vs.n problem NP-hard?

(6,3) (3,1) (3,3) References |
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