
University of Alberta

Library Release Form

Name of Author: Kai Chen

Title of Thesis: Robust Dynamic Constrained Delaunay Triangulation For Pathfinding

Degree: Master of Science

Year this Degree Granted: 2009

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial
portion thereof may be printed or otherwise reproduced in any material form whatever
without the author’s prior written permission.

Kai Chen
Apt 901, 9747 - 104 street,
Edmonton, Alberta
Canada, T5K 0Y6

Date:



Wisdom is knowing what to do next;
virtue is doing it.



University of Alberta

Robust Dynamic Constrained Delaunay Triangulation For Pathfinding

by

Kai Chen

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment
of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2009



University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled Robust Dynamic Constrained
Delaunay Triangulation For Pathfinding submitted by Kai Chen in partial fulfillment
of the requirements for the degree of Master of Science.

Dr. Michael Buro

Dr. Herbert Yang

Dr. Farbod Fahimi

Date:



To my parents



Abstract

Surface triangulation has many applications such as computer graphics, navigation, and AI

in video games. For this thesis we have developed a Free Software C++ library for dynamic

constrained Delaunay triangulation which handles point and line segment insertions and

removals efficiently and robustly. Geometric computations are based on arbitrary-precision

arithmetic that avoids problems caused by round-off errors. We describe the theoretical

foundations of the underlying algorithms, present performance evaluations, and describe

the public interface of the software package.
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Chapter 1

Introduction

1.1 Motivation

Pathfinding is an important research topic for many applications such as routing in networks,

motion planning in robotics and computer games. A common approach to pathfinding in

computer games is to incorporate a tile grid that overlays the game map and forms a graph

of traversable tiles [38]. Best-first search algorithms such as A* are used to find the optimal

path between start and goal location through traversable tiles. The tile grid representations

are easy to use and the graph of traversable tiles is adapted easily by A*. However, there

are several disadvantages of tile grid representations:

• The tile grid may represent a polygonal environment imprecisely as the polygonal

obstacles of arbitrary orientation are represented by axis-aligned grid tiles.

• The surface area of the grid tile is uniform. A large number of grid tiles are wasted

to represent large open map regions.

• Path smoothing may be required as post-processing of tile paths to achieve straight line

movement or smooth cornering. The path smoothing is needed because the optimal

tile path is formed by searching eight adjacent tiles in compass direction.

• Grid-based pathfinding usually have large search space with each tile being a graph

search node of the search algorithm.

Polygonal mesh representations offer solutions to the problems above:

• Polygonal environments can be represented precisely using polygonal shapes and the

boundaries of the polygonal obstacles can be modeled exactly.
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• The surface area of the polygonal shapes is not uniform. Large open regions in the

environment can be represented by a few polygonal shapes. Therefore, the polygonal

representation can significantly reduce the search space for pathfinding.

• Path smoothing is not required for polygonal paths. The actual path naturally goes

through vertices of the polygonal path.

• Triangulation-based pathfinding algorithms working on the base triangulation (TA*)

and on abstracted graphs (TRA*) as proposed by Demyen and Buro [12] offer sig-

nificant speed improvements over the grid-based pathfinding algorithms. The search

speed is improved because the search space in triangulation-based pathfinding is sig-

nificantly reduced by the triangulation representation.

1.2 Previous Work

Kallmann et al. proposed the use constrained Delaunay triangulation to model planar

environments [23]. The boundaries of obstacles are modeled as constrained edges which

are fixed in the triangulation. The environment is then triangulated with unconstrained

edges to form a constrained triangulation of the environment. A review of the properties

of the constrained Delaunay triangulation is given in Chapter 2. Path planning is done

in the triangulated environment [22] with midpoints of triangle edges as the search nodes.

Kallmann’s DCDT software implements incremental constrained Delaunay algorithms and

provides dynamic update operations to the constrained Delaunay triangulation. Kallmann’s

DCDT implementation is efficient and the computation speed is fast using floating point

arithmetic. However, the use of fixed-precision floating point computation may lead to

crashes, infinite loops and incorrect outputs. It is also worth noting that the DCDT software

package has its own licensing agreement which limits the package to educational, research

and non-profit purposes only.

Our original implementation of TA* and TRA* are based on Kallman’s DCDT software

as the underlying triangulation implementation with additional information (size, degree or

linkage of abstractions) attached to different features (vertices edges, faces) of the triangula-

tion. Our interest in developing triangulation software using exact computation comes from

the need for a free computational geometry software package with robust implementation

of constrained Delaunay triangulation algorithms. The robustness of the software package

is important because it is intended to be used in the Open RTS Game Toolkit (ORTS) [6]

as part of the triangulation pathfinding engine.
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1.3 Contributions

Our goal is to provide a free software package with correct and efficient implementation of

constrained Delaunay triangulation algorithms and data structure.

In this thesis, we describe our dynamic constrained Delaunay triangulation software

package which uses exact geometric computations. The contributions of this thesis to the

field of computational geometry are:

• Most geometric algorithms are not designed for robust implementations. A robust

implementation of the geometric algorithms depends on the exact computation of ge-

ometric functions [30]. However, exact computations tend to be much slower than

inexact computations such as fixed-precision floating point computations. We cre-

ated a free C++ software package which implements dynamic constrained Delaunay

triangulation. The package is fast, robust and versatile. Exact computation is used

to compute geometric functions such as the Orientation, InCircle and Intersection

tests.

• Geometric algorithms are typically hard to implement because of the degenerate cases

and rounding errors. We documented the degenerate cases and the geometric functions

affected by numerical errors in various update scenarios. We propose modifications

and extensions to the original algorithms to handle these cases.

• Kallmann’s DCDT implementation uses the Oriented Walk algorithm for point lo-

calization which suffers from degenerate cases during the walking process. Our im-

plementation uses a sector-based point localization algorithm [12]. We proposed a

replacement of the Oriented Walk algorithm by the Remembering Stochastic Walk

algorithm as the underlying walking algorithm for the sector-based point localization.

The Remembering Stochastic Walk algorithm saves on average 1.5 Orientation tests

per visited triangle by remembering the cross edges between triangles. The savings

in computation time can be quite significant because exact computation is used to

compute the Orientation test. The Remembering Stochastic Walk algorithm nat-

urally handles the degenerate cases in Oriented Walk by randomizing the edge test

sequence. Therefore, the implementation is simpler without the need to distinguish

different degenerate cases.

• The sector-based point localization algorithm proposed in [12], which is used in the

point insertion operation, causes the average performance for n point insertions to be

quadratic. This is caused by the need for sector updates after each point insertion
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to maintain correct sector-triangle associations. We proposed a new sector update

scheme which eliminates the need for liner-time sector updates. Experimental results

indicate that the average performance of n point insertions using our Sector-based

point localization algorithm is better than point insertions using other on-line point

localization algorithms. Our implementation performs better on large sets of input

compared to Kallmann’s point insertion implementation which uses Oriented Walk

algorithm.

• We discuss the numerical rounding errors in fixed-precision floating point arithmetic

and review the exact computation of constrained Delaunay triangulations using dy-

namic filters and arbitrary-precision arithmetic. Extensions to the original algorithm

and implementation are proposed to improve the efficiency of exact computations. The

computation inOrientation test is much simpler than the computation in Intersection

test. We use the formulation of four orientation tests to test the intersection test be-

tween two line segments. The computation time is reduced for some non-intersecting

cases where only two orientation tests are needed. With careful engineering of our im-

plementation, we are able to quickly compute and store exact intersection coordinates

of crossing line segments with integral endpoint coordinates in the range of 0 to 106.

The range is sufficient for many applications, such as pathfinding in video games. The

replacement of arbitrary-precision arithmetic by fixed-precision arithmetic in the in-

tersection computation speeds up the computation and reduces memory requirements.

1.4 Thesis Outline

Chapter 2 reviews Delaunay and constrained Delaunay triangulation and motivates why

they can be constructed by means of edge flipping.

Chapter 3 surveys different algorithms for computing constrained Delaunay triangulations

and discusses the incremental algorithms used in our implementation.

Chapter 4 discusses the exact computation of geometric functions by means of combining

interval arithmetic and arbitrary-precision arithmetic.

Chapter 5 presents the experiments and compares the performance of update operations

in Kallmann’s DCDT implementation and in ours.

Chapter 6 concludes the thesis with a summary and a discussion of future work.
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Chapter 2

Properties of Triangulations

In this chapter, we first give a review of 2D triangulations. We will show various properties of

a point set triangulation discussed in [28]. Secondly, we introduce the Delaunay triangulation

which maximizes the minimum interior angle among all possible triangulations of a point

set. A sequence of proper edge flips will increase the minimum angle in the triangulation

and result in the maximization of the minimum angle in Delaunay triangulation as proved

by Herbert [15]. We then describe constrained Delaunay triangulation which relaxes the

definition of Delaunay triangulation to accept constrained line segments as inputs which

can not be changed in the triangulation [1],[9]. Finally, we discuss a dynamic version of the

constrained Delaunay triangulation that can handle mesh changes efficiently.

2.1 Planar Graphs

When we link a set of random points on a piece of paper, we tend to do it without crossing

existing edges. This is done to avoid congestion in the drawing. Such non-crossing links

are desirable in many applications. Examples are city planning, drainage design and object

modeling.

In computational geometry, such drawings without crossing edges are called planar

graphs. If we only use straight lines to connect the points, the graph is called planar

straight line graph (PSLG). One of the most important properties of planar graphs is Eu-

ler’s formula:

Theorem 2.1.1 Let PG(P) be a planar graph with v vertices, e edges and f faces, then:

v = e− f + 2 (2.1)
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An inductive proof of Theorem 2.1.1 can be found in [4]. We will use Euler’s formula to

prove the property of triangulations in the next section.

2.2 Triangulations

As explained in [7] and [28], a triangulation T(P) is a maximal embedded planar graph in

the plane. The triangulation connects all the points in P with a set of edges E. Edges in E

intersect only at common endpoints in P. Different edges contain different sets of endpoints,

and there are no intersecting edges in E. Also, any new edge inserted after the triangulation

will intersect an existing edge in the planar graph. If not all points in P are collinear, the

boundary edges of the triangulation form a convex hull of P (see Figure 2.1). Therefore, a

triangulation partitions complicated geometric objects into simple ones, namely triangles.

Some important properties of triangulations are stated in the following theorem:

Theorem 2.2.1 Let P be point set with |P | = v > 2 and T(P) be a triangulation of P

with k boundary edges. Then, there are exactly e=3v-3-k edges and f=2v-1-k faces in the

triangulation.

Figure 2.1: A triangulation with v=6, k=5, e=10, and f=6

Proof Let T(P) be a triangulation containing v vertices, e edges and f faces. Then there

are m interior triangles and one outer face: f = m+ 1.

f = m+ 1 (2.2)

Each face has three edges, so the number of double counted edges is

6



2e = 3m+ k

e =
3m+ k

2
(2.3)

Since a triangulation is a planer graph, we can apply Euler’s formula for planer graphs

[4], which states:

v = e− f + 2 (2.4)

Substituting (2.2) and (2.3) in (2.4) gives us:

v =
3m+ k

2
− (m+ 1) + 2 (2.5)

2v = 3m+ k − 2m− 2 + 4 (2.6)

Solving for m yields:

m = 2v − 2− k (2.7)

Substituting m in(2.2) and (2.3)results in (See Figure 2.1):

e = 3v − 3− k (2.8)

f = 2v − 1− k (2.9)

2.2.1 Basic Routines for Triangulation

The basic operations for creating a triangulation incrementally are:

• Point localization: The point localization procedure locates the face containing the

point to be inserted, or it detects when the points coincides with an existing point or

lies on an existing edge.

• Point Insertion: The point insertion procedure inserts a point into the current trian-

gulation, by splitting edges if necessary and adding new edges.

The triangulation of a point set can be constructed using Radial Sweep [31]. The central

point of the input is determined and connected to other points in the input. Then, the

boundary edges are connected. Finally, a convex hull of the input set is constructed to form
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the triangulation of the input point set. Other more efficient algorithms such as Divide and

Conquer and Sweep Line can also be used to construct triangulation of a given point set

(see Section 3.2). We will discuss the details of point localization operation in Section 3.2.1

and point insertion operation in Section 3.2.2.

2.3 Delaunay Triangulations

A special case of the triangulation for point set P is the Delaunay triangulation DT(P). The

difference between a general triangulation and a Delaunay triangulation is that the minimum

interior angle of the triangles in DT(P) is maximized among all possible triangulations of

P. Intuitively, this increases the “fatness” of the triangles in DT(P), and therefore generates

well shaped triangles that tend to be nearly equiangular [36] which covers the area more

uniformly, which is beneficial in applications like pathfinding, in which sliver-like triangles

can increase the search overhead of A*. Therefore, the well shaped triangles are desirable

in our application.

First, we define the minimum angle and empty circumcircle property and prove the

connection between these two properties.

Definition 2.3.1 Let A(T (P )) = [a1, a2...an] be the interior-angle vector of triangulation

T (P ) of point set P in ascending order.

Definition 2.3.2 Let CC(pipjpk) be the circumcircle of triangle 4 pipjpk in the trian-

gulation. CC(pipjpk) is empty if and only if it does not contain any point p ∈ P in its

interior.

We use Thale’s theorem to prove the geometric properties of Delaunay triangulation.

Theorem 2.3.3 [28] Let ab be the line segment intersecting circle C at points a and b.

Point c lies inside C, d lies on C and e lies outside C if and only if 6 acb > 6 adb > 6 aeb

Lemma 2.3.4 Let 4abc and 4abd be two adjacent triangles sharing the common edge ab.

If either CC(abc) or CC(abd) is non-empty, then the minimum interior angle of the angle

vector [a1 . . . a6] increases after flipping the common edge.

Proof We follow the description in [15] to prove the above lemma. Let ab be the common

edge of two adjacent triangles 4abc and 4abd with interior angles a1, a2, a3 and a4, a5, a6

(see Figure 2.2 left). Hence, 4abc and 4abd forms a convex quadrilateral adbc with ab

being the diagonal of the quadrilateral. Assume point d is inside the CC(4abd). Flipping
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Figure 2.2: Edge flipping and change of circumcircles

the diagonal ab to cd replaces the existing triangles 4abc by 4acd with interior angle

a′1, a
′
2, a
′
3 and replaces 4abd by 4cdb with interior angle a′4, a

′
5, a
′
6 (see Figure 2.2 right).

We prove that the minimum angle of the new angle vector will increase after the edge flip

when the empty circumcircle property is restored. First the trivial case:

a′1 = a1 + a4 > a1

a′5 = a2 + a6 > a2

And following Thales’ theorem, we have:

a′3 > a6

a′6 > a4

Finally, the fact that the opposite angles are identical gives us:

a′2 + a4 = a2 + a′6 ⇒ a′2 > a2 (2.10)

a′4 + a6 = a1 + a′3 ⇒ a′4 > a1 (2.11)

Therefore, the minimum angle of the new angle vector [a′1 . . . a
′
6] increases after the edge flip

that restores the empty circumcircle property. The minimum angle of the new angle vector

stays the same if a, b, c, d are co-circular and increases otherwise.

This shows that the minimum angle increases after the flip. Now we show that after

flipping, the circumcircles are empty.
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Lemma 2.3.5 Let 4 abc and 4 abd be two adjacent triangles sharing a common edge ab.

If either CC(abc) or CC(abd) is a non-empty circumcircle, then CC(adc) and CC(cdb) are

empty after flipping ab to cd.

Proof Consider the fact that angle a2 and a′2 share the same opposite edge ac. Following

Equation (2.10) and Thales’ theorem, point b is outside CC(4adc). Similarly, a1 and a′4

share the same opposite edge db. Following Equation(2.11) and Thales’ theorem, point a is

outside CC(4cdb). Therefore, CC(adc) and CC(cdb) are empty after flipping ab to cd

We formally define the Delaunay Triangulation as the following:

Definition 2.3.6 Let T(P) be a triangulation of a set of n>2 points P and CC(pipjpk) be

the circumcircle of triangle 4pipjpk in T(P). T(P) is a Delaunay triangulation if and only

if all CC(pipjpk) in T(P) are empty.

Lemma 2.3.5 suggests that we can construct a Delaunay triangulation of P by flipping

the diagonal edges in non-Delaunay triangulation of P until the circumcircles of all triangles

are empty. Definition 2.3.6 implies that the edge flipping process for Delaunay triangulation

terminates. The following lemma shows the termination of edge flipping process:

Lemma 2.3.7 [15] The edge flipping process for Delaunay triangulations terminates.

A proof of Lemma 2.3.7 by lifting the triangulation is contained in [15]. We can also

show that there are only finitely many triangulations for a given point set and each edge flip

switches the triangulation from one to the other while increases the interior-angle vector.

Therefore, the edge flipping process terminates.

Moreover, the Delaunay triangulation has the following property:

Theorem 2.3.8 [28] Any Delaunay triangulation of point set P maximizes the minimum

angle over all triangulations of P

2.4 Constrained Delaunay Triangulations

For some applications, Delaunay triangulation of point sets may not be sufficient to rep-

resent the environment precisely. For example, the existing roads and bridges can not be

represented by points in the triangulation of terrains. Constrained Delaunay triangula-

tion is a extended version of Delaunay triangulation whose input consists of vertices and

non-crossing edges that must be present in the triangulation. Figure 2.3 shows that a line

10



a

b

c
d

U n c o n s t r a i n e d  D e l a u n a y  E d g e

a

b

c
d

C o n s t r a i n e d  L i n e  S e g m e n t

Figure 2.3: Delaunay triangulation and constrained Delaunay triangulation

segment input breaks the empty circumcircle property of the Delaunay triangulation. The

input is constrained, so no edge flip can be applied to that line segment. In this section, we

discuss Constrainted Delaunay Triangulation (CDT) which allows us to construct triangu-

lations with point and line segment inputs.

First, we have the following definition and notions.

Definition 2.4.1 Let P be a set of points and E be a set of line segments. And let a and

b be two points in the plane. a and b are visible to each other if and only if the segment ab

does not contain any points from P in its interior and does not cross any line segments in

E.

Furthermore, the weak empty circumcircle property is defined as follows:

Definition 2.4.2 Let CC(pipjpk) be the circumcircle of triangle4 pipjpk in the constrained

Delaunay triangulation. CC(pipjpk) is empty if and only if it does not contain points from

P in its interior that are visible from point pi, pj or pk.

We try to construct a triangulation similar to the Delaunay triangulation while preserv-

ing the weaker circumcircle property. The constrained Delaunay triangulation relaxes the

circumcircle property to cope with constrained line segments. Intuitively, we can view the

constrained line segments as a set of obstacles, which block the visibility from other vertices

in the triangulation (see Figure 2.4).

With the weak empty circle definition above, we can formally define the constrained

Delaunay triangulation as the following:
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a

b

V e r t e x  n o t  v i s i b l e

c

v

Figure 2.4: Vertex v is not visible from the interior of face 4abc

Definition 2.4.3 [8] A constrained Delaunay triangulation CDT(P,E) of point set P and

constrained edge set E is a triangulation T of P with E included in T. Each edge e of T is

either an edge from E or there exists a circle C with the following properties

• the endpoints of e are on the boundary of C, and

• if any point from P is in the interior of C then it is not visible from the endpoints of

e (i.e. it satisfies the weak empty circle property).

The constrained Delaunay triangulation is as close to the Delaunay triangulation as

possible while keeping the constrained edges. Note that it is possible to have a set of

constraints that forces the CDT to become any desired triangulation. Therefore, we can

construct the constrained Delaunay triangulation which maximizes the minimum interior

angle of the triangles as much as possible by flipping only the unconstrained edges [1].

2.4.1 Basic Routines for constrained Delaunay Triangulation

The input of the constrained Delaunay triangulation consists of a set of points and a set

of constrained edges. The points and constrained edges in the triangulation are fixed.

Therefore, they are not allowed to be changed. The constrained Delaunay triangulation can

be constructed with the following operations:

• Point insertion for constrained Delaunay triangulation.

• Constraint insertion.

The difference between point insertions for Delaunay triangulation and point insertions

for constrained Delaunay triangulation is the process of restoring the empty circumcircle

12



property. The constrained edges are fixed for constrained Delaunay triangulations. There-

fore, the edge flipping procedure restores the triangulation to constrained Delaunay trian-

gulation preserving the weak empty circumcircle property. Section 3.3 explains the details

of the incremental algorithm for constraint insertions.

2.5 Dynamic Constrained Delaunay Triangulation

In the previous section, we showed that the constrained Delaunay triangulations can be

generated by ensuring the weaker circumcircle property. In this section, we explore the

requirements for maintaining constrained Delaunay triangulation dynamically.

Geometric algorithms that assume static inputs and use preprocessed data structures

are not suitable for applications that require dynamic updates. For example, meshes can

change frequently in applications areas such as CAD, robotics and video games. The focus

of this work is to create fast terrain modeling software for RTS games [6] which allows us to

perform pathfinding on triangulated meshes [12]. For this we need to update the constrained

Delaunay triangulation when changes such as constructioned buildings or destroyed bridges

destructions occur. As the changes in the terrain are not known beforehand, preprocessing

does not help much and efficient local updates on the constrained Delaunay triangulation

are required. Dynamic constrained Delaunay triangulation software satisfies the following

conditions:

• It provides local updates to the constrained Delaunay triangulation.

• It preserves the weak empty circle property after each local update.

Dynamic constrained Delaunay triangulation algorithms were introduced by Kallmann

et al.[23]. The DCDT software package implementing these algorithms uses floating point

arithmetic and handles degenerate cases such as overlapping and intersecting constraints.

In the next chapter, we survey various incremental update algorithms and their im-

plementations for efficient insertion and removal of vertices and constraints in constrained

Delaunay triangulations.
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Chapter 3

Computing Dynamic
Constrained Delaunay
Triangulations

In this chapter, we discuss the algorithms and their implementation for constructing and

updating constrained Delaunay triangulations dynamically. In particular, we describe the

underlying geometric data structures, point localization and incremental updates for con-

strained Delaunay triangulations.

3.1 A Survey of Basic Geometric Data Structures

In computational geometry many ways have been considered to represent polygonal meshes

which consist of a vertex set V , an edge set E and the topological representation of a face

set F . In this section, we survey several data structures and motivate our choice for mesh

representation.

3.1.1 Element Lists and Adjacency Lists

A straightforward mesh representation is to store a list of vertices, a list of edges and a list of

faces, see Figure (3.1). This simple data structure provides the geometric information of the

mesh structure but it requires additional storage for maintaining topological information

in the form of lists that store the adjacency relation between faces, edges and vertices.

The main disadvantage of this straightforward approach is the redundant storage and the

long query time. Additionally, maintaining the topological information is more complex

compared to the other more elegant data structures.
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v 1 .  ( - 1 0 , - 1 0 )

V e r t i c e s :

v2 .  (  10 , - 10 )

v3 .  (  10 ,  10 )

v4 .  ( - 10 ,  10 )

E d g e s :

e 1 .  ( v 1 ,  v 2 )

e 2 .  ( v 2 ,  v 3 )

e 3 .  ( v 3 ,  v 4 )

e 4 .  ( v 4 ,  v 1 )

e 5 .  ( v 2 ,  v 4 )

f 1 .  ( e1 ,  e2 ,  e4 )

F a c e s :

f 2 .  ( e2 ,  e3 ,  e4 )v 1

v 4 v 3

v 2e 1

e 3

e 4 e 2

e 5

f 1

f 2

f3 .  ( e1 ,  e2 ,  e3 ,  e4 )

Figure 3.1: A simple list representation

3.1.2 Winged Edges

In 1975, Baumgart introduced the Winged Edge data structure for polygonal models [3]. In

order to represent a polygonal mesh using this data structure, each vertex and face stores

a reference to its incident edge, and each edge e stores the following references (see Figure

3.2):

• two pointers to its vertices: Dest(e) and Orig(e).

• two pointers to its incident faces : LFace(e) and RFace(e).

• four pointers to its adjacent edges: NextCCW(e), PrevCCW(e), NextCW(e) and Pre-

vCW(e).

e

D e s t ( e )

N e x t C C W ( e )

P r e v C C W ( e )

O r i g ( e )

L F a c e ( e ) R F a c e ( e )

N e x t C W ( e )

P r e v C W ( e )

Figure 3.2: A Winged Edge representation
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The data structure contains both geometric and topological information of the polygonal

mesh. Moreover, it supports fast traversal between vertices, edges and faces, which is

essential for many geometry algorithms. However, the Winged Edge representation lacks

orientation information for edges. Therefore, traversing from edge to edge requires a case

distinction. In the following sections, we will discuss two variations of the Winged Edge

data structure that provide orientation information of the edges.

3.1.3 Half Edges

A variation of the Winged Edge data structure splits edges into two half edges of opposite

direction and stores mutual references between the opposite half edges [25]. The split of the

edge can be either along the faces (FE-HalfEdge) or upon the vertices (VE-HalfEdge), (see

Figure 3.3).

e O p p o s i t e ( e )

D e s t ( e )

P r i o r ( e )

N e x t ( e )

O r i g ( e )

F a c e ( e )

e

O p p o s i t e ( e )

D e s t ( e )

c c w ( e )

O r i g ( e )

F a c e ( e )

c w ( e )

Figure 3.3: FE-HalfEdge and VE-HalfEdge representation
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Algorithm 1 vertexLoop(HalfEdge e1)
1: HalfEdge e2 := e1
2: repeat
3: e2 := e2.next()
4: until e2 = e1

Algorithm 2 faceLoop(HalfEdge e1)
1: HalfEdge e2 := e1
2: repeat
3: e2 := e2.next().oppositeEdge()
4: until e2 = e1

e 1

e 1

Figure 3.4: Loop traversal using the Half Edge representation

In additional to the geometric and topological information provided in the Winged Edge

data structure, the orientation encoding of each edge is also implicitly defined. Therefore,

the Half Edge data structure provides a more efficient traversal mechanism to loop around

a face or a vertex, see code listing in Algorithm 1, Algorithm 2 and their corresponding

figure, Figure 3.4 left, Figure 3.4 right.

The VE-HalfEdge representation, or Split Edge, is the dual form of the FE-HalfEdge

representation [25]. A loop around the face in the VE-HalfEdge representation has the dual

of a loop around the vertex in the FE-HalfEdge representation.

3.1.4 Quad Edge

The Quad Edge is another variant of the Winged Edge data structure where the edge is

split into a quadruplet [25] which is illustracted in Figure 3.5. It was first introduced by L.

Guibas and J. Stolfi to provide a uniform view of a subdivision and its geometric dual [19].

17



For example, the Delaunay Triangulation and its corresponding Voronoi Diagram.

f a c e f a c e

f a c e f a c e

Figure 3.5: A complete Quad Edge example

A Quad Edge cell can be represented with a triple (e, r, f) where e, r and f are defined

as follows [25]:

• A vector of four edge records e[0] . . . e[3] that stores the geometrical information of a

vertex or a face and a reference to an adjacent Quad Edge.

• A two bit index r to address the edge record. r is used to indicate the current viewing

of one of the edge record e[0] . . . e[3].

• A one bit counter f to switch views from above to below. We only need f if we want

to represent both primal and dual view of a geometric structure.

We can remove component f from the triple (e, r, f) if the Quad Edge data structure

represents meshes such as the Delaunay triangulations. Because of the symmetric repre-

sentation, the Quad Edge data structure is able obtain a particular edge record with the

following algebraic edge operators with a calculus modulus 4 for r:

• Rot(e, r) = (e, r + 1): the operator returns an edge record rotated CCW 90 degrees

from edge record er.

• Sym(e) = (e, r + 2): the operator returns an edge record rotated CCW 180 degrees

from edge record er.

• Next(e, r)=(e′, r + 1): the operator returns an edge rotated counterclockwise around

a face or a vertex.
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N e x t ( e , 0 )

eR o t ( e ,  0 )

S y m ( e , 0 )

N e x t ( R o t ( e , 0 ) , 1 )

N e x t ( S y m ( e , 0 ) , 2 )

0

4

3

2

1

2

3

0

1 3

22

3 1

0 0

1

2

3

r = 0

N e x t ( R o t ( S y m ( e , 0 ) , 2 ) , 3 )

1

Figure 3.6: Quad Edge with edge operator Rot,Sym and Next

Figure 3.6 illustrates the algebraic edge operators with the starting edge e and the current

edge record e[0] marked black. The return edge records from the operators are shown in

grey.

3.1.5 Selected data structure

Although the Quad Edge data structure provides a more versatile geometric representation

with similar storage requirements, it needs modulus operation and vector accesses for ba-

sic traversals. For our project, we choose the Half Edge data structure to represent the

underlying triangular mesh because the primal triangulation graph is sufficient for our ter-

rain modeling purposes. Furthermore, the Half Edge data structure provides direct access

to adjacent vertices, edges and faces for traversal operations which are frequently used by

many geometric algorithms. In addition, the interface of Half Edge data structure is eas-

ier to understand. Figure(3.7) shows the design of our Half Edge data structure. For our

implementation, the internal storage is vectors storing pointers to different features in the

triangulation. We extend the Half Edge data structure with the following attributes in

different features:

• Vertex: OutEdge is a pointer to one of the outgoing edges originated from the vertex.
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Figure 3.7: Our Half Edge data structure
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We uses this attribute as the starting edge for or loop traversals around the vertex.

• Edge: left and right store the farthest constrained endpoints. The integer coordinates

of left and right are used to replace the rational coordinates of dest and org as inputs

for intersection computation (see Section 4.3.3). The feature also stores a list of IDs

for constrained edges. An edge can represent more than one constraint in overlapping

cases. The edge is constrained when the ID list is not empty. The ID can also be

used to group the constrained edges of different constrained polygons for constrained

polygon insertion and removal.

3.2 Point Insertion in Delaunay triangulation

Existing Delaunay triangulation algorithms for point sets can be divided into the following

categories:

1. Divide-and-conquers [19]

2. Sweep-line [16]

3. Incremental insertion [19] [28]

The divide-and-conquer algorithm recursively divides the set of input points into smaller

and smaller subsets. It stops the division when the subset of points becomes trivial to tri-

angulate into a Delaunay triangulation. It then merges the smaller Delaunay triangulations

from bottom up to form one complete Delaunay triangulation. The divide-and-conquer

algorithm runs in O(n log n) time.

The divide-and-conquer and the sweep-line algorithms only work with static inputs. In

other words, the set of input points must be known beforehand. In many applications

input points are not known in advance and the input changes dynamically. Therefore,

incremental algorithms are required. Although the incremental algorithms are not asymp-

totically optimal in the worst case, they are more suitable for constructing and maintaining

a constrained Delaunay triangulation dynamically. Although the incremental algorithm has

O(n2) run time in the worst case, the expected run time can still be O(n log n) when the in-

put is evenly distributed [20]. Real world application shows that the incremental algorithm

is faster on average with randomly distributed inputs.

To insert a point P in the Delaunay triangulation, we need to first locate the triangle

F containing the point, insert the point in the triangle by connecting P to the vertices of

F and finally restore the Delaunay property use edge flipping. In the following subsections,
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Figure 3.8: Delaunay triangulation and its dual - the Voronoi Diagram

we present the steps of the incremental algorithm and analyze the run time complexity of

each step.

3.2.1 Point Localization

Point location is a fundamental problem in computational geometry. It is the starting point

of many complex geometric algorithms. An inefficient implementation can affect the overall

performance of a geometric algorithm. Various point localization algorithms have been

proposed to provide optimal or good average case performance. In this section, we survey

the point localization algorithms and discuss the ones suitable for dynamic environments.

First, we define the point localization problem as the following:

Definition 3.2.1 Given a Delaunay triangulation DT(V,E,F) with a set of vertices V, a

set of edges E and a set of face F, and a point p with coordinate x and y in the plane, the

goal is to identify a vertex v ∈ V, an edge e ∈ E or a face f ∈ F where point p is located.

A brute force approach is to iterate through all the faces and test if point P is located

in the face. Hence, identifying the face point P lies in or the edge or vertex point P lies on

has linear time complexity in the number of faces in the mesh

An application using point localization may involve many queries. Several complex

methods operating on preprocessed data structures have been proposed to reduce the worst

case query time from O(n) to O(log n). The methods include:

• Vertical slabs [33]

• Triangulation refinement [27]
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• Trapezoidal maps [34]

These methods assume a static polygonal mesh and use a preprocessed data structure

to speed up queries. However, many applications such as terrain modeling in games have

to maintain a dynamic polygonal mesh. The polygonal mesh is called dynamic if both

insertions and deletions of the mesh elements are to be executed in real time. Therefore,

using a preprocessed data structure is not always ideal for point locating queries because of

the cost of maintaining the associated data structure.

A simple walking method for locating query points was first introduced by Green and

Sibson [18], based on ideas of Lawson [29]. It can be easily implemented without preprocess-

ing or using any sophisticated data structure. The worst-case running time for a query with

the walking point-location method on Delaunay triangulation is O(n) with n vertices[19].

However, the expected running time for a query is O(‖PQ‖
√
n) when the vertices are uni-

formly distributed [13]. ‖PQ‖ denotes the length of the line segment PQ where Q is the

starting location (explain below) for the walk and P is the query point. Variants of the

simple walking algorithm have good average running time. They are simple to implement

and more suitable to use for dynamic meshes. The variants of walking algorithms include

[13]:

• Straight walk

• Orthogonal walk

• Oriented walk

• Stochastic walk

For the straight walk algorithm, the walking process starts at a random location Q within

the mesh. It forms a line segment QP between the random location and the query point.

The starting location can be a vertex or a point within a random edge or face depending on

the implementation. In our example, we choose a random point within a face as the starting

location. The walk steps through the faces intersected by the line segment QP towards the

query point P and the direction of the walk is guided by the intersection test towards P (see

Figure 3.9).

The orthogonal walk algorithm partitions the walk into two axis-aligned straight walks.

The expensive intersection test used in the walk can be replaced by simple coordinate

comparisons while the number of triangles visited of the walk increases (see Figure 3.10).

Replacing the intersection test can significantly increase computation speed if exact com-
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Q

P

Figure 3.9: An example of straight walk

Q

P

T

A b o v e  Q T

B e l o w  Q T

L e f t  o f  T P

R i g h t  o f  T P

Figure 3.10: An example of orthogonal walk

putation is used for the intersection test. We will discuss the impact of exact computation

on the computation speed of geometric functions in the next chapter.

In order to handle the degenerate cases such as QP passing through vertices, both the

straight walk and orthogonal walk needs to implement specific case handlers, which might

require restarting during the walking process. Therefore the implementation is more complex

than the proposed straight and orthogonal walk algorithms [13].

Another variant of the straight walk algorithm is the oriented walk. The walk only uses

the orientation tests between the current triangle T and query point P to find a crossing

edge e separating P and T in a plane. The oriented walk eventually enters the final trian-
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gle that encloses the query point and terminates. The oriented walk visits triangles in the

vicinity of the line segment QP instead of being limited to the ones that intersect QP (see

Figure(3.11)). It replaces the expensive intersection test with the less expensive orientation

test to guide the walk towards query point P.

Q

P

Figure 3.11: An example of oriented walk

The oriented walk algorithm inherently handles the degenerate cases. However, it can

enter an infinite loop for non-Delaunay triangulations. Figure(3.12) shows an example of

a walking sequence in non-Delaunay triangulation that starts from the edge at step 1 and

repeats after crossing the edge at step 6. The loop occurs because the first edge selected for

the orientation test is fixed. Therefore, the oriented walk algorithm may enter an infinite

loop in a constrained Delaunay triangulation because it contains some constrained edges

that are not Delaunay.

The stochastic walk algorithm solves the infinite loop problem by randomizing the test

sequence for edges in the triangle. Hence, allowing the walk to eventually escape the loop.

The randomness is important when more than one edge can be selected as the crossing edge.

(see Figure 3.13). The geometric function used in the stochastic walk is the orientation test.

We can identify the crossing edge with 1, 2 or 3 orientation tests within the current triangle.

Therefore, the expected number of orientation tests is 1+2+3
3 = 2.

The efficiency of the stochastic walk algorithm can be further improved by remembering

the orientation of the crossing edge (Remembering Stochastic Walk [21]). It saves one orien-

tation test per visited triangle . Consider that the walk moves from 4abc to 4bcd crossing
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1

2

3

4

5

6
P

Figure 3.12: Point location loop in oriented walk

1

2

P
3

4

5

6

Figure 3.13: Escaping infinite loop with stochastic walk

edge bc, the orientation of bc is known when the walk enters 4bcd. It is not necessary to

test upon bc in 4bcd. Therefore one orientation test can be saved by remembering the

entering edge. The next triangle can be found with only 1 or 2 orientation tests within the

current triangle and the expected number of orientation tests is 1+2
2 = 1.5. The original

algorithm does not distinguish query points located on edge or vertex. We modify the pro-

posed algorithm by adding additional tests for the two cases. The pseudocode is presented

in Algorithm 3. The worst case performance of the algorithm is O(2
3√n) and terminates

with probability 1 [13].

The walk can start from any triangle in the mesh. Finding a good start triangle can
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Algorithm 3 rememberingStochasticWalk(Face currentFace,HalfEdge crossEdge,Point p)
1: HalfEdge e1 := select a random Edge from currentFace;
2: e2 := e1;
3: repeat
4: if e2 6= crossEdge then
5: Vertex v1 := e2.origin;
6: Vertex v2 := e2.destination;
7: if CCW (v2, v1, p) then
8: return locatePoint(nextFace,crossEdge,p)
9: end if

10: end if
11: e2 := e2.next()
12: until e2 = e1
13:

14: {Additional test for query point on vertex or edge}
15: if onV ertex(currentFace, x, y) then
16: return the vertex found
17: else
18: if onEdge(currentFace, x, y) then
19: return the edge found
20: end if
21: end if
22: return currentFace

greatly improve the query time of a point localization using a walking method. A simple

approach is to use the last visited triangle in the mesh. This triangle is usually adjacent to

the site of a previous change in the triangulation. This is suitable for polygonal constraint

insertions where the vertices of the polygon are inserted in order. Therefore, each query point

is close to the most recently updated triangles in the mesh. Other more general approaches

have been proposed with good average query time. In the jump-and-walk algorithm, an extra

jumping step was introduced by Devroye et al. to find a good start triangle by sampling

random vertices[14]. The jump-and-walk algorithm consists of the following steps:

Algorithm 4 cubicRootSampling(Face currentFace,HalfEdge crossEdge,Point p)
1: Select m vertices from the current list of n vertices in the mesh, m<n.
2: Find the vertex Q closest to the query point P among the m vertices.
3: Perform the straight walk starting from Q to find the triangle enclosing the query point

P.

The expected running time of the jump-and-walk algorithm is O( 3
√
n) when the number

of sampled vertices m is d 3
√
ne and the query point P is 2

√
log n
6√n

away from the boundary ∂C

of a bounded convex set C of unit area [14].

A more straightforward sector-based point localization algorithm was introduced in [12].

It overlays a uniform grid to the triangulation (see Figure 3.14) and associates the triangles
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Q

P

X

Figure 3.14: An example of sector-base point location

Algorithm 5 sectorBasedLocatePoint( HalfEdge crossEdge, Point p )
1: Find sector sij containing p.
2: Retrieve the corresponding face f in sij .
3: if f is a valid face then
4: result := rememberingStochasticWalk(f , nullCrossEdge, p );
5: else
6: result := rememberingStochasticWalk(updated face in the mesh, nullCrossEdge, p

);
7: end if
8: sij := result
9: return result;

to the sectors where the bounding box of the triangle covers the center of the sectors. The

bounding box can be easily calculated by taking the maximum and minimum coordinates

of the triangle vertices. The sector location of the query point can be computed and the

associated triangle is used as the starting triangle of a Remembering Stochastic Walk. This

speeds up the point localization query by jumping to a sector close to the query point

and use the associated triangle as the starting location for the stochastic walk algorithm,

thereby reducing the number of triangles visited of the stochastic walk. In order to keep

Algorithm 6 sectorUpdates( )
1: for all face f in the triangulation do
2: Compute the bounding box for f using its maximum and minimum vertex coordinates.
3: for all sector s covered by the bounding box do
4: Store f in s
5: end for
6: end for
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track of the changes made in the triangulation, there are overheads to update the associating

triangles in the sector (see Algorithm 6). The proposed algorithm performs sector updates

before each point insertion, which causes quadratic time performance for point insertions.

To reduce the overhead, we propose an efficient update method to avoid the invalidation of

sectors when the triangulation is changed. The walking process starts from a valid sector

triangle and uses the last updated triangle as the starting location when the sector search

hits an invalid sector triangle that has been changed or removed in the triangulation. The

search result of the Remembering Stochastic walk is stored in the corresponding sector to

eliminate the need for linear-time sector updates. The method originated from the observe

that the Remembering Stochastic Walk traverses triangles adjacent to the querying sector

such that the return value of Remembering Stochastic Walk is located within or adjacent

to the querying sector. Therefore, we can store the return value of the current query in the

sector, which allows us to dynamically associate the sector to an adjacent triangle without

the need to go through all the triangles and update the covering sectors (see Algorithm 5).

The algorithm can count the number of triangles visited in Remembering Stochastic Walk

and bound the exponential worst case search time by a linear search.

3.2.2 Point Insertion

The implementation presented in this section follows closely the point insertion algorithm

described in [28]. In this section, we discuss the details of the point insertion algorithm and

describe the important steps to complete the point insertion operation.

After the point localization step, the geometric feature containing the insertion point pr

is found. The geometric feature can be a vertex, an edge or a face in the mesh. If the pr

is on a vertex, we can simply reuse the existing vertex because it is already inserted at the

location. The remaining two cases require subdividing the triangle into smaller ones with

pr as one of the vertices.
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Figure 3.15: Point insertion cases

• If pr is in a face ∆pipjpk, we insert the pr in the triangle and create edges linking pr

to vertices of ∆pipjpk, see Figure 3.15 left and Algorithm 7.

• If pr happens to fall on an edge pipj between two adjacent triangles, we split the edge

pipj at pr and create planar edges that link vertices pl and pk to vertex pr, see Figure

3.15 right and Algorithm 8.

Algorithm 7 insertPointInFace(Face pipkpj Point pr)
1: create Vertex pr;
2: connect Vertex pi and pr;
3: connect Vertex pj and pr;
4: connect Vertex pk and pr;

Algorithm 8 insertPointOnEdge(Edge pipj Point pr)
1: split Edge pipj at Point pr;
2: connect Vertex pl and pr;
3: connect Vertex pk and pr;

After the insertion operation, the mesh remains a triangulation with the additional vertex

pr. However, the most recently created triangles might violate the empty circle property and

hence the edges incident to the most recently created triangles can become non-Delaunay

edges. In the next section, we present the steps to restore the empty circle property using

edge flipping and restoring the Delaunay property after a point insertion.
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3.2.3 Restoring the Delaunay Property

Every edge is legal before pr is inserted into the Delaunay triangulation. The edges incident

to the changed triangles can be divided into two categories:

• The interior edges. These are the most recently created edges incident to pr.

• The outer edges. These are the border edges incident to the changed triangles after

pr is inserted.

The interior edges, incident to pr, are legal edges because we can shrink the originally

empty circumcircle C of the triangle to a circumcircle C ′ of the smaller triangle. Thus, no

vertices is in the interior of C ′. The outer edges can be illegal and need empty circumcircle

checks to ensure it satisfies the Delaunay property. Therefore, we have to check the outer

edges and flip the illegal ones to restore the empty circumcircle property (see Algorithm 9

and 10).

Algorithm 9 insertPointInFaceDelaunay(Face pipkpj Point pr)
1: create Vertex pr;
2: connect Vertex pi and pr;
3: connect Vertex pj and pr;
4: connect Vertex pk and pr;
5: {Restore the Delaunay property by recursively flipping the illegal edges. Note that an

illegal edge is flipped only once}
6: legalizeEdge(pipj);
7: legalizeEdge(pjpk);
8: legalizeEdge(pkpi);

Algorithm 10 insertPointOnEdgeDelaunay(Edge pipj Point pr)
1: split Edge pipj at Point pr;
2: connect Vertex pl and pr;
3: connect Vertex pk and pr;
4: {Restore the Delaunay property by recursively flipping the illegal edges. Note that an

illegal edge is flipped only once}
5: legalizeEdge(pipl);
6: legalizeEdge(plpj);
7: legalizeEdge(pjpk);
8: legalizeEdge(pkpi);

After the edges are flipped, the edges incident to the new triangles may now be illegal

and a recursive step is needed for those new outer edges. Algorithm 11 is a recursive

implementation of illegal edge flipping procedure.

The point insertion algorithm terminates in the worst case after O(n) steps. [28] [1].

The expected running time, however, is O(log n) when the points are in general position.
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Observe that an edge flip replaces an edge not incident to pr with one that is incident to

pr. Furthermore, [28] shows that every edge flip creates a legal edge. Therefore, the illegal

edges are only flipped once and the legalizeEdge procedure terminates when all the edges

are legal.

Algorithm 11 legalizeEdge(Edge pipj)
1: {Assume pipj is the diagonal of the quadrilateral prpiplpj}
2: if pipj is not a boundary edge then
3: if CC(4 pipjpr) contains pl or CC(4 pipjpl) contains pr then
4: flip pipj to prpl;
5: legalizeEdge(pipl);
6: legalizeEdge(pjpl);
7: legalizeEdge(pipr);
8: legalizeEdge(pjpr);
9: end if

10: end if

Algorithm 12 shows that the point insertion of a Delaunay triangulation consists of

one point localization query and the corresponding Delaunay point insertion on the edge

or in the face. The constraint insertion operation relies on point insertion procedures in

Algorithm 12 to insert the constraint endpoints.

Finally, Algorithm 13 constructs the Delaunay triangulation of point set P . In the next

section, we will discuss the constraint insertion algorithm and describe the steps needed to

maintain the constrained Delaunay triangulation.

Algorithm 12 insertVertex(int x, int y)
1: Element res := sectorBasedLocatePoint(nullStartFace, Point(x,y));
2: if res is Edge then
3: insertPointOnEdgeDelaunay(res,Point(x,y));
4: else
5: insertPointInFaceDelaunay(res,Point(x,y));
6: end if

Algorithm 13 constructDelaunayTriangulation(point set P )
1: Initialize the bounding box for P and triangulate it with a diagonal edge.
2: for all input points pi in input set P do
3: insertVertex(pi.x, pi.y)
4: end for

3.3 Constrained Edge Insertion

In this section, we discuss the implementation of the constrained edge insertion algorithm in

the constrained Delaunay triangulation. The implementation follows Anglada’s incremental
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approach for constraint insertions [1]. We focus on a correct and robust implementation

to avoid crashes or incorrect outputs which are not acceptable in many applications. The

algorithm proposed by Anglada assumes general position the input data [1]. In our imple-

mentation, various modifications to the Anglada’s incremental algorithm are introduced to

handle the degenerate cases during constraint insertion.

First, we discuss Anglada’s incremental algorithm for constraint insertion in constrained

Delaunay triangulation. We assume, without losing generality, that all the edges intersected

by the inserting constraint are unconstrained edges which can be modified in the triangula-

tion. We will discuss the special case where the inserting constraint intersects with existing

constrained edges later. The algorithm inserts a constraint edge with the following steps,

see Algorithm 14 Figure(3.16):

Algorithm 14 insertConstraint(Point a, Point b)
1: Insert point a and b in the constrained Delaunay triangulation.
2: Remove unconstrained edges ei that are intersected by line segment ab.
3: Insert the constraint ab.
4: Retriangulate the polygonal region above and below the constraint ab.

In step 1, we invoke the point insertion algorithm from Algorithm 5. Inserting endpoints

a and b in the constrained Delaunay triangulation. The constrained Delaunay property is

restored after legalizing the edges with the weak empty circumcircle property.

After the endpoints of ab are inserted in the constrained Delaunay triangulation, the

algorithm uses a straight-line walk from endpoint a to endpoint b to record the intersecting

edges in the triangulation. We need to locate the first triangle t that intersects with ab. This

is done by executing the vertex loop around a from Algorithm 1 and testing the intersection

between the border edges and line segment ab.

Once the starting triangle is found around endpoint a, the algorithm executes a walk

across the shared edge intersecting ab to an adjacent triangle using the intersection test.

It keeps walking from triangle to triangle along ab, collecting the intersecting edges {ei}

until endpoint b is reached. We can efficiently collect two sets of the vertices {pai} above

and {pbi} below ab in the same pass. The two sets of vertices are needed to re-triangulate

the polygonal region in step 4. The intersection test is a geometric function with expensive

computation, especially when an arbitrary precision data type is used in the function to

ensure the exactness of the geometric computation. We will discuss the modifications to

avoid using these expensive geometric functions in the next chapter.

The unconstrained edges do not cross the constrained edges in a planar triangulation, it

is safe to remove the unconstrained edges in {ei} from the triangulation which results in an
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Figure 3.16: Constraint insertion

open regions around the insertion. This completes the operations in step 2.

Step 3 partitions the open polygonal region from step 2 into the upper and lower half

separated by ab. A unique constraint ID for ab is added to the ID list of ab making it
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constrained. Each constrained edge maintains a list of unique constraint IDs for dynamic

updates and for special cases in the constrained Delaunay triangulation such as overlapping.

The ID list of a constraint line segment that represents overlapping between two constraints

contains two constraint IDs. Then, the upper and lower half of the open region will be

re-triangulated in step 4.

The edges in the exterior of the open polygonal region are the same as those in the

constrained Delaunay triangulation before the constraint insertion. Therefore, the triangles

in the exterior still satisfy the weak empty circumcircle property for constrained Delaunay

triangulation. Thus, no changes are needed for the exterior of the open polygonal region.

In step 4, the interior of the upper and lower open region are simple polygons. Therefore,

a simple polygon triangulation algorithm observing the empty circumcircle property is suf-

ficient to re-triangulate the upper and lower open region. For instance, the re-triangulation

process recursively identifies the vertex c ∈ {pai} in the upper open region, forming 4abc

satisfying the empty circumcircle property. The process splits the simple polygon into a

triangle and two sub open regions PE and PD to be re-triangulated (see Figure(3.17)).

The re-triangulation process terminates when the sub regions are reduced to triangles. The

same process can be used to re-triangulate lower open region.

a

b

P D

P E
c

P D
c

Figure 3.17: Subregions to be re-triangulated

In order to have a robust implementation, we need to pay attention to the special cases

that may arise:

• The inserted endpoints a and b are connected by an unconstrained edge. A vertex loop
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around a with intersection test will not find the starting triangle and might result in

an infinite loop if this special case is not dealt with. For this special case, we can

simply identify the unconstrained edge connecting ab, insert the constraint ID to the

constraint ID list of ab, hence complete the constraint insertion.

• Another similar case occurs when the constrained line segment ab to be inserted over-

laps an existing edge. For this case, we can also identify the overlapping portion of

the edge, insert the constraint ID to the constraint ID list of the overlapping edge and

recursively insert the remaining non-overlapping portion.

• A last degenerate case is that the constrained line segment ab intersects with existing

constraints or vertices. We identify the intersecting constraints or vertices during the

straight-line walk in step 1, insert the intersection point on the constrained edges us-

ing point insertion. We break up the insertion of ab into small constrained intervals

between intersection points. We can iteratively insert the individual small constrained

intervals using Algorithm 14 because the edges intersected by those constrained inter-

vals are unconstrained edges.

The worst case run time of our implementation is the same as Anglada’s incremental algo-

rithm while the robustness of our implementation is greatly improved by carefully handling

the special cases. Let e be the number of triangles in constrained Delaunay triangulation

intersected by the constrained line segment ab. The dominating step is the re-triangulation

of the open polygonal regions. The total number of vertices in the open regions decreases by

one after each recursive call for simple polygon triangulation, creating O(e2) triangulation

steps. Therefore, the worst case run time of the incremental constraint insertion is O(e2).

3.4 Vertex Removal

In order to support constrained Delaunay triangulation dynamically, we need to provide

the removal procedures. The vertex removal process follows M. Kallmann’s implementation

[23].

Vertex removal is important for maintaining a dynamic constrained Delaunay triangula-

tion, it is especially important for constrained polygon removals. In this section, we present

the step for vertex removal in constrained Delaunay triangulation. During the vertex re-

moval process, the following case should be identified and handled in order to maintain a

fully dynamic triangular mesh:

1. The removing vertex is incident to only unconstrained line segments.
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2. The removing vertex is an endpoint of a constrained line segment.

3. The removing vertex is the intersection of two or more constrained line segments.

The first two cases are trivial. For case 1, we first remove the unconstrained edges

incident to the vertex, then remove the vertex and re-triangulate the open region. For case

2, we should leave the vertex in the triangulation because it is one of the endpoints of a

constrained line segment. Case 3 deals with the steiner vertices after a constraint removal.

We remove the steiner vertex if there is only one constrained line segment containing it (see

Figure(3.18)). The detail of the implementation is presented in Algorithm 15.

Algorithm 15 removeVertex(Vertex v)
1: loop through the edges incident to v, count and record the constrained ones.
2: if constrained edge count = 0 then
3: Remove the vertex v and its incident edges.
4: Re-triangulate the open region.
5: return
6: end if
7: if constrained edge count = 2 and the two constraints e1 e2 are aligned then
8: Let v1 be the endpoint of e1 opposite of v.
9: Let v2 be the endpoint of e2 opposite of v.

10: Remove the vertex v and its incident edges.
11: Re-triangulate the open region.
12: Insert constraint e3 with v1 and v2 as its endpoints.
13: Reset constraint IDs of e3.
14: end if

3.5 Constrained Polygon Insertion and Removal

In this section, we describe the process of constrained polygon insertion and removal.

The polygon insertion is done by inserting the edges of a polygon as constraints iteratively

and associates the constrained edges with the same ID.

To remove a constrained polygon, we need to identify edges {E} and vertices {V } asso-

ciated with the constrained polygon. We then remove constrained edges by removing the

constraint ID from the ID list of the corresponding edges. The overlapping portion of a

constraint will remain as a constrained edge with one of its IDs removed. On the other

hand, a constrained edge becomes unconstrained when the list of IDs is empty and will be

removed along with its endpoints. Algorithm 17 shows the constraint removal procedure:

Algorithm 16 removeConstraint(Edge e, int id )
1: remove id from e.IDlist;
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Figure 3.18: Case 3 of vertex removal
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Vertices were added during constraint insertions as intersection points with other con-

straints. Removing vertices associated with the constrained polygon using Algorithm 15 en-

sures redundant vertices are removed while the necessary intersection points of constraints

remain in the triangulation.

To remove a constrained polygon with the id, we need to remove id from the constrained

polygon edges and remove all the intermediate vertices added during constraint insertions.

The following procedure summarizes the process:

Algorithm 17 removePolygon(int id )
1: identify and collect constrained edges E with id from the triangulation.
2: identify and collect incident vertices V for the polygon
3: for all constrained edges ei in E do
4: removeConstraint( ei, id )
5: end for
6: for all constrained vertices vi in V do
7: removeVertex( vi)
8: end for

3.6 Conclusion

In this chapter, we describe the algorithms for dynamic updates in constrained Delaunay

triangulation. First, we discuss different geometric data structures. For point insertion, we

survey different point localization algorithms and analyze their advantages and disadvan-

tages for dynamic point insertion. We proposed sector-based approach with efficient sector

updates for point localization in point insertion operations. We show the degenerate cases

for constraint insertions and changes needed to handle them. Finally, we discuss the steps

for dynamic updates for constrained polygons.
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Chapter 4

Robust Geometric
Computations

The correctness of geometric algorithms relies on numerically robust geometric functions to

correctly perform decision making on the input data. The geometric functions receive mesh

coordinates as inputs, encapsulate geometric decisions and return a set of discrete values

for each geometry case. Standard floating point arithmetic is used for many triangulation

applications. However, rounding errors in floating point arithmetic can cause incorrect

return values. Incorrect results can cause crashes, infinite loops or incorrect mesh outputs.

This is a well known issue in computational geometry [26].

Many geometric applications tolerates inexactness in fixed-precision floating point arith-

metic because of its speed advantage. However, a theoretically correct geometry algorithm

may have inconsistent outputs with a inexact implementation. Therefore, exact computa-

tion is an important for robust geometric algorithm implementation.

Triangulation software using fixed-precision floating point arithmetic includes:

• The Triangle package [35] which uses adaptive filters to evaluate Orientation and

InCircle tests exactly. However, the Itersection calculation of the new vertices is not

exact which cause incorrect outputs or crashes.

• The DCDT package [23] uses ε-tolerance in the computation of geometric functions.

Therefore, the package does not use exact computation.

Illustrative examples of failures in geometric algorithms with floating point implemen-

tations can be found in [26].

Common methods proposed to address this computational inconsistency problem in com-

putational geometry include:

• Exact computations with arbitrary-precision data types.
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• Numeric filters with exact error bounds.

• Extended algorithms that tolerate numerical inaccuracies to a certain degree.

In this chapter, we discuss computational inconsistencies caused by floating point arith-

metic and address the inconsistency problem in our implementation with exact computation.

We also analyze a hybrid method which improves computation speed while maintaining com-

putational correctness using arbitrary-precision arithmetic, dynamic filtering and extended

algorithms.

4.1 Fundamental Geometric Functions

In this section, we show that arithmetic accuracy is critical in geometric function evalu-

ation for distinguishing degenerate inputs because only the exact computation of a zero

determinant can guarantee the correct decision.

The incremental algorithms for computing a dynamic constrained Delaunay triangulation

described in Chapter 3 rely on the following fundamental geometric functions:

• The Orientation function that receives the coordinates of three vertices in the mesh

and determines whether they are in clockwise, counterclockwise order or collinear.

The function is used in point localization algorithm (Section 3.2.1 ) and constraint

insertion (Section 3.3).

• The InCircle function that receives the coordinates of four vertices in the mesh and

determines whether the fourth vertex is inside of, outside of or on the circumcircle

defined by the first three vertices. The function is used in empty circumcircle tests for

edge flips (Section 3.2.2).

• The Intersection function that receives the coordinates of the endpoints of two in-

tersecting line segments and computes their intersection coordinates. The function is

used in constraint insertions(Section 3.3).

4.1.1 The Orientation Function

The Orientation function can be implemented in terms of finding the sign of the determinant

with vertex coordinates as matrix elements. Let a, b, c be three vertices in the plane with

a = (ax, ay), b = (bx, by), c = (cx, cy). Then the orientation of c with respect to line segment

ab can be determined with the following calculation:
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Orientation(a, b, c) = sign

∣∣∣∣∣∣
ax ay 1
bx by 1
cx cy 1

∣∣∣∣∣∣
 (4.1)

The sign of the determinant in Equation (4.1) specifies whether vertex c is to the left

of, to the right of, or on the line formed by a and b. In other words, vertices a, b and c

are in counterclockwise orientation if the determinant is greater than zero, the vertices are

in clockwise orientation if the determinant is less than zero, and the vertices are collinear if

the determinant is zero [24].

4.1.2 The InCircle Function

The InCircle function can also be implemented in terms of finding the sign of the determi-

nant with vertex coordinates as matrix elements. Let a, b, c, d be four vertices in the plane

with a = (ax, ay), b = (bx, by), c = (cx, cy), d = (dx, dy). Then the following calculation

determines whether d is in the circumcircle defined by the vertices a, b, and c:

InCircle(a, b, c, d) = sign


∣∣∣∣∣∣∣∣

1 ax ay a2
x + a2

y

1 bx by b2x + b2y
1 cx cy c2x + c2y
1 dx dy d2

x + d2
y

∣∣∣∣∣∣∣∣
 (4.2)

The InCircle computation in Equation (4.2) states whether a vertex d lies inside, out-

side or on the CC(4abc) defined by the vertices a, b, and c. Assume that a, b, c are on

counterclockwise ordering, the sign of the determinant is less than zero if vertex d is located

inside CC(4abc), the sign is greater than zero if vertex d is located outside the boundary

of CC(4abc), and the sign is zero if d lies on CC(4abc) [24].

4.1.3 The Intersection Function

Two line segments ab and cd are intersecting when they cross each other. The intersection

can be determined mathematically by analyzing the endpoints of the line segments. The

intersection can be a proper intersection where the two line segments share exactly one

point and the intersection point lies in the interior of both segments, or an overlapping line

segment where two line segments are parallel and share a portion of their interior.

The coordinates of the proper intersection point can be formulated as the determinant

computation with coordinates of a, b, c, d in matrix form. Let a = (ax, ay), b = (bx, by), c =

(cx, cy), d = (dx, dy). Then the following calculation computes the intersection coordinates

between the lines defined by ab and cd:
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Ix =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ ax ay

bx by

∣∣∣∣ ∣∣∣∣ ax 1
bx 1

∣∣∣∣∣∣∣∣ cx cy
dx dy

∣∣∣∣ ∣∣∣∣ cx 1
dx 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ ax 1
bx 1

∣∣∣∣ ∣∣∣∣ ay 1
by 1

∣∣∣∣∣∣∣∣ cx 1
dx 1

∣∣∣∣ ∣∣∣∣ cy 1
dy 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

(4.3)

Iy =

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ ax ay

bx by

∣∣∣∣ ∣∣∣∣ ay 1
by 1

∣∣∣∣∣∣∣∣ cx cy
dx dy

∣∣∣∣ ∣∣∣∣ cy 1
dy 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣ ax 1
bx 1

∣∣∣∣ ∣∣∣∣ ay 1
by 1

∣∣∣∣∣∣∣∣ cx 1
dx 1

∣∣∣∣ ∣∣∣∣ cy 1
dy 1

∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

(4.4)

Equation 4.12 and 4.13 are equivalent to solve for Ix and Iy simultaneously with the

following equations:

∣∣∣∣∣∣
Ix Iy 1
ax ay 1
bx by 1

∣∣∣∣∣∣ = 0 (4.5)

∣∣∣∣∣∣
Ix Iy 1
cx cy 1
dx dy 1

∣∣∣∣∣∣ = 0 (4.6)

Therefore, the coordinates of the intersection can be calculated as the following:

β = (dy − cy)(ax − bx)− (ay − by)(dx − cx) (4.7)

αx = (dy − cy)(dx − bx)− (dx − cx)(dy − by) (4.8)

αy = (dy − by)(ax − bx)− (dx − bx)(ay − by) (4.9)

cx =
αx

β
(4.10)

cy =
αy

β
(4.11)

Ix = bx + cx(ax − bx) (4.12)

Iy = by + cy(ay − by) (4.13)
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The equations apply to lines, so the line segment intersection needs the following degen-

eracy checks to ensure the intersection is a proper intersection:

• β in Equation 4.7 is zero if the two lines are parallel.

• β in Equation 4.7, αx in Equation 4.8 and αy in Equation 4.9 are zero if two lines are

collinear.

• cx and cy are between 0 and 1 if the intersection point lies in the interior of the

corresponding line segments.

The exact computation of the intersection coordinates is essential for correct geometric

computations. Some of the algorithms only need to detect the intersection between two

line segments. The Intersection function can detect whether two line segments intersect by

testing the orientation of the endpoints using Orientations tests. The two line segments ab

and cd are intersecting if and only if:

• The endpoints a and b are on opposite sides of the line cd, and

• The endpoints c and d are on opposite sides of the line ab.

4.2 Floating Point Rounding Errors

In this section, we discuss the computation inaccuracy caused by finite-precision data types

and how they affect geometric computations.

Various representations for floating point numbers have been proposed. One of the

commonly used ones is to represent a floating point number by a sign s, a significand m ,

a base b and an exponent e. The significand m is assumed to be normalized such that the

leftmost digit of m is nonzero and the radix point is to the right of the leftmost digit. The

value can be calculated with the following formula:

v = (−1)s ×m× 2e

For example, a binary floating point number 1100.1100 can be represented by s = 0

m = 1.1001100 and e = 3 with 8 digit precision using b = 2.

The IEEE standard for binary floating point arithmetic (IEEE 754-1985) is the most

widely used standard for floating point arithmetic on modern hardware. The standard

provides two data types:

• The single-precision (32bit) with 1 sign bit, 8-bit exponent and 23-bit significand.
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• The double-precision (64bit) with 1 sign bit, 11-bit exponent and 52-bit significand.

Because the standard floating point representation uses fixed precision, the floating point

numbers can represent only a subset of the rational numbers, and the approximation of

decimal values using binary floating point representation can introduce rounding errors.

For example, it is not possible to express the decimal number 0.1 accurately because its

binary representation is the non-terminating binary floating point number:

0.000110011001100110...

This number must be rounded to the nearest representable floating point value for hard-

ware storage and computations. In single-precision floating point number with base 2 (b = 2)

representation and 24 digit precision this is:

m = 1.10011001100110011001101, e = −4

Therefore, the decimal value of the closest representable floating point value is

1.60000002384185791015625× 2−4 = 0.100000001490116119384765625

.

Any finite-precision floating point arithmetic can cause incorrect geometric computa-

tions. Also, small round-off errors can accumulate and propagate in sequence of arithmetic

operations and introduce big inaccuracy for some computations. For instance, consider the

Orientation(a, b, c) computation of the Orientation function from Equation (4.1):

Orientation(a, b, c) = sign ((ax × by)− (bx × ay) + (bx × cy)− (cx × by) + (cx × ay)− (ax × cy))

For the Orientation and InCircle function, the numerical error introduced by floating

point arithmetic affects the final result of the determinant computation. Both the deter-

minants in the collinear and the co-circular case are zero. However, using floating point

arithmetic to compute such determinants may produce a non-zero floating point value with

the accumulated round-off error.

The return value of the Intersection function is also affected by arithmetic inaccuracy.

For example, the computed intersection coordinates may be shifted due to accumulated

rounding errors, which causes the algorithm to incorrectly insert the intersection points in

a face close to the intersecting constraints (see Figure 4.1).
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Figure 4.1: Incorrect point insertion due to rounding error in geometric function
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Algorithm 18 Equal(double a, double b)
1: if (|a− b| ≤ ε) then
2: return true
3: else
4: return false
5: end if

One way to mitigate the effects of numerical inaccuracy in finite-precision floating point

arithmetic is to introduce a error tolerance ε and to replace the equality tests for two floating

point values by:

Implementations of geometric algorithms can tweak the ε value and introduce pertur-

bation in the inputs to achieve an acceptable level of robustness. However, such ad-hoc

measures still can produce catastrophic failures such as program crashes, useless outputs or

infinite loops.

4.3 Exact Geometric Computation

A principled way to resolve the numerical inaccuracy problem is to adopt arbitrary-precision

computations. In this section, we discuss the exact computation method used in our imple-

mentation and the computational costs associated with this approach. We also discuss the

dynamic filtering scheme which reduces the amount of expensive arbitrary-precision oper-

ations while still generating correct results. Finally, we introduce various modifications on

existing algorithms to further increase the computation speed.

4.3.1 Arbitrary-Precision Libraries

An arbitrary-precision library provides numerical data types with unbound precision. Arbitrary-

precision packages usually support the following data types:

• Integers

• Rational numbers

• Floating point numbers

These numerical data types are usually represented by integer vectors which are used

by arithmetic operations. The precision of the data types is normally limited only by the

amount of available memory in the system. The most commonly used libraries for arbitrary-

precision data types and arithmetic are:

• The GNU Multiple Precision Arithmetic Library (GMP) which provides general-

purposes arbitrary-precision computations with relatively efficient implementation.

47



Various optimizations using fast algorithms and assembly code increase the computa-

tional speed for arbitrary-precision computations. However, the computation speed of

these libraries are still much slower than built-in data types.

• The Library of Efficient Data Types and Algorithms (LEDA) which provides a col-

lection of fixed-precision and arbitrary-precision data types for inexact and exact geo-

metric computations. The speed of arbitrary-precision computation in LEDA is slow

compared to the GMP library and most of the implementations of geometric algo-

rithms assume static inputs with little support on dynamic updates.

Our implementation limits the triangulation input to integer coordinates which can be

easily adapted because floating point inputs can be multiplied by a large constant factor

and processed as integer inputs. The integer coordinate requirement allows us to bound the

size of vertex coordinates so we can represent of new intersection point using fixed-precision

rational coordinates. The intersection computation can then be formulated as a sequence

of integer additions and multiplications, and one division between two integers at the end

(see computations Equation 4.7 - 4.13).

Therefore, the coordinates of any vertex in our constrained Delaunay triangulation can

be represented exactly by rational numbers, having numerators and denominators in the

form of regular integer types. The arbitrary-precision GMP::rational implementation of

the geometric predicates then guarantees exact computation without rounding errors or

overflows.

The computational cost of arbitrary-precision operation is high compared to the built-in

data types due to memory management costs and quadratic complexities for some arithmetic

operations. The implementation of geometric algorithms using arbitrary-precision data

types like LEDA::rational or LEDA::real is 100 times slower than using the floating point

double for large mesh generation. Therefore, the arbitrary-precision arithmetic should be

used as a last resort. In the next section, we discuss a fast and efficient dynamic filtering

mechanism which can be used to determine the sign of an expression quickly and accurately.

4.3.2 Interval Arithmetic

Computing the determinant using arbitrary-precision arithmetic is expensive. In this sec-

tion, we discuss dynamic filters as means of restricting the precision needed for arithmetic

operations while still computing the exact result. The types of numerical filters include:

• Static filters.

• Semi-static filters.
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• Dynamic filters.

The error bounds of static and semi-static filters are determined at compile-time. Static

filters are restricted to integral, division-free expressions of small bounded depth with the

requirement to preprocess good upper and lower bounds on the input. Semi-static filters

solve most of the problems in static filters, but divisions and square roots can only be

handled with significantly larger error bounds. On the other hand, The error bounds of

dynamic filters are determined at run-time without the restrictions on filter operations and

inputs.

Using a dynamic filter can evaluate the sign of a determinate exactly. In [24], Karasick

et al. introduce an adaptive filter mechanism to evaluate the sign of a determinant using

dynamic filter. The dynamic filter progressively increases its computation accuracy, so the

geometric function can evaluated exactly and efficiently for non-degenerate cases where the

determinate is non-zero. We proposed a different approach using a combination of dynamic

filter and arbitrary-precision arithmetic to compute the exact sign of the determinant in

geometric function evaluation.

Interval arithmetic can be used as a dynamic filter for geometric function evaluations.

It deals with intervals
[
p, p
]

bounding real number p. For floating point interval arithmetic,

p is rounded down and p is rounded up to the nearest machine-representable number to

ensure proper bounding of the interval.

The arbitrary-precision arithmetic is used only in degenerate geometric cases, where the

computed interval
[
p, p
]

is inconclusive for the sign of the determinant.

Each input coordinate represented by an rational number pn
pd is first converted into an

interval [Pl, Pu] such that pn
pd ∈ [Pl, Pu]. pn

pd is approximated as an floating point interval

with the following steps:

• Extract k significant bits from pn and pd to form integer sn and sd. pn and pd are

padded with 0 bits if they have less than k significant bits.

• Construct interval [sn, sn+ 1] and [sd, sd+ 1]

• Compute the floating point interval from [sn, sn+ 1] / [sd, sd+ 1]

• Adjust the floating point ratio according to the bit length difference between pn and

pd.
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The following example is an approximation with k=24 significant bits:

485719
32431

∼ [15543008, 15543009]
[16604672, 16604673]

∼ [0.93606227596291713, 0.93606239256035895]

= [14.976996415406674, 14.976998280965743]

Then the exact rational arithmetic operations in the geometric function are replaced by

interval operations with basic operations for intervals [x] = [x, x] and [y] =
[
y, y
]
:

[x]⊕ [y] = [x+ y, x+ y]

[x]	 [y] = [x− y, x− y]

[x]⊗ [y] = [min(x · y, x · y, x · y, x · y),max(x · y, x · y, x · y, x · y)]

[x]� [y] = [x]⊗ [1/y, 1/y] 0 /∈ [y]

Our implementation uses the interval arithmetic library from the Boost library for inter-

val computations. The library enables us to overload the computation in geometric functions

using interval arithmetic. Therefore, the implementation of geometric functions does not

require any change.

Finding the sign of the determinant of a matrix M can be formulated as a function F (M)

that maps matrices M to {−1, 0, 1}. Computing the actual value of the determinant directly

using arbitrary-precision arithmetic is expensive. To increase the speed of the computation,

we can compute M’s interval representation M ′ and determine the sign of its determinant

interval F ′(M ′) = [dmin, dmax] using interval arithmetic. If dmin > 0 then F (M) > 0 and

if dmax < 0 then F (M) < 0. The computation falls back to exact computations when

0 ∈ [dmin, dmax] For example:

M =

 485719
32431

−230337
5269

596157
22949

100130
5141


M ′ =

(
[14.976996415406674, 14.976998280965743] [−43.715508754033024,−43.715501737434074]
[25.977469574393425, 25.977474508693192] [19.476753645179222, 19.476757014685859]

)
dmin > 0 ⇒ F (M) > 0

Dynamic filtering increases the computation speed for frequently used geometric func-

tions while maintaining exactness. The speed improvement is mainly due to the fact that

degenerate cases with zero determinants are relatively rare. Therefore, the exact result can

be determined by the efficient interval arithmetic.
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A further speed improvement can be achieved by caching the computed intervals of

the coordinates. It is not necessary to recompute the interval approximations because the

coordinates of the vertex do not change.

In this section, we discussed the dynamic filtering technique combined with exact com-

putation for correct geometric function evaluations. The runtime of such a combination is

approximately five times slower than the fixed-precision floating point implementation. The

fixed-precision floating point implementation, however, can not guarantee correctness. In

the next section, we will discuss the memory management cost in the arbitrary-precision

library and various ways to reduce it.

4.3.3 Extended Algorithm

After applying various optimizations to the implementation for arbitrary-precision arith-

metic using exact data types, tests indicated that memory allocation and deallocation for

arbitrary-precision data was the most time consuming part of the execution.

The input data of the triangulated mesh can be easily limited to bounded integer co-

ordinates and it is sufficient to use a fixed-precision rational data type to represent vertex

coordinates. We use rational number with 64-bit integer (long long in C++) for numer-

ators and denominators to represent vertex coordinates. The arithmetic precision of our

implementation is limited by the intersection coordinate calculation of two intersecting line

segments involving rational arithmetic. Rational coordinates arise when computing the

intersection coordinates of two line segments with integer inputs. We decrease the data pre-

cision required in the Intersection function by allowing only integer coordinates as inputs.

The intersection coordinates between two intersecting constraints can be computed using

their integer endpoints (see Figure 4.2). The integer inputs for the Intersection computa-

tion reduce the rational arithmetic in Intersection calculation to integer arithmetic. Our

implementation stores the leftmost and rightmost integer endpoints for each constrained

line segment and uses them for intersection computations. Therefore, the intersection be-

tween intersecting constraints can be computed with fixed-precision integer arithmetic on

relatively large integer grids. With integer coordinates of k-bit length forming integer co-

ordinates range of [0 . . .M = 2k], a multiplication of two integer numbers requires twice

as many bits and an addition requires an additional bit to represent the computed result.

The computation of Ix and Iy in Equation 4.7-Equation 4.12 has an integer range of the

following:
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|β| ≤ 2M2 (4.14)

|αx| ≤ 2M2 (4.15)

|αy| ≤ 2M2 (4.16)

|Ix| =
|bxβ + αx(ax − bx)|

|β|
(4.17)

|bxβ + αx(ax − bx)| ≤ M × 2M2 + 2M2 ×M = 4M3 (4.18)

|Iy| =
|byβ + αy(ay − by)|

|d|
(4.19)

|byd+ αy(ay − by)| ≤ M × 2M2 + 2M2 ×M = 4M3 (4.20)

Therefore, the coordinates of integer input for our implementation is limited to [0 . . . 220]

with 64 bit integers:

4M3 ≤ 263

M ≤ 220

Our implementation will switch to arbitrary-precision arithmetic for input size greater

than 220.

a

b

C a l c u l a t e  i n t e r s e c t i o n  u s i n g  r a t i o n a l  e n d p o i n t s

C a l c u l a t e  i n t e r s e c t i o n  u s i n g  i n t e g e r  e n d p o i n t s

c

d

Figure 4.2: Calculating intersection coordinates using integer endpoints
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Figure 4.3: The replacement of intersection tests in constraint insertion

The constraint insertion algorithm in Section 3.3 needs to identify the intersection be-

tween the inserting constraint and existing line segments in the triangulation. We can

implement the intersection test without computing the intersection coordinates. The exact

computation of such test is only necessary for locating the start triangle, or to be specific, the

first line segment intersected by the inserting constraint. Subsequent line-segment intersec-

tion tests are not necessary, and can be replaced by the less expensive orientation tests. The

left or right orientation test on the opposite vertex of the current triangle, with respect to

the inserting constrained line segment, implies an intersection (see Figure 4.3). The change

is effective because the algorithm only traverses adjacent triangles and the computation for

non-intersecting line segments requires only two Orientation tests. As a result, it avoids

the expensive intersecting evaluation by resorting to the simple orientation tests.

4.3.4 Conclusion

In this chapter, we analyze the numerical rounding errors in fixed-precision floating point

arithmetic and introduce a combination of dynamic filter and arbitrary-precision arithmetic

to compute the geometric functions exactly. Finally, we introduce a method to compute the

intersection using integer arithmetic.
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Chapter 5

Experiments

This chapter discusses the experiments conducted to evaluate the performance of update

operations between Kallmann’s inexact implementation and our exact implementation.

Our implementation of the constrained Delaunay triangulation algorithms went through

three major revisions. First, the software was implemented assuming integer inputs in

general position. The integer arithmetic in this implementation was then relaxed to fixed-

precision rational arithmetic for intersection computation. The focuses of the first version

of our application were the correct implementation of triangulation algorithms and the de-

tection and handling of degenerate cases such as collinear vertices, cocircular vertices and

overlapping line segments. This implementation is limited to small map sizes because of

overflow problems in geometric function computation. The second revision of our imple-

mentation uses arbitrary-precision arithmetic in the GNU Multi-Precision Library (GMP)

[17] to resolve the overflow problems. This version suffers significant loss of computation

speed due to high computational cost in arbitrary-precision computation. The execution

time of constraint insertion is approximately 50 to 100 times slower than that of Kallmann’s

floating point implementation in his DCDT package. The third revision of our implemen-

tation focuses on reducing the computational cost in arbitrary-precision arithmetic, while

maintaining correctness of the geometric functions. We evaluate the slow down factor of the

update operations between our exact implementation and Kallmann’s inexact implementa-

tion. The use of dynamic filter, caching and extended algorithms reduces the slow down

factor to 6 for updating constrained polygon in general position.

We show the performance of the update operations implemented using dynamic filter

and exact arithmetic. Experimental results indicate that the dynamic filter significantly

reduces the number of arbitrary-precision arithmetic using low precision bound interval

arithmetic to compute the exact result of the geometric function. The combination of

dynamic filtering and exact computation provide us efficient and robust computation of the
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geometric functions that are used in constrained Delaunay triangulation algorithms. The

software is a single-threaded cross-platform C++ implementation. In all experiments, we use

32-bit Windows XP professional system (service pack 3 build 2600) with Intel Centrino Duo

2GHz CPU and 2.5GB memory (2GB+500MB PC5300). The software has been developed

and debugged in Microsoft Visual Studio 2005 Team Suite on 32bit Windows XP professional

and ported to 64-bit Fedora10 and compiled using gcc 4.3.0 and -O3 optimization level.

Experiments in this chapter focus on computational efficiency of update operations in

constrained Delaunay triangulation with different arithmetic:

• Double: the standard double-precision floating point arithmetic [39].

• Exact: the arbitrary-precision rational arithmetic using GMP library [17].

• Interval + Exact: the combination of double-precision floating point interval arith-

metic using Boost Interval Arithmetic Library [5] and the arbitrary-precision rational

arithmetic using GMP.

We analyze the performance of Kallmann’s DCDT software package as the baseline

measurement for fixed-precision floating point implementation. The DCDT software im-

plements the constrained Delaunay triangulation algorithms with dynamic updates using

Double arithmetic and ε-tolerances for degenerate computations in geometric functions[23].

Furthermore, Kallmann’s DCDT implementation follows the Topology Oriented implemen-

tation paradigm as proposed by Sugihara et al.[37] which minimizes the dependency be-

tween the combinatorial and numerical part of an algorithm to achieve certain degree of

robustness. Our implementation of the constrained Delaunay triangulation algorithms use

fixed-precision rational number for coordinate storage with Interval+Exact arithmetic for

exact computation.

In the following sections, we present the experiments on different point localization

algorithms. We evaluate the point insertion operation using different point localization

algorithms and compare the performance of point insertions, constraint insertions and con-

strained polygon insertions and removals between Kallmann’s DCDT implementation and

ours.

5.1 Experiment 1: An Example of InCircle Computa-
tion

The correctness of geometric functions is important because the geometric algorithms de-

pend on the correct results of the geometric functions. In this section, we evaluate correct-
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ness of InCircle computation between Kallmann’s floating point implementation and our

exact implementation. We illustrate through our example that the floating point calculation

produce incorrect results which may not be acceptable for some applications. A list of good

examples related to numerical rounding errors in floating point arithmetic can be found in

[26].

5.1.1 Experiment Setup

For this part of the experiment, the inputs of the InCircle function are rational numbers

with numerator and denominator in the integer range of [1 . . . 100]. The rational input is

converted to its corresponding floating point value for Kallmann’s InCircle computation

where an ε-tolerance of 10−14 is used for floating point comparison. We evaluate the correct-

ness of InCircle computation using four nearly cocircular points. We generate four cocircular

points (px, py), (−px, py),(−px,−py) and (px,−py) where the numerator and denominator

of px and py are within the integer range of [1 . . . 100]. We perturb the point (px, py) with

a small increment to (px ± 1
i , py ± 1

i ). The test is repeated with i ranging from 10 to 1017

in increasing magnitude of 10. Each test run is iterated 1000000 times with different nearly

cocircular inputs. We measure the result of the InCircle computation using Double and

Interval + Exact, and compare them with the result of the InCircle computation using

Exact.

The result of the InCircle computation should correctly classify the perturbed point as

inside, outside or cocircular with respect to the circumcircle of the other three fixed points.

The small perturbation causes significant rounding error for fixed-precision floating point

arithmetics which leads to incorrect results.

5.1.2 Experimental Results

Table 5.1 shows the experiment results of classifying perturbed cocircular points using the

InCircle function. It shows that the computation using Double mis-classifies perturbed

cocircular points when the perturbation is smaller than 10−11 while computation using

Interval + Exact correctly classifies all inputs.

The type of misclassification include [26]:

• Sign inversion: the InCircle function mis-classifies inside as outside or vice versa.

• Rounding to zero: the InCircle function mis-classifies inside or outside as cocircular.

• Shifting zero: the InCircle function mis-classifies cocircular as inside or outside.
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Double vs Exact Interval+Exact vs Exact
Perturbation Correct Incorrect Failure Rate (%) Correct Incorrect Failure Rate (%)

10−1 1000000 0 0 1000000 0 0
. . . 1000000 0 0 1000000 0 0

10−10 1000000 0 0 1000000 0 0
10−11 992346 7654 0.8 1000000 0 0
10−12 970117 29883 3.0 1000000 0 0
10−13 919805 80195 8.0 1000000 0 0
10−14 809295 190705 19.0 1000000 0 0
10−15 520306 479694 48.3 1000000 0 0
10−16 60813 939187 94.0 1000000 0 0
10−17 62845 937155 93.7 1000000 0 0

Table 5.1: InCircle classification using Double and Interval + Exact

The failure rate in InCircle computation using Double increases significantly as the

perturbation value gets smaller. This experiment shows that the evaluation of geometric

functions using fixed-precision arithmetic leads to unpredictable results. The correctness

of such result can only be verified with an exact computation of the same geometric which

guarantees much higher precision. Computation such as Intersection required a higher

precision for correct results. Computation of Intersection using Double may lead to worse

results.

5.2 Experiment 2: Point Localization Algorithms

In this section, we evaluate the performance of three point localization algorithm as discussed

in Section 3.2.1:

• The Cubic root sampling Jump-and-Walk algorithm as described in Algorithm 4. The

algorithm randomly samples n1/3 points in the triangulation of n points and starts

the walking process with a sampled point closest to the query point.

• The Sector-based Jump-and-Walk algorithm as proposed in Algorithm 5. The algo-

rithm invokes the Remembering Stochastic Walk algorithm after jumping to a starting

location using the associated sector triangle. It avoids sector updates by storing the

result of the Remembering Stochastic Walk in the corresponding sector. We use the

grid size of 16×16 in this experiment.

• Remembering Stochastic Walk algorithm shown in Algorithm 3. This is the underlying

walking algorithm for the Jump-and-Walk algorithms above. The algorithm starts the

walk from last updated triangle in the triangulation in our experiment.
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5.2.1 Experiment Setup

We evaluate the performance of the point localization algorithm by measuring 10000 point

localization queries in triangulation of 1000 to 10000 random points. We insert the random

points in the triangulation and then measure the execution time of 10000 random point

localization queries using Boost::timer. The experiment is repeated with Cubic-root sam-

pling, Sector-base, and Remembering Stochastic Walk point localization algorithm.

5.2.2 Experimental Results
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Figure 5.1: Average execution time of Cubic-root sampling, Sector-base and Remembering
Stochastic Walk point localization
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Figure 5.1 shows that our Sector-based approach is the most efficient one among the

point location algorithms. This is due to better starting locations for the walking process

and efficient updates of sectors which avoids linear-time sector update procedures. The

Sector-based point localization algorithm performs better than the Cubit-root sampling

algorithm, which is considered to have O(N1/3) average runtime for point localization queries

on randomized inputs. Both Jump-and-Walk algorithm improves upon the Remembering

Stochastic Walk algorithm, which suffers from bad starting locations due to its random

selection of starting locations. It is worth noting that the walking algorithm determines

the next triangle to step into by performing Orientation tests on the edges of the current

triangle. Therefore, traversals on large number of triangles can be costly because of the

exact computation in Orientation function.

5.3 Experiment 3: Point Insertion Using Different Point
Location Algorithm

The running time of incremental point insertion operation is dominated by the time spent in

point localization query [23]. Therefore, the performance in the point localization function

is reflected in the performance of point insertion operation.

5.3.1 Experiment Setup

In this section, we evaluate the performance of our point insertion operation in our imple-

mentation using different point localization algorithms as described in the previous section.

Figure 5.2: Initial bounding box setup
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Figure 5.3: Point insertion of 1000 points

We used data inputs that are uniformly distributed over the entire bounding domain.

The data points use integer coordinates that are generated inside a 16000×16000 bounding

box with coordinate ranging from -8000 to 8000 (see Figure 5.2). The integer coordinates of

each insertion are randomly generated using the standard C++ rand() function and scaled

to the coordinates range of [-8000,8000] in our experiment. The rand() functions in both

implementation are initialized with equal seeds to ensure identical insertion sequences.

The execution time was measured by the Boost::timer for point insertion operations of

different input sizes ranging from 1000 to 10000 in steps of 1000 (see example in Figure 5.3).

The increasing number of insertions simulates increasing mesh density. Evaluating update

operations on dense triangulations allows us to better evaluate the efficiency of update

operations under different setups. It also allows us to test the operation with degenerate

cases.

5.3.2 Experimental Results

We define Tstochastic as the average execution time of a point insertion using Remembering

Stochastic Walk point localization algorithm and define Tsector, and Tsample as the aver-

age execution time of a point insertion using Sector-based Jump-and-Walk algorithm using

16×16 grid size and Cubit-root sampling Jump-and-Walk algorithm. Figure 5.4 illustrates

that Tsector has a much lower costs than Tsample and Tstochastic. This is due to the fact

that Sector-based Jump-and-Walk algorithm has the best starting location for the walking

process, which reduces the number of triangles visited during the walk.
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Figure 5.4: Average execution time of point insertion using Cubic-root sampling, Sector-base
and Remembering Stochastic Walk point localization

5.4 Experiment 4: Point Insertion using Exact and In-
exact Computation

5.4.1 Experiment Setup

The experiments in this section evaluate the computation efficiency of point insertions using

Double and Interval + Exact arithmetic. We compare our point insertion implementation

with Kallmann’s DCDT implementation. The experiment setup is the same as that ex-

plained in Section 5.3.1 for both implementations. The point localization algorithm used

in DCDT is the Oriented Walk algorithm which is similar to a Stochastic Walk algorithm

without randomly testing the triangle edges. The algorithm detects infinite loops and falls
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back to linear search for all the triangles to ensure linear time worst case performance. The

point localization algorithm in our implementation is the Sector-based point localization

algorithm with grid size 16×16 and using the Remembering Stochastic Walk algorithm to

perform the walk towards the query point. The number of point insertions in our exper-

iment ranges from 1000 to 10000 in steps of 1000. The execution time is measured using

Boost::timer.
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Figure 5.5: Execution time of point insertions

5.4.2 Experimental Results

Figure 5.5 compares the execution time of point insertion between Kallmann’s floating point

implementation (TDouble) and our interval filter and exact implementation (TInterval+Exact).

The implementation using Interval+Exact performs better than the implementation using
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Figure 5.6: 1000 short axis aligned constraint insertions

Double as the density of the triangulation increases. TInterval+Exact performs better because

point insertion operation uses the more efficient sector-based point localization algorithm as

explained in the previous experiment. The cost saved in efficient point localization algorithm

offsets the computational costs for exact computation. Therefore, the overall performance

of point insertion increases with integer data inputs using Interval + Exact.

Figure 5.7: 200 long axis aligned constraint insertions
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Figure 5.8: 50 random constraint insertions

5.5 Experiment 5: Constraint Insertions

Constraint insertion is the fundamental operation for constrained polygon insertion where

the edges of a constrained polygon are inserted as a sequence of constraints. Therefore, the

performance of the constraint insertion operation is critical to the overall performance of

constrained polygon insertion. In this section, we measure the performance of constraint

insertion in different setups.

5.5.1 Experiment Setup

In this section, we measure constraint insertions in three types of setups:

• Setup 1: we measure axis aligned constraint insertions with short, fixed length con-

strained line segments. The constraints inserted are horizontal or vertical aligned with

the bounding box (see Figure 5.6). The short constrained line segments has less in-

tersections with each other, hence the setup allows us to evaluate the computation

efficiency of constraint insertions with few intersection computation. In the experi-

ment, the coordinates of one of the constraint endpoints are generated randomly, and

the coordinates of the other endpoints are calculated with a random horizontal or

vertical shift of length 200. We measure the execution time of constraint insertions

with input sizes ranging from 1000 to 8000 in steps of 1000.

• Setup 2: the second experiment uses axis aligned constraint insertions with long, ran-

dom length constrained line segments. Hence, the constraints intersect only on integer
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Figure 5.9: Execution time of short uniform constraint insertions

coordinates (see Figure 5.7). For this experiment, coordinate values are randomly gen-

erated for the endpoints and an alignment for the x or y coordinates of the endpoints

is enforced. This experiment evaluates the performance of constraint insertions with

computations in geometric functions being reduced to integer arithmetic. The exper-

iments indicate a reduction to integer arithmetic for intersection calculation increases

computation efficiency in our implementation. The execution time of constraint inser-

tions is measured with input sizes ranging from 100 to 400 in steps of 100. We limit

the input sizes to below 400 because Kallmann’s DCDT implementation crashes with

inputs more than 400 due to numerical errors in point localization.

• Setup 3: the setup of the third experiment uses random constraint insertions with
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different orientation and length. It simulates a random environment with potential

degenerate cases (see Figure 5.8). Both endpoints of the constraint are randomly

generated in this setup. We record the execution time of constraint insertions with

input sizes ranging from 100 to 1000 in steps of 100

The randomly generated coordinates for the setups above are evenly distributed in the

bounding box with its coordinates ranging from -8000 to 8000.
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Figure 5.10: Execution time of long uniform constraint insertions
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Figure 5.11: Execution time of random constraint insertions

5.5.2 Experimental Results

In this section, we show experimental results for the various improvements that are discussed

in Section 4.3.2 and Section 4.3.3. The improvements reduce the slow down factor of random

constraint insertions between Kallman’s DCDT implementation and our implementation to

6.

Figure 5.9 displays the execution time for constraint insertions descibed in Setup 1. The

ratio between our exact implementation (TSUInv+Exact) and the Kallmann’s floating point

implementation (TSUDouble) stays at 2.

In Figure 5.10, the execution time for constraint insertions with Setup 2 is shown. The

execution time for our exact implementation is slower than Kallmann’s floating point im-
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Number of Insertions # Exact # Interval
100 438 17571
200 1504 40284
300 3258 72112
400 5641 119971
500 7557 164523
600 11408 235802
700 15848 310232
800 19309 379709
900 25208 492158
1000 30135 584335

Table 5.2: Arbitrary-precision computation vs interval computation in random constraint
insertions

plementation by a factor of 4. However, Kallmann’s DCDT software fail to complete the

test with some overlapping constraints in this setup because its point localization procedure

fails to locate the proper location in degenerate cases due to numerical rounding errors.

Figure 5.11 compares the execution time of random constraint insertion between Kall-

mann’s floating point implementation (TDouble) and our interval filter and exact rational

implementation (TInv+Exact). The slow down factor of TInv+Exact/TDouble is 6. As dis-

cussed in Section 4.3.2, geometric functions using interval arithmetic may have inconclusive

results and need to fall back to arbitrary-precision arithmetic. The number of invocations

using interval arithmetic and the number of invocations using arbitrary-precision arithmetic

in geometric functions are displayed in Table 5.2. The number of expensive exact compu-

tation in predicate evaluation is greatly reduced with interval filter while correctness of the

outputs are maintained.

5.6 Experiment 6: Dynamic Updates of Constrained
Polygon

Constrained polygons are used to model obstacles in the game maps. Dynamic insertions

and removals are needed to model the construction and destruction of obstacles in game

maps. Therefore, the performance of dynamic updates of constrained polygons is impor-

tant for application in games. Insertion of constrained polygon consists of a sequence of

constraint insertions for the edges of the polygon. The efficiency of constrained polygon

insertion depends on the basic insertion operations such as point localization, point and

constraint insertion. Similarly for constrained polygon removals. In this section, we empir-

ically evaluate the performance of dynamic updates of constrained polygons in two simple

setups and discuss the effects of degenerate case to the overall performance .
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Figure 5.12: Axis aligned moving constrained polygon

5.6.1 Experiment setup for constrained polygon insertions

For tests on constrained polygon insertions and removals, we setup a initial polygonal mesh

of 200000 by 200000 bounding domain with coordinates ranging from -100000 to 100000.

The box contains squares of shrinking sizes in steps of 10000 for each coordinates. The

squares are evenly distributed with horizontal or vertical constrained edges.

A small constrained square is inserted at the lower left corner of the bounding box. The

two different setups of constrained square in the experiments are:

• Setup 1: The constrained square is axis aligned with the grid coordinates. The setup

introduces intersections of integer coordinates and overlapping constrained edges (see

Figure 5.12).

• Setup 2: The constrained square has a rotated angle of 45 degrees (see Figure 5.13).

This setup creates intersections of rational coordinates and non-overlapping constrained

edges.

The small constrained square is moved along the diagonal of the bounding box with a

sequence of dynamic updates of constrained polygon removal, coordinate translations and

constrained polygon insertion. The sequence is repeated from 1000 to 8000 iterations in

steps of 1000 along the diagonal of bounding box. For both setups, the execution times

are recorded using Boost::timer. We evaluate the performance of such dynamic updates

between Kallmann’s floating point implementation (TPDouble,TRDouble) and our interval

filter and exact rational implementation (TPInterval+Exact,TRInterval+Exact).
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Figure 5.13: Rotated moving constrained polygon

5.6.2 Experimental Results

The TInv+Exact/TDouble ratio is about 7 in Figure 5.14 and 9 in Figure 5.15.

The performance of dynamic updates in Setup 1 is slower because computation using

interval arithmetic in theOrientation function can not determine the sign of the determinant

for degenerate cases such as overlapping. The computation of the geometric function is

handled by the slower arbitrary-precision arithmetic.

5.7 Conclusion

In this chapter, we first compare the performance of different point localization algorithm

and show that our Sector-based point localization algorithm with efficient sector updates

has the best overall performance with random inputs. We then evaluate the execution time

of point insertion operations using different point localization algorithms. The experimental

results show that the sector-based point localization algorithm performs better than point

insertion operations using other point localization algorithms. We empirically compares

the performance of update operations between our Interval + Exact implementation and

Kallmann’s Double implementation. The experimental results indicate that it is possible to

use exact computation for geometric functions with an acceptable performance lost.

70



0

2

4

6

8

10

12

14

16

18

Number of Moves

E
xe

cu
tio

n 
Ti

m
e 

(s
ec

.)

TInv+Exact TDouble TInv+Exact/TDouble

TInv+Exact 2.125 4.11 6.078 8.141 10.14 12.063 14.156 15.812

TDouble 0.344 0.625 0.891 1.172 1.531 1.781 2.11 2.375

TInv+Exact/TDouble 6.1 6.6 6.8 6.9 6.6 6.8 6.7 6.7

1000 2000 3000 4000 5000 6000 7000 8000

R
atio

Figure 5.14: Execution time of moving rotated square
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Figure 5.15: Execution time of moving axis aligned square
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Chapter 6

Conclusions and Future Work

As a part of the thesis research, we developed robust and efficient dynamic constrained De-

launay triangulation software based on exact computation. Robustness and speed efficiency

are crucial for the software to be used as part of triangulation pathfinding engine in games

such as ORTS. The computational efficiency of update operations has been increased by the

following algorithmic improvements:

• The speed of point localization was increased using a sector-based approach on top

of the Remembering Stochastic Walk algorithm. The Remembering Stochastic Walk

algorithm saves 1.5 Orientation tests per visited triangle by remembering the cross

edge between triangles. This in turn speeds up point, constrained line segment, and

polygon insertion.

• Computing exact intersection coordinates using arbitrary-precision arithmetic is ex-

pensive. By limiting the input coordinate range to [0 . . . 106], which is sufficiently

large for many application, we are able to compute and store the exact intersection

coordinates using fast fixed-precision rational arithmetic. This choice strikes a bal-

ance between computation speed and memory requirements and still gives the user

the ability to represent large maps.

• Correct geometric algorithms rely on the exact computation of geometric functions

such as Orientation and InCircle test which can be formulated as determining the

sign of a determinant. In our software, we address the rounding error problem by

evaluating the exact sign of the determinant using interval arithmetic and falling back

to arbitrary-precision arithmetic when interval arithmetic is unable to determine the

sign of the determinant exactly in geometric function computation.
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Experiments for dynamic constrained polygon updates indicate an overall slow down

factor of 6 to 9 for our current implementation, compared with error prone software based on

fixed-precision floating point. We think that this slow down is acceptable because dynamic

updates are still very fast, and the results can be trusted. The software can applied in

various areas such as scientific visualization and finite-element mesh generation where correct

triangulation is required.

Future Work

There are several future work potentials for dynamic constrained Delaunay triangulation

using exact computation:

• Concurrent computation. The computational cost of arbitrary-precision arithmetic

is quite high compared to standard floating point arithmetic. Our current imple-

mentation is single-threaded. Some operations can be partitioned into a number of

similar processes. For example, the re-triangulation of the upper and lower halves

of the open region during constraint insertion can be executed concurrently because

the triangulation of the two regions does not influence each other. Parallelizing the

computation of such operation does not require much synchronization effort and could

yield considerable speedups.

• The Delaunay Refinement Algorithm [32] systematically inserts steiner points in the

existing constrained Delaunay triangulation forming a conforming Delaunay triangu-

lation with guaranteed bounds on angles (excluding the input angles), edge lengths

and the number of triangles [32],[10]. The conforming Delaunay triangulation can be

constructed from a constrained Delaunay triangulation with hierarchal data structure

storing the changes between them. In conforming Delaunay triangulation, the trian-

gle density is higher around constrained corners of the obstacles. The triangle strip

found on the conforming Delaunay triangulation using TA* can be refined back to

constrained Delaunay triangulation using the hierarchal data structure and used as

guidance for the actual TA* search.

• The integration of our triangulation software and triangulation-based pathfinding into

games engine such as ORTS. The software package can be easily integrated into ex-

isting game engines as part of the pathfinding engine.

Code Listing
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The interface of our implementation is similar to that of Kallmann’s DCDT software

package. We maintain the same interface to ensure an effortless transaction of pathfinding

implementations such as TA* and TRA*.

The random point insertion test:

void needlePointTest( int n)

{

Vertex* v;

Vertex::coord_t px,py;

//Set Sector values to -1

theTriangulator.InitializeSectors();

while ( n>0 )

{

Face* resultFace;

HalfEdge* resultEdge;

Vertex* resultVertex;

DtTriangulator::LocateResult resType;

//Generate integer coordinates

px = random_coord();

py = random_coord();

//Sector-based point location

resType = theTriangulator.LocatePoint

(NULL, px, py, &resultFace, &resultEdge, &resultVertex);

if ( resType==DtTriangulator::NotFound )

{

printf ( "Face Not Found\n" );

}

else if ( resType==DtTriangulator::VertexFound )

{
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n--;

}

else if ( resType==DtTriangulator::EdgeFound )

{

DtMesh::coord_t rpx(px);

DtMesh::coord_t rpy(py);

theTriangulator.insertPointOnEdge ( resultEdge, rpx, rpy );

n--;

}

else // a face was found

{

DtMesh::coord_t rpx(px);

DtMesh::coord_t rpy(py);

theTriangulator.insertPointInFace ( resultFace, rpx, rpy );

n--;

}

}

}

The random constraint insertion test:

void constraintNeedlePointTest(int n)

{

int ax, ay, bx, by;

while ( n>0 )

{

//Generate random integer coordinates

ax = randomCoord();

ay = randomCoord();

bx = randomCoord();
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by = randomCoord();

//skip point insertion

if(ax == bx && ay == by)

{

continue;

}

//Insert constraint with endpoint (ax,ay), (bx,by), and ID =n

CDTMAIN::insertConstraint(ax,ay,bx,by,n);

n--;

}

}

The constrained polygon test:

void constraintPolygonTest()

{

for(int i=1; i<=8000; i++)

{

SimplePolygon<Vertex,HalfEdge,Face> pol;

DCDTMAIN::theTriangulator.getPolygon(9,pol);

//find the centroid of the polygon

Point c = pol.centroid();

//Compute the translation along the diagonal

Point p(c.getPosX()+10,c.getPosY()+10);

std::vector<Point> newPol = pol.translate ( p,c );

//Remove existing constrained polygon with ID 9

DCDTMAIN::theTriangulator.removePolygon ( 9 );

//Insert a new constrained polygon with ID 9

DCDTMAIN::theTriangulator.insertPolygon(newPol,9);

}
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