
On the Complexity of Two-Player Attrition Games Played on Graphs

Abstract

The attrition game considered in this study is a graph based
strategic game which is a movement-prohibited analogue of
small-scale combat situations that arise frequently in popular
real-time strategy video games. We present proofs that the attri-
tion game, under a variety of assumptions, is a computationally
hard problem in general. We also analyze the 1 vs.n unit case,
for which we derive optimal target-orderings that can be com-
puted in polynomial time and used as a core for heuristics for
the general case. Finally, we present small problem instances
that require randomizing moves — a fact that at first glance
seems counter-intuitive.

Introduction
The work on the attrition game we present in this paper was
motivated by creating entries for a real-time strategy (RTS)
game programming competition. RTS games are fast-paced
video games in which players create armies that fight over
resources scattered on the terrain with the ultimate goal of
destroying all enemy units and structures. In these popular
games, units regularly combat others. An example is shown
in Fig. 1. Good RTS game players are able to move dozens of
units into advantageous positions quickly, and coordinateunit
attacks effectively. Handling this aspect of RTS games wellis
crucial to winning, but also tiresome. It is therefore natural to
ask how AI modules can be constructed to which time critical
tasks such as unit targeting can be delegated, so that human
players have more time to focus on more strategic decisions.

In this paper we establish the theoretical foundation of this
line of research by defining simplified versions of the RTS
game combat subgame and establishing the computational
complexity of solving such games. Our results show that
likely no polynomial time algorithms for the general problem
exist and that in general one has to consider mixed strategies.

We start by discussing related work and defining the class
of attrition games considered here. We then investigate the
basic “1 vs. n” case in some detail before going on to prove
that solving attrition games is hard in general. After this we
determine the computational complexity of some game vari-
ants and present small game scenarios that show that mixing
strategies is sometimes required. We conclude the paper by
discussing future research directions in this area.

Related Work
Games of attrition have been studied in military research
in which the main focus has been on modelling warfare
globally by means of differential equations (Gozel 2000;

Figure 1: A typical RTS game combat scene (StarCraftTM 2).

Taylor 1983). Applications of such models include predict-
ing winners and estimating inflicted damage in battle simula-
tions. In commercial RTS video games and recent RTS game
AI competitions (Buroet al. 2006) small-scale combat is usu-
ally be addressed by scripting simple behaviors such as attack-
ing the closest or the weakest target in range. The advantage
of this approach is fast execution speed and focusing fire im-
plicitely. As we will see later, optimal target ordering depends
on the attack value–hit point ratio. In artificial intelligence re-
search, attrition games have been studied in the setting of pop-
ular RTS video games. For instance, (Kovarsky & Buro 2005)
and (Balla & Fern 2009) apply heuristic search methods such
as alpha-beta, Monte Carlo, and UCT search to small RTS
game combat scenarios. These methods attempt to produce
approximate solutions, given that the state and action spaces,
even for small problems, can be huge, and the available time
for making tactical decisions in RTS games is usually short.
As far as we know, our paper is the first to address theoretical
aspects of discrete attrition games.

Analysing the computational complexity of games has a
long history (Eppstein 2010). For our proofs we utilize
known hardness results for the 0-1 knapsack and the quan-
tified Boolean formula problems whose proofs can be found
in computational complexity text books (e.g. (Arora & Barak
2009)).



Attrition Games Played on Graphs
The attrition game (AG) we consider in this paper is a graph-
based simultaneous move game in which two players, black
and white, attempt to destroy each other’s nodes. A player is
said to win if he destroys all opposing nodes while preserving
at least one of his nodes. All nodes have two integer attributes,
health and attack power, denoted by a pair〈h, a〉. Each node
may have distinct health and attack values. The nodes are
arranged in a directed graph in which an edge exists from node
x to nodey if and only if nodex may attack nodey.

In the discrete case the game proceeds in a series of rounds,
such that in every round each node may select at most one op-
posing node to attack. Attacks are then made simultaneously,
with the health of a node being decreased by the sum of all the
attacks made against it that round. After all attacks have been
computed, nodes which have a health value less than or equal
to 0 are removed.

In the continuous case units attack constantly and are im-
mediately removed when their health reaches 0. Also, units
are effectively permitted to divide their attack power (e.g. to-
tal damage dealt per second) amongst their legal targets, using
any non-negative weights whose sum totals 1.

The payoff structure ranges from assigning−1, 0,+1 to ter-
minal nodes depending on whose units have been completely
eliminated, over accumulating rewards for killing individual
units, to assigning payoffs non-linearly depending on the com-
position of the standing units.

Action sets seen in popular RTS video games are often
much more complex. For instance, weapons may have cool-
down periods, units may be repaired, or action effects may be
nullified by opponents’ actions. In addition, in RTS games
units are free to move into or out of attack range, whereas our
model assumes attack graphs to be static. However, as we will
see shortly, the basic setting we consider here already leads to
complex decision problems.

1 vs.n Units
Consider the case of one white unit versusn black units, with
all units able to attack all opponent units. The strategy for
the black player is obvious — direct all attack power towards
the lone white target. Depending on the specific winning con-
dition or scoring function we choose to impose on the sce-
nario, there may be several (or an infinite number) of equiva-
lent strategies for the white player. Most reasonable objectives
are satisfied by having the white player minimize the amount
of damage taken by its unit. As the following results show, this
can be accomplished by an easy-to-compute target ordering:

Theorem 1. Let hi andai be the health and attack power of
the black units, fori = 1..n, anda0 the attack power of the
lone white unit. Then

a) in the discrete case, in which units fire in rounds and only
one target can be selected at any given time, to mini-
mize white’s total sustained damage it is sufficient to order
its targets by decreasing value ofai/⌈hi/a0⌉ and never
change targets until they have been destroyed.

b) Similarly, in the continuous case, in which units fire con-
tinuously and are able to distribute their attacks over mul-
tiple targets, to minimize white’s total sustained damage
it is sufficient to order its targets by decreasing value of
ai/hi and focus exclusively on single targets until they are
destroyed.

Proof. a) Fix an arbitrary ordering in which the black targets
are being destroyed. Without loss of generality our following
use of subscripts will refer to a unit’s position within thisor-
dering, rather than the initial labelling. We first note thatit
is sufficient for white to stick to targets, i.e. to attack single
units without focus change until they are destroyed. To see
this, consider timeki at which uniti is killed in a given attack
sequence fori = 1..n andk0 = 0. As unit i is destroyed at
time stepki, there is no need to target it any longer. Also,
if between time stepski−1 andki a target other than uniti
is attacked, it is beneficial for white to attack targeti instead.
This swap does not influencekj for j > i andki is decreased,
which lowers the total sustained damage. Iterating this swap-
ping procedure for alli results in an attack sequence in which
units are targeted in turn until they are destroyed. Therefore,
we can assumeki =

∑i

j=1⌈hj/a0⌉, where⌈hj/a0⌉ is the
time it takes white to destroy unitj, and concentrate on opti-
mizing target orderings.

Let di = ai · ki be the damage dealt by uniti over its life-
time, given the target ordering. Now consider swapping two
adjacent units within the target ordering, say, unitsj andj+1.
Let k′

i andd′i be the values resulting from that swap.
Note thatdi = d′i for units i 6∈ {j, j + 1}. For k = kj−1

(with k0 := 0) andtj = ⌈hj/a0⌉ we have:

dj = aj(k + tj) d′j = aj(k + tj+1 + tj)

dj+1 = aj+1(k + tj + tj+1) d′j+1 = aj+1(k + tj+1)

and elementary arithmetic yields:

dj + dj+1 ≤ d′j + d′j+1 iff

aj+1tj ≤ ajtj+1 iff
aj+1

tj+1
≤

aj

tj
,

which gives the desired result.

b) In the continuous case white selects a series of time points
when new sets of targets together with the corresponding at-
tack value distributions are chosen. As before, we fix a target
ordering and letki denote the time uniti is destroyed. By a
swapping argument analogous to a) it is easy to see that the
sustained total damage is not increased by sticking to single
targets until they are destroyed. The final result of applying
this procedure is a sequence of time pointski =

∑i

j=1 hj/a0,
i = 0..n at which uniti has been destroyed (ifi > 0) andthe
next target will be chosen (ifi < n). Settingti = hj/a0 and
following the same steps shown above proves the claim.2

There is room to generalize these results so that they directly
apply to real-time strategy video games in which attacks usu-
ally proceed in rounds and attack values are independent and
uniformly distributed:

Theorem 2. Let hi be the health andai the expected attack
power of the black units, fori = 1..n, andp(x) the probability
of the lone white unit inflicting damagex. Then to minimize
white’s expected damage it is sufficient to order targets by de-
creasing value ofai/ti and never change targets until they
have been destroyed. Here,ti is the expected lifetime of uniti
which only depends onp andhi.

Proof sketch due to space limitation.We follow the same proof
steps as before, now usingtj = E(t : unit j dies after exactly

2



t steps when attacked) and the fact that the expected lifetime
damage unitj deals is the product of its expected attack power
and its expected life time.tj only depends onp andhj and
can either be determined analytically ifp has a simple form,
or estimated using simulation. 2

The above results can be used to decide whether the white
unit can survive by sorting then targets according to their
health over (expected) survival time ratios and then computing
the damage inflicted on the white unit. If this value meets or
exceeds white’s health, the unit dies. Otherwise, it survives.

If the white unit is unable to survive we shall concentrate on
minimizing the long-term ability of the black units to inflict
damage (say in the case in which another possibly identical
singleton white unit will arrive after the current battle).This
can be modelled by a non-negative reward for white for de-
stroying each ofn black units. Clearly if the singleton unit can
destroy all opposition the maximum profit may be obtained. If
the white unit cannot do this then it must select a subset that
it can destroy, so as to maximize the reward. Once a subset
is selected the order in which to destroy those units (assum-
ing they can all be destroyed) is well-defined by our previous
argument. We can show that this problem is hard in general:

Theorem 3. Given a discrete AG scenario withn black units
with healthhi, attackai, and kill rewardri ≥ 0 for white, and
a single white unit with healthh0 and attacka0, it is NP-hard
for white to decide what the reward-maximal target ordering
is, in case white does not survive.

Proof.We show the result by the following reduction to a 0-1
knapsack problem. Intuitively, we will create a collectionof
black units with minimal attack (such that the order in which
they are destroyed does not affect the white unit’s lifetime)
each representing a good to be placed in the knapsack, plus
one indestructible black unit to enforce the budget. Specifi-
cally, given a 0-1 Knapsack instance:

maximize
n∑

j=1

pjxj subject to
n∑

j=1

wjxj ≤ c

xj ∈ {0, 1}, j = 1, . . . , n,

we construct black units〈wj , 0, pj〉 for j = 1, . . . , n and
〈∞, 1, 0〉, where the elements in the triple are health, attack
power, and the opposing player’s reward for destroying the
unit respectively. The white unit is〈c, 1〉. The equivalence
between the two problems is straightforward. 2

The construction of units with zero attack power in the proof
may be somewhat unsatisfying. Note, however, that these ze-
ros may be replaced with an appropriately small epsilon and
then rescaled to integer values.

Solving Basic Attrition Games
In this section we consider discrete time and attack attrition
games whose payoffs are limited to−1, 0, and+1 (loss, draw,
win) depending on which player is still alive at the end. We
call such games “basic attrition games” and denote their set
by BAG. Computing the minimax value of attrition games
is straight-forward, but slow (Kovarsky & Buro 2005): as 2-
player zero-sum games with simultaneous moves but no state
component hidden from either player, each state constitutes
a matrix game whose payoff matrix is populated recursively
with the minimax values of the successor states. Given a

payoff matrix the standard linear programming formulation
can be used to determine the minimax value in each state.
Thus, the total runtime of this ad-hoc method is polynomial
in the game tree size, which by itself can potentially be super-
exponential in the input size.

The following results establish that minimax value compu-
tation for basic attrition games in general is computationally
hard, and the proof of part b) describes a faster way of com-
puting the minimax value:

Theorem 4.

a) The decision problem of determining the existence of pure
winning (i.e. minimax value 1) strategies for white (BAG-
WIN) is PSPACE-hard, and

b) BAG-WIN∈ EXPTIME

As an immediate consequence we obtain the following com-
plexity result for general minimax value computations:

Corollary 5. The problem of deciding whether the minimax
value for white in a given basic attrition game instance is≥ v
is PSPACE-hard.

Proof.Setv = 1 and apply Theorem 4 a). 2

Proof of Theorem.a) Our plan is to reduce the Quantified
Boolean Formula (QBF) problem, which is known to be
PSPACE-complete (Arora & Barak 2009), to BAG-WIN. First
we define a small delaying widget shown in Fig. 2. This wid-
get forces some white node or a set of nodes (not shown), to
deal at leastt points of damage to node1 within the first t
rounds. If this does not happen then an isolated black node
(3) will remain, preventing white from winning. For our pur-
poses the white node being forced to attack will have an attack
power of one. Thus, the white node will not be able to attack
any other nodes for the firstt rounds without white losing the
game.

Next we present two widgets which we will use in our QBF
reduction. These widgets allow the “choosing” player to de-
termine, out of three nodes, which one will survive. Moreover,
this choice may be made at any time up to a given roundi, with
no penalty for delaying the choice until that round (i.e., no
information about the choosing player’s strategy is revealed
before the choice is made). In the figures depicting both wid-
gets it may be the case that the white nodes have outgoing
edges which are not shown (specifically from those labelledx
and/or¬x, but there are no omitted incoming edges to any of
the nodes.

Existential Quantifier Widget. To emulate an existential
quantifier we create the widget shown in Fig. 3. The previ-
ously defined delaying widget is depicted as a box, with the
delaying time shown in brackets. A more compact existential
quantifier widget exists, but this version is perhaps more inter-
esting in that it lets us make the entire QBF reduction attack
graph acyclic.

〈t, 1〉
1

〈t + 1, 1〉
2

〈t + 2, 1〉
3

Figure 2: A delaying widget. A white node (not shown) must
deal t points of damage within the firstt rounds. If the in-
coming node has attack power 1, then this node cannot attack
elsewhere until roundt + 1, lest node 3 survive.

3



〈i + 1, 1〉
3

〈1, 1〉
4

〈i + 1, 1〉
5

〈1, 1〉
1

〈1, 1〉
2

x ¬x

[i − 1]

Figure 3: ∃ widget. The white player may save either thex
or the¬x node by attacking node1 or 2 during roundi. The
node not saved will be killed the next round. The black box
represents a delay widget witht = i − 1.

〈1, 1〉 1 〈1, 1〉2

〈i, 1〉 3 〈i, 1〉4

〈1, 1〉
5

〈2i − 1, 1〉
6

〈1, 1〉
7

x x ∧ ¬x ¬x

Figure 4:∀ widget. Black may determine which ofx or ¬x
will die by attacking node 5 or 7 at any time up to stepi.
Making more than one such attack results in node 6 surviving,
which is a dominated action in the constructed game.

This widget allows the white player to save either the node
corresponding tox or the node corresponding to¬x. Attempt-
ing to save both will result in a surviving black node in the
delaying widget, and thus in an inability for white to win. Be-
fore the unchosen white node is destroyed, each of nodes 3
and 5 will be able to deal at mosti + 1 points of damage (via
outgoing edges which are not shown). The remainder of the
graph shall be constructed so as to make this damage unim-
portant. All nodes in this widget (except perhaps 3 and 5)
either have only one target or have their actions forced — the
corresponding strategy for these nodes is obvious.
Universal Quantifier Widget. To emulate a universal quan-
tifier we use the widget shown in Fig. 4. This widget allows
black to kill at most two of nodes 5, 6, and 7 (corresponding to
x,¬x, andx∧¬x). This can be seen by noting that nodes 5, 6,
and 7 have a combined2i+1 hit-points, but black will be able
to deal no more than2i points of damage, since nodes 1 and 2
will kill the black nodes on stepi. As in the other widget, the
white nodes corresponding to truth assignments will each be
able to deal at mosti points of damage before the black nodes
are killed.
QBF Reduction. We will proceed to show that a QBF prob-
lem instance may be transformed in polynomial time into a
BAG instance such that the white player has a pure winning
strategy if and only if the QBF existence player has a win-
ning strategy. We assume that the QBF problem is written in
conjunctive normal form, with all variables being governedby
a quantifier, and all quantifiers being at the beginning of the
formula.

At a high level, we will create black nodes corresponding
to clauses and white nodes corresponding to variable assign-
ments (true or false), as in the widget node labels. The white
variable nodes will be able to attack only those black clauses

in which they appear.
The reduction proceeds as follows. For each QBF ex-

istential/universal quantifier, create a corresponding existen-
tial/universal attrition widget, shown in Figs. 3 and 4 respec-
tively, where “x” in the widget corresponds to the particular
variable governed by that quantifier. The value ofi in each
widget should be equal to the position (from left to right) of
the respective quantifier, starting at 1. In this way a player
may delay choosing within a particular widget until the choice
of the previous widget/quantifier is known. Making a choice
early is never more beneficial than waiting until stepi.

In this manner, white nodes now exist corresponding to
each QBF variable and its negation. Now create one black
node for each QBF clause, with incoming edges from all white
nodes whose label occurs in the clause. In the case of “x∧¬x”
nodes, treat the node as having bothx and¬x labels. The
clause nodes have no outgoing edges, so their attack power
is arbitrary (say 1), but set their health to some large num-
ber such that it is impossible to kill them before the quantifier
widgets are stable. That is, until any potential sacrifices within
the widgets have been played out and the sacrificed nodes are
dead (assuming optimal play). To accomplish this it is suffi-
cient to use(n + 2) times the number of incoming edges on
the clause node, wheren is the number of QBF quantifiers. It
is thus apparent that (supporting our previous assertion) sac-
rificing nodes in the existential widgets is not beneficial for
white.

If the existence player has a winning QBF strategy, white
may simply choose to save the correspondingly labelled
nodes, delaying each choice as long as possible. It is clear
that white may kill all black nodes in the quantifier widgets
while making this choice. This leaves only the clause nodes,
which by construction must all have a live white node able to
attack them. Thus, all black nodes will eventually be killed
and white will win. Conversely, if the forall player has a win-
ning QBF strategy, black may choose to save only those white
nodes in the universal widgets which correspond to its QBF
strategy. By construction there must thus be some clause node
which is unable to be killed, corresponding to an unsatisfied
clause in the QBF variable assignment.

BAG-WIN ∈ EXPTIME. To see that a pure winning strat-
egy for white can be computed in exponential time, letL be
the input length andH be the maximum number of health val-
ues any unit can take (i.e., the maximum unit health plus one),
and leth := ⌈log2 H⌉ be the size of its encoding. For con-
venience assume thatH = 2h. Then the number of possible
worlds is bounded byHn+m, since (given a fixed targeting
graph) the world is uniquely described by the health of each
of then+m units. Note thatn andm are effectively encoded
in unary form, since each unit requires a separate integer de-
scribing its health (and another for its attack).

We will compute the value of each world recursively, us-
ing a memoizing lookup table (one entry for each possible
world) to avoid repeated work. To prove the (non-)existence
of a (first player) pure winning strategy in a given world we
need only find a row in the strategy matrix where all the en-
tries are 1, or show that such a row does not exist. The value of
each matrix entry is determined in the obvious manner — by
computing the successor world corresponding to each player’s
row/column action, and then computing whether this succes-
sor has a pure winning strategy. The base case of this recur-
sion are those states where no unit may attack an opponent, in

4



which case the winner is determined by which player, if any,
still has standing units.

Because the number of worlds is bounded by an exponen-
tial function of the input length,2h(n+m) ≤ 2L2

, we need only
show that the amount of work in each of those worlds (exclud-
ing any recursion, since we are memoizing) is also at most
exponential. The number of joint actions in a given world is
bounded bynm · mn = 2m log n+n log m ≤ 22L2

, which is
obtained when each unit may attack every opponent unit. As
such, the time required to loop over each row in the strategy
matrix is clearly at most exponential. Computing each succes-
sor state involves only a polynomial number of poly-time sub-
tractions and comparisons (to prevent negative values). This
procedure is repeated for all table entries until there are no
more changes. Thus, the entire computation (including ini-
tializing the lookup table) is performed in timeO(2p(L)) for
a low-degree polynomialp, and therefore BAG-WIN∈ EXP-
TIME. 2

Corollary 6. Determining the existence of pure winning
strategies for white in basic AG instances in which attack
graphs are acyclic and the maximum health value is polyno-
mial in the size of the encoding is PSPACE-complete.

Proof. The attack graphs in the QBF reduction we presented
in the proof of Theorem 4 a) are acyclic. Moreover, the maxi-
mum health value across all nodes is polynomial in the encod-
ing size of the graph. Therefore, determining the existenceof
pure winning strategies for white in such graphs is PSPACE-
hard. Revisiting the algorithm presented in part b) with a poly-
nomial health bound shows that above decision problem lies
in PSPACE, because at each recursion level only row and col-
umn indexes have to be maintained whose length is bounded
by log max{nm,mn} ≤ log II = I log I. The decision prob-
lem is therefore PSPACE-complete. 2

Attrition Games with Attack Partitioning
If we discretize kill times but still allow each unit to partition
its attack power amongst all of its potential targets, we areleft
with a problem formulation somewhere between the continu-
ous case and the fully-discrete description (in which attacks
are all-or-nothing). Specifically we do not have to consider
overkill in the sense that a unit is never forced to commit ex-
cess attack power to any target. Let APAG denote the set of
all encodings of basic game scenarios in which attack parti-
tioning is allowed, and APAG-WIN the subset of APAG in
which white has a pure winning strategy. Then the following
statement is true:

Theorem 7. APAG-WIN is NP-hard.

Proof. We reduce the subset sum problem, which is a stan-
dard NP-complete problem (Arora & Barak 2009), to APAG
in polynomial time. LetS be a set of positive integer values
andn a non-negative target value, such that the subset sum
decision problem is true if and only if there exists a subset
S′ ⊆ S such that

∑
x∈S′ x = n. Given such a subset sum

instance, we construct a corresponding APAG instance as fol-
lows: letσ :=

∑
x∈S x, N := 3σ+1, and consider white unit

〈N + σ + (σ−n) + 1, σ〉 and black units〈s, s〉 for s ∈ S and
〈σ − n,N〉. Without loss of generality,σ > n. Otherwise,
the subset sum problem has the trivial solution of selectingall
elements ofS.

Note that the “large” black unit〈σ − n,N〉 has sufficient
attack power to kill the single white unit in two steps, because
2N = N +3σ+1 > N +σ+(σ−n)+1. Thus, any winning
strategy for white must involve killing that large unit on the
first step. That leavesσ − (σ − n) = n damage to allocate
amongst the other black units.

On the first step black will dealN + σ damage, leaving the
white unit withσ−n+1 health at the start of the second round.
Therefore, if the remaining black units have more thanσ − n
firepower then the white unit will die on the second step. This
can only be the case if, on the first step, white is unable to kill
a subset of the non-large black units having total health/attack
powern, i.e., if a subset ofS totallingn does not exist. Thus,
in summary, the given subset sum problem has a solution if
and only if in the corresponding APAG instance white has a
pure winning strategy. Because the described transformation
is clearly computable in polynomial time, APAG-WIN is NP-
hard. 2

Other Objective Functions
We may want to choose winning criteria based on realistic
assumptions about game mechanics (if any) which are ab-
stracted away by the graph representation. If we consider the
case of real-time strategy games, replacement/repair costof
the units that are destroyed/damaged may be important, or we
may seek to only delay the enemy units until reinforcements
can arrive. We do not even consider the complexity intro-
duced by allowing unit motion, i.e. changing attack graphs.In
what follows we will consider two basic additional objectives
which both lead to hard decision problems:

Theorem 8. If the AG decision problem is modified to in-
clude either a maximum number of rounds in which to destroy
the opposing units, or the number of survivors, then decid-
ing whether white can accomplish either of these goals is NP-
hard.

Proof. This can be seen by reducing from subset sum. Sim-
ilar to the attack partitioning case, consider a setS of pos-
itive integers with target sumn. Let σ :=

∑
x∈S x, X =

{〈n, 1〉, 〈σ − n, 1〉}, andY = {〈3, s〉|s ∈ S}.
A subset sum exists iff the AG instance can be won byY

in one round, or the AG instance can be won byY without
losing any units. In both casesY clearly attempts to find a
partition of its units such that each partition’s attack power
exactly matches the health of one of the twoX units, killing
them both in the first round. 2

To see that minimizing the total number of rounds does not
necessarily maximize the number of survivors, consider the
example in Fig. 5. In this scenario the labelled white node

〈1, 1〉

〈1, 1〉

〈1, n〉
X

〈1, 1〉 〈n, 1〉 〈n, 1〉

〈1, 2〉

〈1, 1〉

〈1, 1〉

.

.

.

Figure 5: Example showing the non-equivalence of minimiz-
ing total time and maximizing the number of survivors.

5



must decide in the first round whether to destroy the left or
the right black node. If the left, then the right black node will
destroy one white node each round, for⌈n/2⌉ rounds. If the
right node is destroyed, then the left black node will not cause
any damage, but cannot be killed untiln rounds have passed.

Mixed Strategies
In this section we provide small examples to show that in gen-
eral in discrete attrition games and those with attack parti-
tioning mixed strategies may be necessary for optimal play.
At first this seems counter-intuitive, because here, unlikesay
the game of rock-paper-scissors, chosen actions always suc-
ceed in that they inflict damage irrespective of the opponent’s
choice. However, one can imagine cases in which there exist
multi-step counter strategies with distinct first moves foreach
of the opponent’s choices.

As an example, consider the 2 versus 2, fully-connected

〈4, 1〉

1

〈5, 3〉

2

〈4, 1〉

3

〈6, 3〉

4

0 1 0 1

-1 1 1 1

1 1 0 1

0 1 1 1

〈3, 1〉 1 〈2, 3〉2

〈6, 3〉4

〈3, 1〉 1 〈2, 3〉2

〈3, 1〉 3 〈3, 3〉4

〈4, 1〉 1 〈1, 3〉2

〈6, 3〉4

〈4, 1〉 1 〈1, 3〉2

〈3, 1〉 3 〈3, 3〉4

Figure 6: 2 versus 2 example showing the need for mixed
strategies: the start state at the top left, followed by the pay-
off matrix in view of the row player (black), and the succes-
sor states for all non-dominated action pair choices, whichare
highlighted in the payoff matrix.

〈8, 3〉

1

〈3, 1〉

2

〈7, 3〉
3

〈4, 1〉
4

-0,-4 -1,-3 -2,-2 -3,-1 -4,-0
-0,-4 0 0 0 0 -1
-1,-3 0 1 1 1 -1
-2,-2 -1 0 0 -1 -1
-3,-1 -1 0 0 -1 -1
-4,-0 -1 1 1 0 0

Figure 7: 2 versus 2 example with attack partitioning show-
ing the need for randomized strategies. The column player
(white) is attempting to minimize the game value, while the
row player (black) is attempting to maximize.

AG graph shown in Fig. 6. For each player we consider all
possible first moves and show the resulting final game values
in view of row player black who is attempting to maximize.
An entry of+1 indicates a win for black,−1 a win for white,
and0 a draw — namely both players destroying each other. In
this scenario mixing is only required for the first move. The
expected score for black increases from 0 (playing a known
pure strategy) to 0.5 if one or both players choose from their
two non-dominated actions uniformly.

It is also the case that mixed strategies may be necessary
for optimal attack partition play. To see this, consider the2
versus 2 case shown in Fig. 7.

Conclusion and Future Work
In this paper we have established computational complexity
results for playing attrition games on graphs which model
combat mechanics seen in popular real-time strategy games.
Our main results indicate that computing winning strategies
for this class of games is computational hard in general.
Moreover, playing optimally sometimes requires using mixed
strategies. In practice, we therefore have to resort to approxi-
mations. As a starting point for the development of heuristics
we considered the basic 1 vs.n case for which we identified
optimal target orderings that are based on attack value overhit
point ratios. We propose replacing simpler measures – such as
focusing on the weakest or most powerful unit — in existing
RTS game AI systems by above ratio to improve combat per-
formance.

Although we have shown that computing the existence of
deterministic winning strategies for the basic attrition game in
general is PSPACE-hard and in EXPTIME, it remains unclear
for which class the problem is complete. Because attrition
games, as we defined them, can last an exponential number of
rounds in case of large health and small attack values, show-
ing PSPACE-completeness could perhaps be achieved by es-
tablishing optimality of macro operators that collapse long ac-
tion chains. Another interesting theoretical question is where
exactly the transition from P to NP-hard occurs, i.e. what is
the smallestk for which thek vs.n problem NP-hard?

References
Arora, S., and Barak, B. 2009.Computational Complex-
ity: A Modern Approach. New York, NY, USA: Cambridge
Univ. Press.
Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. InProceedings of the
20th International Joint Conference on Artificial Intelligence
(IJCAI-2009).
Buro, M.; Bergsma, J.; Deutscher, D.; Furtak, T.; Sailer, F.;
Tom, D.; and Wiebe, N. 2006. Ai system designs for the
first rts-game ai competition. InProceedings of the GameOn
Conference, pp.13-17.
Eppstein, D. 2010. Game complexity overview.http://
www.ics.uci.edu/ ˜ eppstein/cgt/hard.html .
Gozel, R. 2000. Firepower score attrition algorithms in
highly aggregated combat models.RAND47–60.
Kovarsky, A., and Buro, M. 2005. Heuristic search applied to
abstract combat games. InProceedings of the The Eighteenth
Canadian Conference on Artificial Intelligence.
Taylor, J. 1983. Lanchester models of warfare. InOperations
Res. Soc. Vol 1+2.

6


