
Towards a Second Generation Random Walk Planner: an Experimental
Exploration

Hootan Nakhost and Martin Müller
University of Alberta, Edmonton, Alberta, Canada

{nakhost,mmueller}@ualberta.ca

Abstract

Random walks have become a popular component
of recent planning systems. The increased explo-
ration is a valuable addition to more exploitative
search methods such as Greedy Best First Search
(GBFS). A number of successful planners which
incorporate random walks have been built. The
work presented here aims to exploit the experience
gained from building those systems. It begins a
systematic study of the design space and alterna-
tive choices for building such a system, and de-
velops a new random walk planner from scratch,
with careful experiments along the way. Four ma-
jor insights are: 1. a high state evaluation frequency
is usually superior to the endpoint-only evaluation
used in earlier systems, 2. adjusting the restarting
parameter according to the progress speed in the
search space performs better than any fixed setting,
3. biasing the action selection towards preferred
operators of only the current state is better than
Monte Carlo Helpful Actions, which depend on the
number of times an action has been a preferred op-
erator in previous walks, and 4. even simple forms
of random walk planning can compete with GBFS.

1 Introduction
The most common current technique for building satisfic-
ing planning systems is heuristic search [Bonet and Geffner,
2001]. In IPC-2011, it was used by 25 out of 27 planners in
the deterministic satisficing track. Most of these planners use
greedy search algorithms such as Greedy Best First Search
(GBFS), weighted A* and Enforced Hill Climbing. These
algorithms mainly exploit the heuristic and do not explore
the search space much. This lack of exploration hurts per-
formance in case of inaccurate heuristic values, which are
very common in the automatically generated heuristic func-
tions of domain independent planning. A search algorithm
that is more robust with inaccurate or misleading heuristics
is not only valuable, but essential to improve the state of the
art. [Nakhost and Müller, 2009] introduced Monte Carlo Ran-
dom Walks (MRW), an explorative, forward chaining local
search method. MRW runs bounded length random walks

(RW) to an endpoint which is evaluated by a heuristic h. Af-
ter sampling, an endpoint with lowest h-value becomes the
next state.

Previous systems that utilize RW include many Stochastic
Local Search algorithms [Hoos and Stützle, 2004], Rapidly-
Exploring Random Trees (RRT) in robot path planning
[Alcázar et al., 2011], and the planners Identidem [Coles et
al., 2007], Roamer [Lu et al., 2011], and Arvand [Nakhost
and Müller, 2009; Nakhost et al., 2011; Xie et al., 2012;
Nakhost et al., 2012; Valenzano et al., 2012]. The current
study uses the experience from this first generation of RW
planners to build Arvand-2013, a second generation system,
from scratch. Each design step is justified by careful exper-
iments, which also address important open questions about
RW planning. Does it pay off to evaluate more of the gener-
ated states, and if so, which fraction? What are effective ways
to control the length of walks and restarting? Is it possible to
improve random walks by using preferred operators, beyond
MHA [Nakhost and Müller, 2009]? Like most experimen-
tal papers on AI planning, experiments are run on recent IPC
benchmarks.

2 Building a Second Generation RW Planner
2.1 The Experimental Framework
Like many current systems, the new planner Arvand-2013 is
built on top of the Fast Downward (FD) code base [Helmert,
2006]. All tested algorithms share the FD implementation of
successor generator, heuristic function, and representation of
states and actions. Tests are run on all IPC-2011 domains on
a 2.5 GHz machine with 4GB memory and 30 minutes per in-
stance. Results for randomized planners are averaged over 5
runs, which is mandated by computational resource limits but
already quite reliable, especially in cases of frequent restarts
within each run. The main focus is on coverage - the number
of problems solved.

2.2 Baseline Arvand-2013: a Simple RW Planner
Despite many recent experiments on RW planning, basics
such as controlling the length of random walks and the restart-
ing strategy have not been further explored since the original
work of [Nakhost and Müller, 2009]. Does the effectiveness
of a restarting strategy depend on the walk length distribu-
tion? Is there a robust strategy performing well across all or

at least most planning domains? If not, is it possible to dy-
namically learn the most effective strategies?

The planner Arvand-2013 is built bottom-up, starting with
the simple RW planner shown in Algorithm 1. The first ex-
periment studies the effects of restarting and the length of
walks in this planner. In the forward chaining local search,
each run consists of one or more search episodes, and ter-
minates when the current episode meets a termination condi-
tion. Episodes start from initial state s0 and perform a series
of search steps until a restart condition or termination condi-
tion becomes true. Let hmin be the minimum heuristic value
reached in the current episode. Each search step stepi starts
from state si−1 and ends in si with h(si) < hmin. In stepi,
the planner runs a series of random walks to select si. When
a random walk reaches a state s with h(s) < hmin, the al-
gorithm immediately jumps there, setting si = s. The partial
plan sequence of actions from s0 to si is tracked. The two
termination conditions are:
1. reaching a goal state sG. In this case the planner returns
the sequence of actions from s0 to sG.
2. exceeding a time limit. No plan is returned (details omitted
from the code).

Like Arvand, local search restarts using a restart threshold
tg , whenever tg successive walks fail to improve hmin. To
begin a new episode, the current state is reset to s0 .

Within a random walk (Algorithm 2), baseline Arvand-
2013 evaluates all visited states, unlike Arvand. A walk stops
early if it reaches a goal state, achieves an h-value below
hmin, or hits a dead end; otherwise it continues until termi-
nating as in the restarting random walks model of [Nakhost
and Müller, 2012], with fixed probability rl at each step. rl is
called the local restarting rate. In the absence of early stops,
the length of walks is geometrically distributed with mean
1/rl. As the heuristic function, Arvand-2013 uses the cost-
sensitive version of hFF [Hoffmann and Nebel, 2001] from
the FD code base.

Algorithm 1 Monte Carlo Random Walk Planning
Input Initial State s0, goal condition G, heuristic h
Output Solution plan
Parameters tg , rl

c← s0 {current state}
hmin ← h(c)
loop

s← randomWalk(c, G, hmin, rl)
if s ⊇ G then

return plan from s0 to s
else if s 6= Deadend and h(s) < hmin then

c← s; hmin ← h(c)
else if restart() then

c← s0; hmin ← h(c)
end if

end loop

2.3 Parameters for Global and Local Restarts
The first experiment studies the coverage of Arvand-2013 as
a function of the parameters tg and rl which control global

Algorithm 2 Random Walk
Input current state c, goal condition G, hmin

Output sampled state s
Parameter rl

loop
s← c; A← applicableActions(s)
if A = ∅ or h(s) =∞ then

return Deadend
end if
a← uniformlyRandomSelectFrom(A)
s← apply(s, a)
if h(s) < hmin or s ⊇ G then

return s
end if
with probability rl: return s

end loop

and local restarts. Out of 14 IPC-2011 domains, ten with in-
teresting results are shown in Figure 1. Not shown are BAR-
MAN and TRANSPORT, where no configuration solved more
than 10% of problems, and OPENSTACKS and PEGSOL, with
more than 90% coverage in all configurations. Key observa-
tions are:

• This very basic RW planner already solves 126.6 of 280
IPC-2011 problems with the best tested fixed thresholds of
tg = 100, rl = 0.01. Section 2.6 gives a more comprehen-
sive comparison with other planners.

• No single setting performs well across all domains. Larger
rl values leading to shorter walks perform better in NO-
MYSTERY and WOODWORKING, but worse in TIDYBOT
and VISITALL. In ELEVATORS, restarting rarely with
tg = 10000 increases the coverage compared with fre-
quent restarting with tg = 100. In NOMYSTERY, FLOOR-
TILE, PARCPRINTER and TIDYBOT, such frequent restarts
are better.

• The two parameters rl and tg are mostly independent.
Larger rl are always better in NOMYSTERY and WOOD-
WORKING and always worse in TIDYBOT and VISITALL,
independent of the choice of tg . Higher tg values are never
worse in WOODWORKING or ELEVATORS, but detrimental
in the other domains, independent of rl.

In light of these results, finding robust settings for tg and
rl that work well across all domains seems infeasible. This is
not surprising considering the widely varying characteristics
of IPC-2011 domains. A parameter learning system can help
to fully realize the potential of RW.

2.4 Adaptive Global Restarting
Why does Arvand-2013 with a small restarting threshold per-
form well in ELEVATORS but fail in FLOORTILE and NO-
MYSTERY? Is it possible to learn an effective restarting strat-
egy on the fly? Figure 2 shows details of two typical exam-
ples, contrasting ELEVATORS and FLOORTILE. The graphs
plot hmin as a function of the number of RW for tg = 1000
and tg = 10000. In FLOORTILE, hmin decreases very
quickly at first, then stalls in a dead end or very large local

Figure 1: Coverage of BRW for rl ∈ {0.1, 0.01, 0.001}, tg ∈
{100, 1000, 10000}.

minimum. Here, a large tg wastes lots of time exploring those
dead ends and local minima, while restarting more often with
a small tg increases exploration and the chance of reaching
a goal. ELEVATORS shows the opposite behaviour: the plots
show steady, slow progress towards hmin = 0. Fast restarts
terminate the search before it can reach a goal.

Let Vw (V for velocity, w for walks) be the average heuris-
tic improvement per walk, so on average, about h(s0)/Vw

walks should reach h = 0. Algorithm 3, Adaptive global
restarting (AGR), adjusts tg by continually estimating Vw and
setting tg = h(s0)/Vw. AGR initializes tg = 1000 and up-
dates both tg and the estimated Vw after each episode. Before
the i-th episode, AGR measures V i

w, the average number of
random walks to reach hmin and sets Vw = avgj≤iV

j
w.

Figure 3 compares AGR with restarting with fixed tg .
While not always best, AGR is a robust, close to best choice
in all domains. With AGR and rl = 0.01, Arvand-2013

 10

 20

 30

 40

 50

 60

 70

 0 10000 20000 30000 40000 50000

tg=1000
tg=10000

 50

 100

 150

 200

 250

 300

 350

 400

 0 10000 20000 30000 40000 50000

tg=1000
tg=10000

Figure 2: Progress of hmin, depending on tg , in FLOORTILE-
01 (top) and ELEVATORS-03(bottom).

Algorithm 3 Monte Carlo Random Walks using AGR
Input Initial State s0, goal condition G
Output A solution plan
Parameters tg, rl

c← s0; hmin ← h(s0)
r ← 0; w ← 0 {number of restarts; walks}
li← 0 {last improving walk}
Vw ← 0
loop

s← RandomWalk(c, G, hmin, rl){sampled state}
++w
if s ⊇ G then

return plan reaching s
else if s 6= Deadend and h(s) < hmin then

c← s
hmin ← h(s)
li← w

else if w − li > tg then
V i

w ← (h(s0)− hmin)/li
Vw ← (V i

w − Vw)/r + Vw {update estimate}
tg ← h(s0)/Vw {update tg}
c← s0{restart from initial state}
hmin ← h(s0)
w ← 0; ++r

end if
end loop

Figure 3: Coverage of AGR versus fixed threshold restarting
with tg ∈ {100, 1000, 10000}, with fixed rl = 0.01.

solves 149 of 280 problems, 22 more than the best tested fixed
thresholds of tg = 100, rl = 0.01.

2.5 Adaptive Local Restarting
As for global restarting, an adaptive algorithm can improve
local restarting. As motivation, Figure 4 plots hmin against
number of evaluated nodes in VISITALL-15 and ELEVATORS-
05, for rl = {0.1, 0.01, 0.001} and tg = 10000. Let Ve(r)
(e for evaluations) be the average heuristic improvement per
evaluation when rl = r. Larger Ve indicate faster progress to-
wards a goal. In VISITALL, smaller rl settings achieve faster
progress (larger Ve). The opposite happens in ELEVATORS.

Adaptive local restarting (ALR) is a multi-armed bandit
method [Gittins et al., 2011] that estimates Ve(.) to learn the
best rl. Before each random walk, ALR selects rl = ri from
a candidate set C = {r1, . . . , rn}. Each ri can be considered
one arm of the bandit. For each ri, ALR tracks the aver-
age number of evaluations avge(ri) and the average heuris-
tic improvement avgh(ri), which is bounded below by 0.
avgh(ri)/avge(ri) is used as estimate for Ve(ri). ALR sam-
ples arms in an ε-greedy manner [Sutton and Barto, 1998]: an
arm is selected uniformly at random with probability ε ≥ 0,
and with probability 1 − ε, an arm with largest estimated
Ve(ri) is chosen.

Figure 5 compares ALR using ε ∈ {0.1, 1} with three
fixed settings rl ∈ {0.1, 0.01, 0.001}. To ensure com-
parable results, the ALR candidate set is the same, C =
{0.1, 0.01, 0.001}. In all configurations, AGR is used for
global restarting. Key observations are:
• ALR performs robustly across all domains: the gap be-

tween ALR and the best fixed setting for a domain is never
more than 10%, except in ELEVATORS where rl = 0.1
solves 15% more problems.

• Sampling based on Ve(.) gives a small advantage over uni-
form sampling: Setting ε = 0.1 solves 6 (2%) more prob-
lems than uniform sampling with ε = 1.

2.6 First Comparison with Systematic Search
This experiment studies how Arvand-2013 at this stage of de-
velopment compares with GBFS, a popular systematic search
planner. To keep the playing field level at this point, GBFS

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50000 100000 150000 200000

rl=0.1
rl=0.01

rl=0.001

 50

 100

 150

 200

 250

 300

 350

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

rl=0.1
rl=0.01

rl=0.001

Figure 4: hmin progress with number of evaluated states in
VISITALL-14 (top) and ELEVATORS-05 (bottom).

uses the same single heuristic hFF and no preferred opera-
tors. Figure 6 compares the coverage:
• Arvand-2013 and GBFS have very different strengths and

weaknesses: Arvand-2013 on average solves 5 (25%) to
16 (80%) more problems in ELEVATORS, PARCPRINTER,
and VISITALL, GBFS solves 7 (35%) to 15 (75%) more in
BARMAN, PARKING, and SOKOBAN.

• Overall, Arvand-2013 is about level with GBFS, solving 5
(2%) more problems.

3 The Rate of Heuristic Evaluation
While heuristic state evaluations provide key information to
guide search, computing a strong heuristic such as hFF is
costly. Two methods which reduce the number of evaluations
are deferred evaluation [Helmert, 2006], which uses the par-
ent’s evaluation for a node, and MRW [Nakhost and Müller,
2009], which evaluates only the endpoint of a random walk.
The next experiment varies the frequency of state evaluations:
Instead of all states as in the baseline, Arvand-2013 evaluates:
1. the endpoint of each random walk as in Arvand, and
2. intermediate states with probability peval.
This interpolates between the baseline algorithm with peval =
1 and MRW with peval = 0. ALR with ε = 0.1 and AGR are
used as in previous versions. Figure 7 shows the coverage
in IPC-2011 when varying peval. Four categories of domains
emerge:
• Domains where more evaluation always hurts: Arvand-

2013 solves 100% of OPENSTACKS, VISITALL and

Figure 5: Coverage of ALR and local restarting with fixed
rate, ε ∈ {0.1, 1}, rl ∈ {0.1, 0.01, 0.001}.

Figure 6: Coverage of simple versions of GBFS and Arvand-
2013.

WOODWORKING even with peval = 0. RW search is so
effective that higher evaluation rates only increase the run-
time. In TIDYBOT, peval = 0 is also best, but coverage is
below 100%. Here, hFF is both very costly and mislead-
ing. For reference, even a blind random walk search, using
only goal checks but no evaluation at all, can solve 90%
of TIDYBOT instances! Only one planner in the IPC-2011
competition, BRT [Alcázar and Veloso, 2011], surpassed
that number.
• Domains where more evaluation always pays off: PARC-

PRINTER and NOMYSTERY. Running time decreases with
increasing peval, so spending more time on evaluation is
worth it.
• An intermediate evaluation rate works best in ELEVATORS,

FLOORTILE, and PARKING. peval = 0 provides too little
information and peval = 1 is too slow.
• In SCANALYZER, PEGSOL, SOKOBAN, and TRANSPORT,

the coverage is the same for all tested peval > 0.
These results challenge the previous practice of always set-

ting peval = 0 as in MRW, and show that for a significant
number of domains a higher evaluation rate is suitable.

Figure 7: Coverage varying peval ∈ {0, 0.25, 0.5, 0.75, 1}.

4 Biased Action Selection for Random Walks
In the versions so far, Arvand-2013 used the heuristic com-
putation only to obtain the h-value. Preferred operators can
be obtained from common heuristic functions at no additional
cost. Using them to guide random walks is the next step.

The GRIPPER example in [Nakhost and Müller, 2012]
demonstrates that biased action selection can lower the
regress factor, and greatly decrease the runtime of RW. Monte
Carlo Helpful Actions (MHA) [Nakhost and Müller, 2009]
bias action selection using information gathered from random
walks. Q(a) scores are updated for each possible action a,
and actions are sampled from a Gibbs distribution with tem-
perature T . For current state s with applicable actions A(s),
action a is chosen with probability

p(a, s) =
eQ(a)/T∑

b∈A(s) eQ(b)/T
.

T determines the strength of the bias towards actions with
larger scores: lowering T gives less uniform distributions.

In the MHA implementation of [Nakhost and Müller,
2009], Q(a) counts the number of times an action is preferred
in the current search step. Q(a) is computed only from statis-
tics gathered from endpoints of walks starting from the cur-
rent state s. Preferred operators of intermediate states are not
computed. Scores are reinitialized at every jump to another
state. Preferred operators of s itself are not treated separately,
which seems counterintuitive: they could at least be given a
higher priority.

Arvand-2013 extends MHA to exploit the extra informa-
tion from its more frequent state evaluations, and give higher
priority to current preferred operators, when known. Let
n(a) be the number of times that a was a preferred opera-
tor, N = maxa∈A(s) n(a), and PO(s) the set of preferred
operators in s. Then:

Q(a) =
{

N ×W + n(a)(1−W) if a ∈ PO(s)
n(a) Otherwise

The parameter W ∈ [0, 1] controls the relative weight of
the operators in PO(s): larger W favor them more. In states

where PO(s) is not computed and therefore the empty set, the
result is the same as in classical MHA.

Figure 8 shows the coverage of MHA, varying the temper-
ature T and weight W , against the version without MHA. In
all runs, peval = 0.5, ALR(ε = 0.1) and AGR are used.

Let MHA(w, t) denote a version of Arvand-2013 as above
enhanced with MHA, with W = w and T = t. Key observa-
tions are:

• MHA(1, 10) is very effective. Coverage in BARMAN im-
proves from 0 to 18 (90%), in TRANSPORT from 2 (10%)
to 20 (100%), in ELEVATORS from 7 (35%) to 20 (100%)
and in PARKING from 9 (45%) to 17 (85%). In total,
MHA(1, 10) solves 56 more problems (20%).

• W = 1, using only the current preferred operators when
available, works best. MHA(1, t) consistently outperforms
MHA(0.5, t), which outperforms MHA(0, t).

• With W = 1, for most domains lower temperatures of
T = 10 and T = 100 are preferable. Exceptions are PARC-
PRINTER with T = 1 and TIDYBOT with T = 1000.

5 Comparison with Other Planners
Table 1 shows total coverage in IPC-2011 for the successive
versions of Arvand-2013, compared with the top three com-
petition planners in terms of coverage, LAMA2011, FDSS2
[Helmert et al., 2011] and Probe [Lipovetzky and Geffner,
2011], as well as the RW planner Roamer. The last version
of Arvand-2013 using MHA and peval = 1 is very competi-
tive. Overall, it only lags behind LAMA2011. This is mainly
due to the results in SOKOBAN: Arvand-2013 solves 17 fewer
problems in this domain, which is considered to be hopeless
for RW search [Xie et al., 2012].

Arvand-2013 Version solved Ref. Planner solved
Baseline 127 Roamer 215
+AGR 149 FDSS2 220
+ALR, peval = 0.5 164 Probe 226
+ALR, peval = 1 156 LAMA2011 250
+MHA, peval = 0.5 219
+MHA, peval = 1 226

Table 1: Number of solved tasks out of 280 in IPC-2011.
Left: Arvand-2013 versions. Right: IPC reference planners.

6 Conclusions and Future Work
The systematic bottom-up reconstruction of the new RW
planner Arvand-2013 challenges several assumptions and de-
sign choices made in previous systems, and shows that strong
improvements to RW systems are still possible. Two obser-
vations stand out:

1. The importance of adaptive systems: this becomes more
important for search algorithms like RW search, which in-
stead of systematically exploring all states, selectively sam-
ple parts of the search space: the effective distribution of
samples depends on the search space characteristics of the
input problem. ALR and AGR provide practical guidelines
for developing such adaptive systems.

Figure 8: Coverage of MHA versus uniform action selection
(no MHA), with T ∈ {1, 10, 100, 1000} and w = 0 (top),
w = 0.5 (middle), w = 1 (bottom).

2. The big effect of action selection biasing: as the theory de-
veloped in [Nakhost and Müller, 2012] predicts and exper-
iments in Section 4 confirm, action selection biasing can
significantly improve the performance of RW search. MHA
is one successful example of a biasing technique.
The latest version of Arvand-2013 is still relatively simple,

with much room for adding features, but already has strong
performance. Future work includes investigating heuristic
functions other than hFF , using multiple heuristics in RW
planning, and tuning for plan quality as opposed to coverage.

References
[Alcázar and Veloso, 2011] V. Alcázar and M. Veloso. BRT:

Biased rapidly-exploring tree. In The 2011 International
Planning Competition, IPC 2011, Universidad Carlos III
de Madrid, pages 17–20, 2011.

[Alcázar et al., 2011] V. Alcázar, M. Veloso, and D. Borrajo.
Adapting a rapidly-exploring random tree for automated
planning. In Proceedings of the Forth Annual Symposium
on Combinatorial Search, SOCS 2012, Barcelona, Spain,
July 15-16, 2011, 2011.

[Bonet and Geffner, 2001] B. Bonet and H. Geffner. Plan-
ning as heuristic search. Artificial Intelligence, 129(1-
2):5–33, 2001.

[Coles et al., 2007] A. Coles, M. Fox, and A. Smith. A new
local-search algorithm for forward-chaining planning. In
Proceedings of the Seventeenth International Conference
on Automated Planning and Scheduling, ICAPS 2007,
Providence, Rhode Island, USA, September 22-26, 2007,
pages 89–96, 2007.

[Gittins et al., 2011] J. Gittins, K. Glazebrook, and R. We-
ber. Multi-armed bandit allocation indices. Wiley, 2011.

[Helmert et al., 2011] M. Helmert, G. Röger, and E. Karpas.
Fast Downward Stone Soup: A baseline for building plan-
ner portfolios. In ICAPS 2011 Workshop on Planning and
Learning, pages 28–35, 2011.

[Helmert, 2006] M. Helmert. The Fast Downward planning
system. Journal of Artificial Intelligence Research (JAIR),
26:191–246, 2006.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The
FF planning system: Fast plan generation through heuris-
tic search. Journal of Artificial Intelligence Research,
14:253–302, 2001.

[Hoos and Stützle, 2004] H. Hoos and T. Stützle. Stochastic
Local Search: Foundations & Applications. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2004.

[Lipovetzky and Geffner, 2011] N. Lipovetzky and
H. Geffner. Searching for plans with carefully de-
signed probes. In Proceedings of the 21st International
Conference on Automated Planning and Scheduling,
ICAPS 2011, Freiburg, Germany June 11-16, 2011, 2011.

[Lu et al., 2011] Q. Lu, Y. Xu, R. Huang, and Y. Chen. The
Roamer planner random-walk assisted best-first search. In
The 2011 International Planning Competition, IPC 2011,
Universidad Carlos III de Madrid, pages 73–76, 2011.

[Nakhost and Müller, 2009] H. Nakhost and M. Müller.
Monte-Carlo exploration for deterministic planning. In
Proceedings of the 21st International Joint Conference on
Artificial Intelligence, IJCAI 2009, Pasadena, California,
USA, July 11-17, 2009, pages 1766–1771, 2009.

[Nakhost and Müller, 2012] H. Nakhost and M. Müller. A
theoretical framework for studying random walk planning.
In Proceedings of the Fifth Annual Symposium on Combi-
natorial Search, SOCS 2012, Niagara Falls, Canada, July
19-21, 2012, 2012.

[Nakhost et al., 2011] H. Nakhost, M. Müller, R. Valenzano,
and F. Xie. Arvand: the art of random walks. In The 2011
International Planning Competition, IPC 2011, Universi-
dad Carlos III de Madrid, pages 15–16, 2011.

[Nakhost et al., 2012] H. Nakhost, J. Hoffmann, and
M. Müller. Resource-constrained planning: A Monte
Carlo random walk approach. In Proceedings of the
Twenty-Second International Conference on Automated
Planning and Scheduling, ICAPS 2012, Atibaia, São
Paulo, Brazil, June 25-19, 2012, pages 181–189, 2012.

[Sutton and Barto, 1998] R. Sutton and A. Barto. Reinforce-
ment Learning: An Introduction. MIT Press, 1998.

[Valenzano et al., 2012] R. Valenzano, H. Nakhost,
M. Müller, J. Schaeffer, and N. Sturtevant. Arvand-
Herd: Parallel planning with a portfolio. In Proceedings
of the 20th European Conference on Artificial Intelligence,
ECAI 2012, Montpellier, France, August 27-31, 2012,
pages 113–116, 2012.

[Xie et al., 2012] F. Xie, H. Nakhost, and M. Müller. Plan-
ning via random walk-driven local search. In Proceed-
ings of the Twenty-Second International Conference on
Automated Planning and Scheduling, ICAPS 2012, Ati-
baia, São Paulo, Brazil, June 25-19, 2012, pages 315–322,
2012.

