
A Comparison of Knowledge-Based
GBFS Enhancements and Knowledge-Free Exploration

Richard Valenzano
University of Alberta
valenzan@ualberta.ca

Nathan R. Sturtevant
University of Denver
sturtevant@cs.du.edu

Jonathan Schaeffer, Fan Xie
University of Alberta

{jonathan, fxie2}@ualberta.ca

Abstract

GBFS-based satisficing planners often augment their search
with knowledge-based enhancements such as preferred oper-
ators and multiple heuristics. These techniques seek to im-
prove planner performance by making the search more in-
formed. In our work, we will focus on how these enhance-
ments impact coverage and we will use a simple technique
called ✏-greedy node selection to demonstrate that planner
coverage can also be improved by introducing knowledge-
free random exploration into the search. We then revisit the
existing knowledge-based enhancements so as to determine
if the knowledge these enhancements employ is offering nec-
essary guidance, or if the impact of this knowledge is to add
exploration which can be achieved more simply using ran-
domness. This investigation provides further evidence of the
importance of preferred operators and shows that the knowl-
edge added when using an additional heuristic is crucial in
certain domains, while not being as effective as random ex-
ploration in others. Finally, we demonstrate that random ex-
ploration can also improve the coverage of LAMA, a planner
which already employs multiple enhancements. This suggests
that knowledge-based enhancements need to be compared to
appropriate knowledge-free random baselines so as to ensure
the importance of the knowledge being used.

1 Introduction
Greedy Best-First Search (GBFS) is a popular algorithm
that is used in many heuristic search-based satisficing plan-
ners including LAMA (Richter and Westphal 2010) and Fast
Downward (Helmert 2006). In its basic form, GBFS iter-
atively selects the most promising node for expansion, as
suggested by a single heuristic which, along with a tie-
breaking policy, will completely determine how the search
progresses through the state-space. If GBFS does not work
well on a given problem, it means that the heuristic and the
tie-breaking policy are not effectively guiding the search.

To improve the performance of GBFS-based planners
on such problems, the standard algorithm is often en-
hanced with techniques such as preferred operators or multi-

heuristic best-first search. These enhancements use automat-
ically generated knowledge as an alternative source of guid-
ance. The goal of using such enhancements is to improve the
way that the state-space is examined by making the search

Copyright c� 2014, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

more informed. As the variation introduced into the search
by these enhancements is based on knowledge, we refer to
such enhancements as being knowledge-based.

Variation can also be introduced into GBFS by using ran-

dom exploration. For example, we can change the way that
nodes are iteratively selected for expansion by making the
algorithm occasionally select a random node from the open
list instead of the node suggested by the heuristic. This tech-
nique, which we refer to as ✏-greedy node selection, is easy
to implement, has a low execution overhead, and does not
require additional knowledge about the problem.

In this paper we compare the impact on coverage of
knowledge-based enhancements and knowledge-free explo-
ration. We begin by using ✏-greedy node selection to demon-
strate that there is substantial value in adding random explo-
ration to GBFS. This result suggests a need to revisit the
existing knowledge-based enhancements so as to determine
if the knowledge they use is offering important guidance, or
if the main impact of this knowledge is to add variation that
can be replicated using simpler knowledge-free approaches.
We therefore evaluate the impact of the knowledge used in
the knowledge-based enhancements by comparing these en-
hancements to equivalent systems in which the knowledge
has been replaced by randomness. This investigation con-
firms that preferred operators are offering much more to
the search than simply adding random variation, and that
the knowledge employed when using secondary heuristics
is crucial in some domains while not offering enough varia-
tion in others. Finally, we will show that random exploration
can even benefit a fully enhanced planner like LAMA, and
argue that knowledge-based planning enhancements need to
be compared against stochastic alternatives to better under-
stand the importance of the added knowledge.

2 The Value of Knowledge-Free Exploration
In this section we will demonstrate that there is value to
adding knowledge-free random exploration to GBFS. We do
so using ✏-greedy node selection, which is a simple modi-
fication to GBFS that allows for random exploration to be
explicitly added to the algorithm. This technique is inspired
by the ✏-greedy policies often used for multi-armed bandit
problems (Sutton and Barto 1998). It requires the user to
set a parameter ✏ with some value in the range [0, 1]. With
probability (1 � ✏), ✏-greedy node selection uses the same

375

Proceedings of the Twenty-Fourth International Conference on Automated Planning and Scheduling

Domains # Domains
Better than Worse Than

Planner Coverage Baseline Baseline

Baseline 528.0 0 0
✏ = 0.05 578.0 13 1
✏ = 0.1 581.4 14 1
✏ = 0.2 585.1 14 1
✏ = 0.3 584.7 13 2
✏ = 0.5 574.5 12 3
✏ = 0.75 546.3 7 5

Table 1: Adding ✏-greedy node selection to GBFS.

rule as GBFS to select a node for expansion: it selects the
node with the lowest heuristic value. However, with prob-
ability ✏ this technique selects a node uniformly at random
from amongst all nodes in the open list. This means that the
value of ✏ determines how often this node selection policy
chooses greedily according to the heuristic, and how often
the algorithm explores randomly.

Since ✏-greedy node selection only changes GBFS by in-
troducing random node selection, we can use this technique
to evaluate the impact of adding knowledge-free random ex-
ploration to a GBFS-based planner. For the evaluation of this
technique and the others considered below, we will only con-
sider planner coverage due to space constraints. However,
these techniques could be used as only the first iteration of
a restarting weighted A* search (Richter, Thayer, and Ruml
2010), or with a post-processor in Diverse Any-time Search
(Xie, Valenzano, and Müller 2013). We expect that when do-
ing so, the quality of solutions found would be similar.

The experimental setup for both this section and the rest
of this paper was then as follows. All experiments are per-
formed using the Fast Downward planning system. The test
set is composed of the 790 problems from IPCs 2006, 2008,
and 2011, and these tasks are treated as being unit-cost
since our focus is on coverage. The experiments were per-
formed on a cluster of 8-core machines, each with two 4-
core 2.8 GHz Intel Xeon E546s processors and 6 MB of L2
cache. Planners were run with a 4 GB per-problem mem-
ory limit, and a 30 minute per-problem time limit which did
not include the time for translation from PDDL to SAS+.
All tested planners were set to break ties in a first-in first-
out manner, do not re-open closed nodes, and use deferred
heuristic evaluation (Helmert 2006) unless otherwise stated.
For stochastic planners, the coverage shown is the average
coverage seen over 10 runs on each problem.

Table 1 shows the coverage of a baseline GBFS planner
and instances of that baseline planner that are enhanced with
✏-greedy node selection. The baseline runs standard GBFS
with the FF heuristic (Hoffmann and Nebel 2001). The third
column shows on how many of the 30 domains the enhanced
planner could solve at least one more problem than the base-
line, on average. The fourth column shows on how many do-
mains the enhanced planner solved at least one fewer prob-
lem on average. The table shows that by adding random ex-
ploration to a GBFS search we can substantially improve the
coverage on the test set. This is true for a wide range of val-
ues of ✏ and in many domains. In some of these domains

the magnitude of this increase is also quite high. For ex-
ample, for all values of ✏ tested, ✏-greedy was able to solve
no less than an average of 29.4 of 30 2008 cybersecurity
problems, 22.8 of 30 2008 woodworking problems, and 16.8
of the 20 2011 barman problems, while the baseline solved
20, 15, and 12, respectively. In the few domains in which
✏-greedy node selection decreased the coverage, the effect
was minimal unless ✏ was high. For example, for all values
of 0.05  ✏  0.3, the coverage never decreased in any
domain by more than an average of 2.5 problems.

To ensure this behaviour is not specific to the use of the FF
heuristic and deferred heuristic evaluation, we also tested ✏-
greedy node selection with standard heuristic evaluation and
with a different heuristic. In these cases the results were sim-
ilar. For example, the performance of GBFS using the FF
heuristic and standard heuristic evaluation improved from
a total of 533 problems when not using ✏-greedy node se-
lection to an average of 596.3 when ✏ = 0.3. Similarly, a
GBFS that uses deferred heuristic evaluation and is guided
by the context-enhanced additive (CEA) heuristic (Helmert
and Geffner 2008) solves 491 problems when not using ✏-
greedy node selection and an average of 536.0 when ✏ = 0.3.

These results indicate that while the popular heuris-
tics offer effective guidance for standard GBFS in many
cases, there is significant value in adding variation through
knowledge-free random exploration. When GBFS fails it is
because it is too sensitive to the errors in the heuristic. The
results suggest ✏-greedy can help decrease this sensitivity.

3 Knowledge-Based GBFS Enhancements
In this section, we describe how preferred operators and
multi-heuristic best-first search use additional knowledge to
add variation to GBFS.

3.1 Preferred Operators
The preferred operators of a node n are operators that are
applicable to n and which are identified — typically as a
byproduct of heuristic calculation — as being more likely to
be part of a solution path. Preferred operators were first in-
troduced under the name of helpful actions by Hoffmann and
Nebel (2001) who used them for pruning actions in an en-

hanced hill-climbing search. They were then adapted for use
in GBFS by Helmert (2006) in the Fast Downward planning
system. In this system and other GBFS-based planners like
LAMA, preferred operators are most often used in a dual-
queue search (Richter and Helmert 2009). The first queue
contains the entire open list, while the second queue only
contains those nodes reached with a preferred operator. The
simplest approach to using these two queues is to alternate
between them when selecting a node to be expanded, where
the heuristic determines the most promising node in each
queue. Some GBFS-based planners also use boosting, which
increases the proportion of time in which the preferred op-
erator queue is used to select the next node to be expanded
(Richter and Westphal 2010).

In a GBFS that is enhanced by preferred operators, at
least every second node expanded will have been reached
with a preferred operator. The enhancement is thereby us-

376

Operator Ordering
Planner Stand Rev RO P 1st P 1st RO

FF 528.0 543.0 526.9 NA NA
FF & LM 604.0 599.0 587.4 NA NA
FF, Prefs 616.0 615.0 606.8 616.0 613.8
FF, BP 654.0 665.0 656.3 675.0 657.5
FF & LM, BP 680.0 692.0 676.0 713.0 677.7

Table 2: The impact of knowledge-based enhancements.

ing the knowledge given by the preferred operators to in-
troduce variation into GBFS by putting a higher priority on
those nodes which are the result of these operators. Doing
so may also help in heuristic plateaus, which are contiguous
regions of the state-space in which all nodes have the same
heuristic value. In standard GBFS, the typical first-in first-
out tie-breaking scheme will result in a breadth-first search
being performed in the plateau. By putting priority on a sub-
set of the open list, the use of preferred operators can help
the search reach deeper parts of the plateau sooner. If they
offer good guidance within the plateau, the preferred opera-
tors may also help the search to quickly find an exit.

3.2 Multi-Heuristic Best-First Search
Multi-heuristic best-first search (Helmert 2006) is another
popular knowledge-based GBFS enhancement that has been
shown to be an effective way to simultaneously use mul-
tiple heuristics (Röger and Helmert 2010). Given a set of
k heuristics, a GBFS using multi-heuristic best-first search
will take turns using each of the k heuristics for identifying
the most promising node for expansion. This technique can
be seen as enhancing a single-heuristic GBFS with knowl-
edge in the form of an additional k � 1 heuristics. Variation
will be added to the search by the additional heuristics when-
ever they disagree with the initial heuristic over which node
is most promising. For example, while the initial heuristic
may view a region of the state-space as a plateau, one of the
other heuristics may not and may instead offer guidance in
that region. However, if the additional heuristics are too sim-
ilar to the initial heuristic or also offer poor guidance, they
will not effectively vary the search.

4 Comparing Knowledge-Free and
Knowledge-Based Variation

Having shown that GBFS can be improved by adding ran-
dom exploration, we evaluate the usefulness of the knowl-
edge employed by the knowledge-based enhancements as
compared to adding random variation. To do so, we will
compare these enhancements to random baselines that are
created by replacing the knowledge used in the enhance-
ments with randomness. We begin by showing that the
knowledge-based enhancements improve coverage.

4.1 Knowledge-Based Enhancement Performance
Table 2 shows the coverage of the single-heuristic base-
line planner used above and the coverage achieved when
the knowledge-based enhancements are added. Each plan-
ner was also tested with different operator orderings. The

secondary heuristic used is the landmark count (LM) heuris-
tic (Richter and Westphal 2010). The tested planner con-
figurations are GBFS using the FF heuristic (FF), GBFS
using multi-heuristic best-first search with the FF and LM
heuristics (FF & LM), GBFS using the FF heuristic and pre-
ferred operators (FF, Prefs), GBFS using the FF heuristic
and boosted preferred operators (FF, BP), and GBFS using
multi-heuristic best-first search with the FF and LM heuris-
tics and boosted preferred operators (FF & LM, BP). The
last of these configurations, “FF & LM, BP”, corresponds
to the first iteration of LAMA (Richter and Westphal 2010).
As the subsequent iterations are only used to improve the
quality of the solution found during the first iteration, “FF &
LM, BP” and LAMA are equivalent in terms of coverage.

The operator orderings tested are the standard ordering
(Stand), the reverse of the standard ordering (Rev), random
operator ordering (RO), preferred operators first (P 1st), and
random operator ordering with preferred operators first (P
1st RO). Random operator ordering means that the succes-
sors of a node are randomly shuffled before they are added
to a queue, while preferred operators first means that the
preferred operators are put at the front of the generated suc-
cessor list. By default, Fast Downward and LAMA use “P
1st” when using preferred operators, and “Stand” otherwise.

Operator ordering has previously been shown to have a
substantial effect on planner performance due to its impact
on the way ties are broken between successors of the same
node (Howe and Dahlman 2002). The table shows that this
is also true of Fast Downward, though the best operator
ordering changes depending on the planner configuration.
For example, the standard ordering is better than the re-
verse ordering for “FF & LM”, while the opposite is true
for other configurations like “FF”. The table also shows that
the knowledge-based enhancements are able to improve the
coverage regardless of the operator ordering. While the mag-
nitude of this improvement changes depending on the oper-
ator ordering, the relative ordering of the planners does not.

4.2 Evaluating the Variation Added by Preferred
Operators

The previous section shows that enhancing GBFS with pre-
ferred operators substantially improves planner coverage.
Recall that the knowledge being exploited by this enhance-
ment is given by the preferred operators suggested by the
heuristic, and that the variation introduced by using these op-
erators is the result of putting a higher priority on nodes that
are reached using a preferred operator. As the search would
most likely vary if any proper subset of the open list was
prioritized using a second queue, we can evaluate the effec-
tiveness of this knowledge by populating the second queue
using randomly selected nodes instead of with those corre-
sponding to preferred operators.

In this experiment we ensured that the number of ran-
dom successors of a given node that are put in the second
queue was equal to the actual number of preferred opera-
tors suggested by the heuristic. We use random operator or-
dering so as to avoid the inherent bias introduced through
the use of a static operator ordering with first-in first-out
tie-breaking, and we did not use boosting for the sake of

377

Heuristic No Prefs Prefs Rand. Prefs Avoid Prefs

FF 526.9 606.8 554.1 531.6
CEA 491.9 583.6 534.6 486.8

Table 3: Comparing the use of preferred operators to the pri-
oritization of randomly selected operators.

simplicity. The results are shown in Table 3, in which the
columns are labelled as follows. “No Prefs” refers to the use
of a single-queue GBFS that does not use preferred opera-
tors. “Prefs” refers to the use of the actual preferred oper-
ators suggested by the heuristic for populating the second
queue. “Rand. Prefs” refers to the use of randomly selected
operators for populating the second queue. The final column,
“Avoid Prefs” refers to the use of operators that are selected
randomly such that those selected are restricted from includ-
ing those identified as preferred operators by the heuristic.
Intuitively, a search using the “Avoid Prefs” approach is pri-
oritizing nodes against the advice of the preferred operators.

As shown in the table, the use of preferred operators with
either heuristic greatly outperforms both the single-queue
search and the baselines which give preference to randomly
selected operators. This suggests that the preferred opera-
tors are offering important knowledge. However, the results
in the “Rand. Prefs” column indicate that useful variance is
introduced into the search even if the second queue is popu-
lated using randomly selected operators. It is only when the
second queue is used to bias the search against the advice of
the heuristic — advice which is clearly informative — that
the use of the second queue is not helpful.

4.3 Evaluating the Variation Added by
Multi-Heuristic Best-First Search

Multi-heuristic best-first search was also shown to lead to
coverage improvements in Section 4.1, with some of those
improvements coming in domains in which preferred opera-
tors were not as effective. For example, when using random
operator ordering, “FF” solved an average of 3.8 of the 20
problems in the 2011 visitall domain, while “FF, BP” solved
an average of 4.2 and “FF & LM” solved an average of 18.4.
As with preferred operators, we will evaluate the importance
of the extra knowledge used in this technique by replacing
that knowledge with randomness. This means that we will
still use a second heuristic, but it will be a purely random
heuristic. For the experiments below, this was done by defin-
ing the second heuristic so that the heuristic value of a node
was given by a random integer in the range from 0 to 100.

The coverage of the planner using this random heuristic is
shown in Table 4 in the row labelled “FF & Random” both
when using boosted preferred operators and when not us-
ing preferred operators. The table shows that the variation
added by the random heuristic leads to substantially bet-
ter coverage than the single-heuristic baseline planner. We
include the results over different operator orderings since
this attribute did affect the relative ordering of the planners
tested. When using random operator ordering, the use of a
random heuristic led to better coverage than the knowledge-
based heuristic, though the opposite is true with the other

No Prefs Boosted Prefs
Planner RO Stand RO P 1st

FF 526.9 528.0 657.5 675.0
FF & Random 586.0 584.6 686.8 698.0
FF & LM 587.4 604.0 676.0 713.0

Table 4: Knowledge-based and knowledge-free multi-
heuristic best-first search.

orderings. When using the random heuristic, the planner
is less sensitive to the operator ordering because when se-
lecting nodes for expansion according to this heuristic, the
randomly assigned heuristic value will matter more for tie-
breaking between children of the same node than will the
operator ordering. However, this also means that if the op-
erator ordering is introducing a beneficial bias, the planner
using the random heuristic is less able to take advantage.

Despite the similarity in the total coverage results,
domain-by-domain analysis showed that using the
knowledge-based heuristic is resulting in variation that
is quite different than random exploration. For example,
consider the results when using standard operator ordering
and no preferred operators. Just as with ✏-greedy node
selection, the random exploration added when using the
random heuristic increased coverage in the 2008 cyberse-
curity and 2008 woodworking domains, from 20 and 15
respectively when using a single heuristic, to averages of
30.0 and 25.4 when using the random heuristic. In contrast,
the use of the knowledge-based LM heuristic as a secondary
heuristic actually hurts coverage, as the resulting planner
solves only 12 and 19 problems respectively. However,
the LM heuristic does add important guidance in the 2008
transport, 2011 parking, and the 2011 visitall domains. In
these domains, the single heuristic planner solved 34 of
the 70 total problems, while adding the random heuristic
improved coverage to 45.7 which was still not as much as
the 67 solved when using the LM heuristic.

The use of a random heuristic was also an effective way
to increase coverage when used alongside the CEA heuris-
tic. For example, when using random operator ordering
and boosted preferred operators, CEA solved an average of
617.3 problems, while the addition of a random heuristic in-
creased coverage to an average of 650.9. The use of the ran-
dom heuristic even compares well to a multi-heuristic best-
first search that uses both the CEA and FF heuristics when
using random operator ordering and boosted preferred oper-
ators, as such a system solves an average of 646.5 problems.

5 Related Work
Diverse best-first search (DBFS) is a search algorithm that
also stochastically selects nodes from the open list (Imai and
Kishimoto 2011). The execution of this algorithm consists
of two phases. First, a node is randomly selected from the
open list according to a distribution which favours nodes
with a low g-cost and a low heuristic value. Secondly, an
expansion-limited local GBFS search is initiated from the
selected node. This process repeats until a solution is found.

Though ✏-greedy node selection may not increase cover-
age as much as DBFS when added to an otherwise unen-

378

Operator Ordering
Planner Stand RO P 1st P 1st RO

Baseline 680.0 676.0 713.0 677.7
✏ = 0.05 706.4 704.8 723.0 706.7
✏ = 0.1 704.4 706.5 720.8 706.0
✏ = 0.2 703.8 705.9 720.3 703.9
✏ = 0.3 702.9 705.1 716.4 704.2

Table 5: Adding ✏-greedy node selection to the first iteration
of LAMA. The default LAMA configuration corresponds to
the baseline with the P 1st operator ordering.

hanced planner, it still increases coverage substantially and
it is considerably simpler. In any case, the main purpose of
✏-greedy node selection is not to compete with DBFS, but to
isolate the impact of knowledge-free random exploration on
GBFS and to clearly demonstrate its positive impact. This
is also the case when comparing ✏-greedy node selection
to other systems which search for solutions using stochas-
tic techniques. These include Arvand (Nakhost and Müller
2009), which uses a random-walk based search, Roamer (Lu
et al. 2011), which adds random-walks to GBFS, and Lamar
and Randward (Olsen and Bryce 2011), which use a stochas-
tic version of the FF heuristic that is constructed by adding
randomness into the way in which the heuristic is computed.

6 Conclusion and Discussion
In this paper, we have demonstrated through a simple tech-
nique called ✏-greedy node selection that there is substantial
value in adding variation to GBFS through random explo-
ration. This means that GBFS can be improved by both bet-
ter guidance and by adding random exploration. It is there-
fore necessary to compare knowledge-based enhancements
to proper random baselines to ensure that they are actually
adding better guidance into the search instead of merely
adding exploration which can be achieved in simpler ways.
We performed such a comparison between appropriate ran-
domized baselines and two existing enhancements. Our re-
sults indicate that the knowledge used by preferred operators
is essential to the success of this technique, while the use
of a secondary heuristic in a multi-heuristic best-first search
is offering important guidance in certain domains while not
varying the search effectively in others.

We have also tried adding ✏-greedy node selection to the
first iteration of LAMA, so as to test if random exploration
is unnecessary in such a fully enhanced planner. For this ex-
periment, each queue was set to individually use ✏-greedy
node selection. For example, if the next node expanded is to
be selected from a preferred operator queue, the search will
expand the most promising preferred operator with probabil-
ity 1 � ✏, and a random preferred operator with probability
✏. The results of this experiment are given in Table 5, which
shows that the added exploration increases the coverage of
LAMA over a wide range of ✏ values and over all the op-
erator orderings considered. As there is still room for gains
through random exploration, it remains necessary to ensure
that any newly developed knowledge-based enhancements
are also compared to appropriate random baselines.

Acknowledgments
We would like to thank Martin Müller, Robert Holte, and the
reviewers for their advice on this paper. This research was
supported by GRAND and the Natural Sciences and Engi-
neering Research Council of Canada (NSERC).

References
Helmert, M., and Geffner, H. 2008. Unifying the Causal
Graph and Additive Heuristics. In Proceedings of the Eigh-

teenth International Conference on Automated Planning and

Scheduling, 140–147.
Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26:191–246.
Hoffmann, J., and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation Through Heuristic Search. Journal of

Artificial Intelligence Research 14:253–302.
Howe, A. E., and Dahlman, E. 2002. A Critical Assessment
of Benchmark Comparison in Planning. Journal of Artificial

Intelligence Research 17:1–33.
Imai, T., and Kishimoto, A. 2011. A Novel Technique for
Avoiding Plateaus of Greedy Best-First Search in Satisficing
Planning. In Proceedings of the Twenty-Fifth AAAI Confer-

ence on Artificial Intelligence, 985–991.
Lu, Q.; Xu, Y.; Huang, R.; and Chen, Y. 2011. The Roamer
Planner: Random-Walk Assisted Best-First Search. The

2011 International Planning Competition 73–76.
Nakhost, H., and Müller, M. 2009. Monte-Carlo Exploration
for Deterministic Planning. In Proceedings of the 21st Inter-

national Joint Conference on Artificial Intelligence, 1766–
1771.
Olsen, A., and Bryce, D. 2011. Randward and Lamar: Ran-
domizing the FF Heuristic. The 2011 International Planning

Competition 55–57.
Richter, S., and Helmert, M. 2009. Preferred Operators and
Deferred Evaluation in Satisficing Planning. In Proceedings

of the 19th International Conference on Automated Planning

and Scheduling, 273–280.
Richter, S., and Westphal, M. 2010. The LAMA Planner:
Guiding Cost-Based Anytime Planning with Landmarks.
Journal of Artificial Intelligence Research 39:127–177.
Richter, S.; Thayer, J. T.; and Ruml, W. 2010. The Joy
of Forgetting: Faster Anytime Search via Restarting. In Pro-

ceedings of the 20th International Conference on Automated

Planning and Scheduling, 137–144.
Röger, G., and Helmert, M. 2010. The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning. In
Proceedings of the 20th International Conference on Auto-

mated Planning and Scheduling, 246–249.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-

ing: An Introduction. Cambridge, MA: MIT Press.
Xie, F.; Valenzano, R.; and Müller, M. 2013. Better Time
Constrained Search via Randomization and Postprocessing.
In Proceedings of the Twenty-Third International Confer-

ence on Automated Planning and Scheduling, 269–277.

379

