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Abstract

Monte Carlo Tree Search methods have led to huge progress in Com-
puter Go. Still, program performance is uneven - most current Go pro-
grams are much stronger in some aspects of the game, such as local fighting
and positional evaluation, than in others. Well known weaknesses of many
programs include the handling of several simultaneous fights, including the
“two safe groups” problem, and dealing with coexistence in seki.

Starting with a review of MCTS techniques, several conjectures regard-
ing the behavior of MCTS-based Go programs in specific types of Go situ-
ations are made. Then, an extensive empirical study of ten leading Go pro-
grams investigates their performance of two specifically designed test sets
containing “two safe group” and seki situations.

The results give a good indication of the state of the art in computer Go
as of 2012/2013. They show that while a few of the very top programs can
apparently solve most of these evaluation problems in their playouts already,
these problems are difficult to solve by global search.
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1 Introduction
In computer Go, it has been convincingly shown in practice [3] that the combina-
tion of simulations and tree search in Monte Carlo Tree Search is much stronger
than either simulation by itself, or other types of tree search which do not use
simulations. It is also well known from practice that there remain several types of
positions where most current MCTS-based programs do not work well. Examples
are capturing races or semeai [9], positions with multiple cumulative evaluation
errors [7], ko fights, and close endgames.

The paper presents a number of case studies of specific situations in Go where
many MCTS-based programs are known to have trouble. In each case, we develop
a collection of carefully chosen test cases which illustrate the problem. We study
the behavior of a number of state of the art Go programs on those test positions,
and measure the success of their MCTS searches and their scaling behavior when
increasing the number of simulations. Measures include the ability to select a cor-
rect move in critical situations and the estimated winning probability (the “UCT
value”) returned from searches.

2 Some Hypotheses and Research Questions about
MCTS for Computer Go

The main components influencing the strength of current Go programs are their
simulation policy, their tree search and their other in-tree knowledge such as pat-
terns. If we are trying to evaluate Go programs indirectly, without analyzing their
source code, we can use test positions, which can be classified as follows:

1. Positions which are well-suited for MCTS - programs can solve them with
either a good search, or with a good policy, or both.

2. Positions which are search-bound: a stronger search can solve them, but
simply using a stronger policy is not enough. Candidates might be hard
tactical problems with unusual solution moves, such as filling your own
eye.

3. Positions which are simulation-bound: better simulation policies can play
these positions well, but search alone will fail. Possible examples are seki
and semeai.

2



4. Positions which are hard for current programs compared to humans. Nei-
ther better policies nor (global) search helps. The main candidates are po-
sitions with multiple simultaneous fights [7], whose combined depth is too
deep to be resolved by global search, and which contain too many “surpris-
ing” moves to be “solved” in simulations.

Some related research questions are:

1. Is it possible to design tests that separate playout strength and search strength
of current Go programs?

2. Is it possible to identify types of positions where all current Go programs
fail?

3. Is it possible to estimate the overall strength of programs from such analysis
of specific types of positions?

The current paper begin this investigation by analyzing two cases in detail,
and showing test results for many of today’s leading Go programs.

3 Test Scenarios
This section discusses and develops two test scenarios in detail: “Two safe groups”
(TSG) and seki.

3.1 Two Safe Groups
A main motivation for developing this test scenario is the observed poor perfor-
mance of the Fuego program when playing Black on a 9×9 board, especially with
the large komi of 7.5 points [7]. A frequent 9 × 9 opening sees Black starting on
the center point, then building a wall through the middle, while White establishes
a group on each side. If both groups live on a reasonable scale, then it is hard for
Black to get enough territory. Problems in Fuego’s play as Black are often caused
by over-optimism about being able to kill at least one of the white groups.

In this context, a “safe” group is defined to be a group that is safe with reason-
able play, but may easily die during playouts. In contrast, a “solid” group already
has very definite eye shape, and will rarely die even in simulations. It has no
weaknesses that could lead to accidental death during simulation. As an example,
both white groups in Figure 1 are safe, since it is easy to make two eyes for them
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with competent play. An amateur low-level Dan player should have no trouble
winning with White. However, these groups are not solid at the level of Fuego’s
simulations - it is easy for one or both of these groups to die in the course of a
simulation following a not-too-informed policy. In the game, Fuego’s winning
rate was close to 50%, and remained so for the next thirty moves, while for the
professional human player the game was already over at move 12.
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Figure 1: Two safe white groups. Example from game Ping-Chiang Chou 4 Dan
(W) - FUEGO-GB PROTOTYPE (B), Barcelona 2010. White wins by resignation.

3.1.1 Test sets for One and Two Safe Groups

The tests are developed in groups of three positions which are closely related. All
positions are lost for Black. In the first case (TSG), White has two groups which
are “safe” but not “solid” according to the definition above. The second and third
position in each group (TSG-1 and TSG-2) is very similar to the first one, but one
of the two “safe” groups has been made “solid” by adding a few extra stones to
simplify the eye space.

In creating the test cases and test scenarios, the authors attempted to control
the difficulty, such that the game tree built by Fuego’s MCTS is deep enough to
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(mostly) resolve the life and death for a single “safe” group, but not enough for
two or more groups. In informal tests with Fuego, the simulations made enough
mistakes that groups got killed a reasonable fraction of the time.

Our working hypothesis is that these test cases are well suited to show the
difference between simulation policies and search in current MCTS Go programs.

The purpose of the two-safe-groups (TSG) test set is to check each program’s
evaluation of a given position. The set consists of 15 problems, all with Black to
play. In each problem, White is winning, with two safe groups. Therefore, the
closer the black program’s evaluation is to 0 (loss), the better.

Many test cases in TSG are hard for many current Go programs, since they
involve two simultaneous and mostly independent fights. Even if the evaluation
of each single fight is say 60% correct, the probability of White winning a simula-
tion is only 0.60×0.60 = 0.36. The conjecture is that under the tested conditions,
programs cannot resolve both fights within the game tree, and must rely on simu-
lations to resolve many groups.

In contrast, the two corresponding simpler test cases contain only a single
fight: in the TSG-1 set, the top White group is 100% alive for any reasonable
random playout that does not fill real eyes, while in TSG-2, the bottom white
group is 100% alive.

3.2 Seki
Seki positions are designed to illustrate the “blindness” of global search when
simulations are misleading. The goal was to create positions that are decided not
by search, but by playouts. If crucial moves are missing, or are systematically
misplayed in simulations, then the correct solution does not “trickle up” the tree
until it is much too late.

The Seki Test Set consists of 33 cases, all with White to play. At least one
local seki situation is involved in each case. In each case, there is at least one
correct answer that leads to White’s win. Correct answers might include a pass
move.

4 Experiments
Experiments were run with the TSG, TSG-1, TSG-2 and Seki Test Sets described
above. Each test case is a 9x9 Go position. The aim is to measure a program’s
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performance, including scaling, in these cases. Scaling is measured by increasing
the number of playouts from 1k to 128k, doubling in each step.

For each test set, one or more regression test files in GTP format were created.
The seki regression test checks a program’s best move in a given test position. A
program’s answer is counted as correct only if its move is identical to one of the
provided correct answers.

For the Two-Safe-Groups regression tests, in order to create problems with a
simple, binary answer, first a threshold T in the range [0, 0.5] was selected. A
program was requested to output -1 if its winning rate after search was at most T ,
and +1 otherwise. Since Black is losing in all test instances, the correct answer
is -1 in all cases. Three tests with threshold T set to 0.3, 0.4 and 0.5 respectively
were run.

4.1 The Programs
Table 1 lists the participating programs in alphabetical order, with the versions
and processor specifications provided by their authors. These programs strongly
represent the state-of-the-art of MCTS in view of their splendid records in re-
cent computer Go competitions. CRAZY STONE won the 6th UEC Cup in 2013,
followed by ZEN, AYA, PACHI and FUEGO. ZEN won all three Go events - 9x9,
13x13 and 19x19 - at the most recent Computer Olympiad in Tilburg, and STEEN-
VRETER came in 2nd place on both 13x13 and 19x19. PACHI won the May 2012
KGS bot tournament. FUEGO won the 4th UEC Cup in 2010. THE MANY FACES
OF GO won the 13x13 Go event at the 2010 Computer Olympiad and the 2008
Computer Olympiad. GOMORRA has many solid results in recent competitions.

Table 1: The programs participating in the experiments.

Name Version Processor Specification
AYA 7.36e Core2Duo 1.83GHz

CRAZY STONE 0013-07 Six-Core AMD Opteron(tm) Processor 8439 SE
FUEGO tilburg Intel(R) Xeon(R) CPU E5420 @ 2.50GHz

GNU GO 3.9.1 Intel(R) Xeon(R) CPU E5420 @ 2.50GHz
GOMORRA r1610 Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz

THE MANY FACES OF GO 0013-07 Intel(R) Core(TM) i7-3770 @ 3.40GHz
PACHI 9.99 Intel(R) Xeon(R) CPU E5420 @ 2.50GHz

STEENVRETER r123 Intel(R) Core(TM)2 Duo CPU T9300 @ 2.50GHz
STONEGRID 0.3.4 155 Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

ZEN 9.6 MacPro
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GNU GO is included along with THE MANY FACES OF GO as an example of a
program with a large knowledge-intensive, “classical” component.
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Figure 2: The results of the seki regression test.

4.2 Results, Discussion and Future Work
Figure 2 shows the results of the seki regression test. The Programs with heavy
Go-knowledge implementations such as ZEN, STEENVRETER, THE MANY FACES
OF GO and CRAZY STONE solved 33, 33, 32 and 30 out of 33 cases at peak re-
spectively. FUEGO didn’t have any seki knowledge in the playout and failed in
about half of the cases. Overall, running with more playouts just slightly helps
with solving these cases. AYA was the only program showing good scaling: it
solved 27 cases on 1k playouts and improved to 32 with 128k playouts. GNU GO
solved 29 cases at level 10, which is not shown in the figure. The test strongly
demonstrated that applying seki-knowledge to the playouts is crucial to MCTS
programs to play in seki situations correctly.

Figures 3 to 9 show the individual results of the two-safe-groups regression
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tests (TSG, TSG-1, TSG-2). Note that only 7 out of 10 programs supported query-
ing their UCT value, and these results are shown.

TSG is a difficult test for these MCTS programs because most of them failed
in more than half of the cases, even for T = 0.5. FUEGO didn’t solve any case
for T = 0.3, even with 128k playouts. GOMORRA solved only one case, with
8k playouts. This indicates that many MCTS Go-playing programs cannot eval-
uate life-and-death and semeai situations correctly without specific knowledge.
Programs solved more cases for T = 0.4 and T = 0.5, indicating that their eval-
uations of these positions are mostly between 0.3 and 0.5, far from the optimal
value 0. The TSG problem, the difference in performance between TSG on one
side and TSG-1 and TSG-2 on the other side, is most pronounced in FUEGO,
GOMORRA, PACHI, THE MANY FACES OF GO and STEENVRETER. It is less
pronounced in AYA, which surprisingly does relatively poorly even with one solid
group. TSG-1 and TSG-2 can often be resolved by search, since there is only a
single fight. STEENVRETER solved most of the cases of TSG-1 and TSG-2 and
did well for TSG with a T = 0.5 cutoff. ZEN did by far the best overall, and even
solved most cases of TSG. While the techniques used in ZEN have not been pub-
lished, it’s authors have publicly described ZEN as using knowledge-heavy, slow
but very well-informed playouts.

We believe that this work provides a valuable first step towards analyzing the
state of the art in Computer Go. One lesson is that programs which are quite
similar in strength can exhibit very different behavior in terms of their simulation
policies and search scaling. We hope that this approach can be helpful for current
and future Go programmers to analyze the behavior of their programs. Future
work includes: developing more test sets, such as semeai, more than two groups,
connection problems, and endgames; scaling to more simulations; and developing
similar tests for other games such as Hex.

5 Related work
There is a huge and quickly growing literature about applications of MCTS to
games and many other domains. See [1] for a recent survey. Much of that work
focuses on algorithm variations, parameter tuning etc. There is much less work
on identifying limitations.

One well-known result is the tower-of-exponentials worst case convergence
time for UCT [2, 6]. Work by Ramanujan and Selman shows that UCT can be
over-selective and miss narrow tactical traps in chess [8]. In practice, use of
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Figure 3: The results of the two-safe-groups regression test of AYA.
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Figure 4: The results of the two-safe-groups regression test of FUEGO.
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Figure 5: The results of the two-safe-groups regression test of GOMORRA.
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Figure 6: The results of the two-safe-groups regression test of THE MANY FACES
OF GO.
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Figure 7: The results of the two-safe-groups regression test of PACHI.
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Figure 8: The results of the two-safe-groups regression test of STEENVRETER.
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Figure 9: The results of the two-safe-groups regression test of ZEN.

MCTS in games such as chess and shogi has been confined to small niche ap-
plications so far.

Negative experimental results on the correlation between the strength of the
policy as a standalone player vs its strength when used for guiding simulations
in MCTS were shown in [4]. Followup work on simulation balancing includes
[10, 5].
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