Locally Informed Global Search for Sums of Combinatorial Games Martin Müller and Zhichao Li University of Alberta Edmonton, Canada Presented by Xiaozhen Niu

Overview

Sums of games
Global and Local search
Locally informed global search
Experiments

Sums of Games

Given a game
Split it into sum
Result: independent subgames

Example – Amazons

X = burnt-off square

Wall of X's divides board into independent subgames

Abstract Games

OPlay for numeric payoffs Game consists of Left and Right options $\odot G = G^{L}|G^{R}$ Recursive, until game is integer $\bigcirc G = G^{L}|G^{R}, G^{L} = 200|150, G^{R} = 100|50$ Shorter: G = 200|150 || 100|50

Random Combinatorial Games

Model similar to (Cazenave 2002)
 Build binary tree, k levels deep
 Assign random values to leaves, right-to-left
 v₁ = 0, v_{i+1} = v_i + random(n)

Examples

2-level game, n=50
114 | 66 || 49 | 0

3-level game, n=50
237 | 191 || 145 | 124 ||| 97 | 57 || 32 | 0

Playing Sum Games

Given sum game G = G₁ + G₂ + ... + G_n
Play well (or optimal)
Use local analysis in G_i as much as possible
Minimize amount of global-level search

Mean and Temperature

Mean: ``average" value of a game
Example: 5|-5 mean = 0
Temperature: ``urgency" of a move
Example 5|-5 temperature = 5

Previous Work

Search algorithm: minimax search, alpha-beta pruning

Heuristic algorithms: hotstrat, thermostrat, sentestrat

This Study

Enhance minimax search by using local information

Move ordering by temperature

Move pruning by incentives

Test quality of searches with limited depth, or with temperature bound

Compare with standard approaches

Exact Algorithm

Alpha-beta minimax search
Search until end of the game
Plays optimally

Heuristic Search Algorithms

Limit search

Depth limit

temperature bound

Use heuristic evaluation in leaf nodes
 Sum-of-means of local games
 Hotstrat rollouts

Experiments

Experiment 1 Move Ordering

Search

Both

Tried four move ordering schemes

BEST-PREV: best move from iterative deepening

TEMP: Sort by temperature, hottest first

Move Ordering

2-level games horizontal: number of subgames vertical: time (logscale) **TEMP** is best!

Experiment 2

Search Move pruning Compute incentives of moves Can be computed locally!
 Prune moves with dominated incentive Pruning on global level

Experiment 3

Heuristic search

Tried two resource-limited searches ø depth limit (d=3 here) O temperature limit (t = 0.8 * tmax) Two evaluation functions Sum-of-means Hotstrat rollouts

Experiment 4

Similar to Experiment 3
Measure the error relative to time used
Result: simple is best!
Depth-bounded search
Sum-of-means evaluation

Conclusions

Developed and tested search methods for sums of hot games

Move ordering by temperature and pruning using incentives are very effective

Heuristic search: hotstrat rollouts reduce the error, but are expensive

Best time-error tradeoff: depth-bounded search, sum-of-mean evaluation

Much room for further research