

Search and Abstraction in
Real-Time Strategy Games

Michael Buro

with
N. Barriga, D. Churchill, D. Demyen, G. Erickson,

T. Furtak, M. Lanctot, I. McCarten,
S. Orsten, S. Ontañón, A. Saffidine, F. Sailer,

D. Schneider, M. Stanescu, N. Sturtevant

Collaborators

Douglas Abdallah Sterling Frano Doug Santi Graham

Nicolas Dave Marius Isabel

Tim

Marc Nathan

AI / ML Group @ University of Alberta

Heuristic Search, Domain Independent
Planning, State and Action Abstractions,
Opponent Modelling, Solving Games, Path
Planning, Real-Time Search, etc.

● Interested in World-class AI or ML research and
spending time in Canada ?

● We are looking for graduate students !

Edmonton, Canada

Human vs. Machine

Real-Time Strategy (RTS) Games

RTS Game Properties
● Fast paced war simulations
● Real-time:

– simulation continues even when players don’t act

● Imperfect information
– Simultaneous moves + “Fog of War”

● Game mechanics:
– Gather resources
– Build towns and armies
– Combat with enemies
– Last player standing wins

● Huge state and action spaces

E-Sports

Video Game Industry

RTS Game Strategy Decomposition

Variations on
Search and Abstraction

in RTS Games

1. Finding Paths Quickly

2. Building Things Quickly

3. Destroying Things Quickly

4. Master of Puppets

5. Ω-StarCraft ?

Variation 1: Finding Paths Quickly

Challenges
– Large maps (often 4096 x 4096 walk tiles or more)
– Real-time constraints

● Generate near-optimal paths for dozens of units
within milliseconds

● If more time is needed, start moving even before
optimal path is found

– Dynamic obstacles
– Collaborative and/or adversarial

Hierarchical Path Finding A* (HPA*)
(Botea, Müller, Schaeffer 2004)

● Sector based, select sector entrances
● Optimal intra-sector paths between entrances
● Run top-level A*
● Path smoothing

● Enhancements:

DHPA* and SHPA*

(Kring et al., 2010)

Path Refinement A* (PRA*)
(Sturtevant and Buro, 2005)

● Use clique abstraction to create abstraction
“pyramid”

● Pick abstraction level
● Map start/goal points to their abstract counterparts
● Use A*, project path down, restrict A* to corridor, ...
● Only refine first k-steps to speed things up

Triangulation (Reduction) A*
(Demyen and Buro, 2006)

Modified Funnel Algorithm

TA* and TRA* in Practice

● Any-angle path finding
for circular objects in
large polygon soups

● TRA* ~50 times faster
than A* on 512 x 512 tile
game maps, near
optimal path length

● Blizzard Entertainment
uses TA* in StarCraft 2

Other Selected Work on
Path Finding

● Optimal Any-Angle Pathfinding in Practice

(Harabor et al., JAIR 2016)

● Ultra-fast Optimal Pathfinding without Runtime
Search

(Botea, AIIDE 2011)

Variation 2: Build Things Quickly

Goal: Goal: Current Game StateCurrent Game State

Build Order SearchBuild Order Search

Build Order Sequence: A1, A2, …Build Order Sequence: A1, A2, …

Build Orders

Prerequisite Builds

Provides Supply For

Collects
Gas

Gas is Required to Build
Goal

Concurrent and Durative Actions

Build Order Optimization

● For given state and production goal, minimize
makespan

● Use depth-first branch and bound algorithm
– Low memory usage
– Any-time computation
– Pause / resume search easy
– Make use of upper and lower bound heuristics

(Churchill and Buro, AIIDE 2011)

Sample Run

Optimizations and Heuristics
● Actions executed as soon as they are legal

– Resource hoarding not benefiting economy

● Build actions don’t invalidate other build actions
● Fix ordering of concurrent actions
● Model resource gathering: C * time * workers
● Use makespan of sequential plan as upper bound
● Use tech-tree landmarks as lower bound
● Use gathering goal resources as lower bound
● Limit unit numbers

– (e.g. building 2 tanks requires at most 2 factories)

● Macro Actions
– Repeat certain actions k times

Effect of Macro Actions

No Macro ActionsNo Macro Actions

Macro ActionsMacro Actions

Comparison with
Professional Players

Search With Macro Actions (120s Interval)

Problems solved (total) 100%

Median Search/Pro makespan ratio 0.957

Median Search Time (as % of makespan) 1.4%

Search Without Macro Actions (120s Interval)

Problems solved (total) 100%

Median Search/Pro makespan ratio 0.964

Median Search Time (as % of makespan) 4.1%

Variation 3: Destroy Things Quickly

Combat Model

● Two groups of combat units fight each other
● Simultaneous attack / move actions

(“stacked matrix games”)
● Each unit

– can possibly move
– can attack others within weapon’s range
– has health points from which attack values are deducted
– dies when health points reach 0

● Weapons have attack values and cool down periods
and possibly area effects

● Combat games end when one party is eliminated

Combat AI Challenges

● Hard combinatorial
optimization problem
(PSPACE hard even
without unit motion, Furtak
and Buro, AIIDE 2010)

● Real-time, simult. moves
● Multi-unit control: huge

branching factors
● State evaluation
● No access to game

engine source code

SparCraft Combat Simulator

Alpha-Beta Considering Durations
(ABCD) Algorithm (Churchill et al. AIIDE 2012)

Approximations and Heuristics

● Transform stacked matrix games into
serialized perfect information game

● Use ABCD or UCTCD
● Reduce action sets by using scripts
● Use static evaluations or scripted playouts

to evaluate leaf nodes

Portfolio Greedy Search
(Churchill and Buro, CIG 2013)

● Use scripts to propose individual unit’s actions
– e.g. “attack closest unit”, “attack weakest unit”

● Assign default actions to units
● Avoid overkill
● Improve unit actions greedily in turn by evaluating

current unit’s script actions using playouts
● Iterate until time runs out

Soundly defeats ABCD and UCTCD for large unit
groups (32+ units)

Combat Search in Practice

● Simulated combat results used for attack /
retreat decision in StarCraft bots

● Not yet used for actual combat –
simulation doesn’t handle motion and unit
collisions well enough

● Work in progress ...

Other Selected Combat AI Work

● Attrition Games Played on Graphs

(Furtak and Buro, AIIDE 2010)
● Kiting using Influence Maps

(Uriarte and Ontañón, AIIDE 2012)
● The Combinatorial Multi-Armed Bandit Problem

(Ontañón, AIIDE 2013)

Variation 4: Master of Puppets

 Heuristic Search for Full RTS Game

How to apply conventional adversarial
search methods to real-time games with
huge action sets and large depths ?

Idea: Hierarchical Strategy Decomposition

 similar to military command & control

Hierarchical Adversarial Search
(Stanescu et al., AIIDE 2014)

Game-Tree Search Over High-Level
Game States (Uriarte and Ontañón, AIIDE 2014)

Adversarial HTNs
(Ontañón and Buro, IJCAI 2015)

“Puppet Search”
(Barriga et al., AIIDE 2015)

● Consider full-game scripts (“puppets”) with choice
points (“joints”)
– “Should I expand now?”
– “Should I attack now?”
– “Should I upgrade my weapons now?”

● Those choices are usually hard-coded
● Idea: Let search decide what course of action

is best
● I.e., run MiniMax search on transformed game

Script in Form of Decision Tree

Puppet Search Discussion

● Imitates human thought process
● Scripts reduce branching factors drastically
● Allows to look far ahead

● Requires scripts to cover opponent strategies to
be effective

● How to write scripts? What are effective choice
points?

Puppet Search in Practice

● Applied Puppet Search to 8 by 8 micro-RTS
games

● Initially chose 4 rush scripts with one choice
point at the top deciding what script to execute

● Puppet Search won more games against 6
StarCraft bots than each individual script

● Work in progress:
– Add choice points for middle game
– Scale to bigger games – eventually StarCraft

Variation 5: Ω-StarCraft ?

 March 15, 2016
Lee Sedol (9-dan) loses 1:4

What if ...TPU Racks

… CNNs could also play StarCraft ?

Go
● ≤ 361 moves
● ~ 300 turns
● Perfect information

StarCraft
● max ≥ 4**100 moves
● Often ≥ 28800 frames
● Imperfect information

CNNs for RTS Games

Constructing value networks not that hard
(Stanescu et al., CIG 2016)

Policy networks and search are challenging

We are working on it … and Google, perhaps, too

Free Software on GitHub
written by Dave Churchill

● UAlbertaBot
– Modular StarCraft bot that plays all three races
– Basis of several other StarCraft bots
– Also used in game AI courses
– BOSS (Build Order Search System)
– SparCraft (Combat Simulator)

● Scripts / Alpha-Beta / UCT / Greedy Portfolio

● StarCraft Tournament Manager

Conclusion

● Abstraction and search in RTS games shown to
be effective for sub-problems

● Macro policies still mostly scripted
● Some progress in high-level search

Dethroning world-class players may take a
while …

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

