
07.GoPlayingAIs.NA.indd 48 6/13/14 1:30 PM

AIs may use
randomness
to finally master
this ancient game
of strategy
By Jonathan Schaeffer,
Martin Müller & Akihiro Kishimoto
Photography by Dan Saelinger

Go-bot,g
SPECTRUM.IEEE.ORG  |  north american  |  jul 2014  |  49

07.GoPlayingAIs.NA.indd 49 6/13/14 1:30 PM

Chou
Chun-
hsun,

For decades, researchers have taught computers to play games
in order to test their cognitive abilities against those of humans.
In 1997, when an IBM computer called Deep Blue beat Garry
Kasparov, the reigning world champion, at chess, many people
assumed that computer scientists would eventually develop arti-
ficial intelligences that could triumph at any game. Go, however,
with its dizzying array of possible moves, continued to stymie
the best efforts of AI researchers.

But that climactic competition in 2009 showed that a computer
might yet become a Go champion. In that match, an AI defeated
a world-class human Go player in a no-handicap game for the
first time in history. Although that game was played on a small
board, not the board used in official tournaments, Fuego’s win
was seen as a major milestone.

Remarkably, the Fuego program didn’t triumph because it
had a better grasp of Go strategy. And although it considered
millions of possible moves during each turn, it didn’t come close
to performing an exhaustive search of all the possible game
paths. Instead, Fuego was a know-nothing machine that based
its decisions on random choices and statistics.

The recipe for building a superhuman chess program is

now well established. You start by listing all possible moves, the
responses to the moves, and the responses to the responses, gener-
ating a branching tree that grows as big as computational resources
allow. To evaluate the game positions at the end of the branches,
the program needs some chess knowledge, such as the value of
each piece and the utility of its location on the board. Then you
refine the algorithm, say by “pruning” away branches that obvi-
ously involve bad play on either side, so that the program can search
the remaining branches more deeply. Set the program to run as
fast as possible on one or more computers and voilà, you have a
grand master chess player. This recipe has proven successful not
only for chess but also for such games as checkers and Othello. It
is one of the great success stories of AI research.

Go is another matter entirely. The game has changed little since it
was invented in China thousands of years ago, and millions around
the world still enjoy playing it. Beginners often learn Go on a board
composed of a grid of 9 lines by 9 lines before working their way up
to the official board with its 19-by-19 grid. Game play sounds simple
in theory: Two players take turns placing stones on the board to
occupy territories and surround the opponent’s stones, earning
points for their successes. Yet the scope of Go makes it extremely
difficult—perhaps impossible—for a program to master the game
with the traditional search-and-evaluate approach.

For starters, the complexity of the search algorithm depends
in large part on the branching factor—the number of possible
moves at every turn. For chess, that factor is roughly 40, and a
typical chess game lasts for about 50 moves. In Go, the branch-
ing factor can be more than 250, and a game goes on for about
350 moves. The proliferation of options in Go quickly becomes
too much for a standard search algorithm.

There’s also a bigger problem: While it’s fairly easy to define
the value of positions in chess, it’s enormously difficult to do so
on a Go board. In chess-playing programs, a relatively simple

one of the world’s top players of the ancient
game of Go, sat hunched over a board cov-
ered with a grid of closely spaced lines. To the
untrained eye, the bean-size black and white
stones scattered across the board formed a
random design. To Chou, each stone was part
of a complex campaign between two opposing
forces that were battling to capture territory.
The Go master was absorbed in thought as he
considered various possibilities for his next
move and tried to visualize how each option
would affect the course of the game. Chou’s
strategy relied on a deep understanding of Go,
the result of almost 20 years of painstaking
study. • Although Chou looked calm, he knew
he was in big trouble. It was 22 August 2009,
and Chou was matched against a Go-playing
computer running Fuego, an open-source
program that we developed at the Univer-
sity of Alberta, in Canada, with contributions
from researchers at IBM and elsewhere. The
program was playing at the level of a grand
master—yet it knew nothing about the game
beyond the basic rules.

50  |  jul 2014  |  north american  |  SPECTRUM.IEEE.ORG this page and previous pages, Prop styling by Dominique Baynes

07.GoPlayingAIs.NA.indd 50 6/13/14 1:30 PM

evaluation function adds up the material value of pieces (a queen,
for example, has a higher value than a pawn) and computes the
value of their locations on the board based on their potential to
attack or be attacked.

Compared with that of chess pieces, the value of individual Go
stones is much lower. Therefore the evaluation of a Go position
is based on all the stones’ locations, and on judgments about
which of them will eventually be captured and which will stay
safe during the shifting course of a long game. To make this
assessment, human players rely on both a deep tactical under-
standing of the game and a clear-eyed appraisal of the overall
board situation. Go masters consider the strength of various
groups of stones and look at the potential to create, expand, or
conquer territories across the board.

Rather than try to teach a Go-playing program how to perform
this complex assessment, we’ve found that the best solution is to
skip the evaluation process entirely. Over the past decade, sev-
eral research groups have pioneered a new search paradigm for
games, and the technique actually has a chance at cracking Go.
Surprisingly, it’s based on sequences of random moves. In its sim-
plest form, this approach, called Monte Carlo tree search (MCTS),
eschews all knowledge of the desirability of game positions.
A program that uses MCTS need only know the rules of the game.

From the current configuration of stones on the board, the
program simulates a random sequence of legal moves (playing
moves for both opponents) until the end of the game is reached,
resulting in a win or loss. It automatically does this over and over.
The magic comes from the use of statistics. The evaluation of a
position can be defined as the frequency with which random
move sequences originating in that position lead to a win. For
instance, the program might determine that when move A is
played, random sequences of moves result in a win 73 percent
of the time, while move B leads to a win only 54 percent of the
time. It’s a shockingly simple metric.

It may seem counterintuitive to try to win a deeply strategic
game with a program that uses random moves to evaluate its
different choices. But there are lots of precedents that show
the efficacy of this statistical approach. For example, most
Internet search engines do not attempt to analyze a query to try
to understand the semantics of what is being asked for—they just
apply some simple numerical schemes to rank results. Monte
Carlo methods are also standard in disciplines such as particle
physics, weather forecasting, chemistry, and finance. They are
often the best approach for solving complex problems in which
problem-specific knowledge is hard to formalize.

A Go-playing AI can repeatedly apply its MCTS algorithm

until resources—time or memory—run out. Like many other
search methods, MCTS constructs a game tree, in which
each possible move creates branches of new possible moves,
which are conventionally drawn pointing downward. For a
basic example of this algorithm, imagine that a Go program
is trying to decide on its next move. It would therefore repeat
these four steps:

1. Tree descent: From the existing board position (the root

Growing
the Tree
In these four simulations of a simple
Monte Carlo tree search, the program,
playing as black, evaluates the winning
potential of possible moves. Starting
from a position to be evaluated (the
leaf node), the program plays a random
sequence of legal moves, playing for
both black and white. It plays to the end
of the game and then determines if the
result is a win (1) or a loss (0). Then it
discards all the information about that
move sequence except for the result,
which it uses to update the winning ratio
for the leaf node and the nodes that
came before it, back to the root of the
game tree.

L e a f n o d e

r o ot

1 0 1

2/4

0

2/3 0/1

L e a f n o d e

1/1

L e a f n o d e

0/1

L e a f n o d e

1/1

SPECTRUM.IEEE.ORG  |  north american  |  jul 2014  |  51

07.GoPlayingAIs.NA.indd 51 6/13/14 1:30 PM

node of the search tree), select a candidate move (a leaf node)
for evaluation. At the very beginning of the search, the leaf node
is directly connected to the root. Later on, as the search deep-
ens, the program follows a long path of branches to reach the
leaf node to be evaluated.

2. Simulation: From the selected leaf node, choose a ran-
dom sequence of alternating moves until the end of the game
is reached.

3. Evaluation and back propagation: Determine whether the sim-
ulation ends in a win or loss. Use that result to update the statistics
for each node on the path from the leaf back to the root. Discard
the simulation sequence from memory—only the result matters.

4. Tree expansion: Grow the game tree by adding an extra
leaf node to it.

An MCTS-based program needs some intelligent way to select
which branches of the game tree to grow. Good policies for doing
that strike a balance between exploration (branching off nodes
with few simulations and therefore high uncertainty about their
prospects for leading to a win) and exploitation (pursuing moves
that branch off the most promising nodes).

The best policies for expanding the tree also rely on a
decision-making shortcut called rapid action value estima-
tion (RAVE). The RAVE component tells the program to col-
lect another set of statistics during each simulation. If the
random sequence of moves results in a win, every grid point
where the program placed one of its stones (thus roughly
half the locations on the board) is given a numerical bonus.
In this quick and dirty method, each board location accu-
mulates a RAVE statistic as simulations are played out. Then,
when the program is considering a move, it can look at both
the win-loss statistic for that move as well as the RAVE sta-
tistic for that location.

These policies control the selective growth of the game tree.
In typical MCTS programs, this growth is uneven: Promising
lines of play are explored much more deeply than other lines.
Because the search tree is grown one node at a time, the algo-
rithm can be stopped at any time, and it will return the best
move found so far.

Determining the best move is tricky, however. The most
natural approach would be to pick the move with the highest

The Games Computers Play

Tic-tac-toe
104

Perfect

Oware
1011

Perfect

Checkers
1020

Perfect

Othello
1028

Superhuman

9-by-9 Go
1038

Best
professional

Chess
1045

Superhuman

Xiangqi
(Chinese chess)

1048

Best
professional

Shogi
(Japa nese chess)

1070

Strong
professional

19-by-19 Go
10172

Strong
amateur

In two-player games
without chance or hidden

information, AIs have
achieved remarkable

success. However,
19-by-19 Go, with its

staggering array of
possible game positions,

remains a challenge.

Game positions:
Computer strength:

52  |  jul 2014  |  north american  |  SPECTRUM.IEEE.ORG

07.GoPlayingAIs.NA.indd 52 6/13/14 1:30 PM

probability of leading to a win. But this is usually too risky.
For example, a move with 7 wins out of 10 trials may have
the highest odds of winning (70 percent), but because this
number comes from only 10 trials, the uncertainty is high.
A move with 65,000 wins out of 100,000 trials (65 percent)
is a safer bet. This suggests a different strategy: Choose the
move with the largest number of wins. And this is indeed the
standard approach.

Since methods based on MCTS replaced the traditional

knowledge-based approaches, we have seen amazing improve-
ments in the playing strength of Go programs. On the 9-by-9
board, top programs are on a par with the best human play-
ers. On the standard 19-by-19 board, a program called Crazy
Stone has convincingly defeated a top professional while play-
ing with a handicap of only four stones,
indicating that the program plays as
well as a very strong amateur.

The most basic Go-playing program
using MCTS would employ only mini-
mal knowledge of the game—namely,
which moves are legal and who wins
at the end of the game. This produces
surprisingly successful Go-playing
programs. But the latest research
indicates that a little bit more knowl-
edge can boost the performance of
MCTS programs.

At the University of Alberta, we are
finding ways to include some game-
specific knowledge to give the pro-
gram certain tendencies as it chooses
its random moves. For example, a pro-
gram can be biased so that its random
move sequences aren’t really so ran-
dom. Instead, they often incorporate
moves that would naturally follow from the opponent’s previous
move. Such obvious actions would include a move that would
defend the program’s stones from immediate capture, and a
move that would seize an immediate opportunity to capture
an opponent’s stones.

The program can also be given some pieces of knowledge
that can be applied without requiring it to perform true evalu-
ations of game positions. For example, a program may have a
database of simple patterns of stones that can occur within a
3-by-3 region of lines. After an opponent’s move, the program
checks the areas around that stone to see whether the resultant
configurations match any of the stored patterns. If it does find
a match, it plays the next move associated with that pattern in
its database. If it finds several matching patterns, it chooses
among the associated next moves at random.

When AI researchers first applied Monte Carlo methods to Go
around 2005, computer Go programs improved dramatically
and rapidly. Over the past few years, progress has been slower,
but the research community is still optimistic. If we continue

to refine our programs, enhancing the power of randomness
with a dash of knowledge, we believe our AIs will eventually
perform as well as Go’s human grand masters.

In the early days of developing chess-playing programs,

researchers tried to get computers to play chess the way people
do. Very quickly, it became clear that chess AIs couldn’t efficiently
learn and apply enough strategic knowledge to be successful.
Programmers then adopted a search-intensive approach that
required only enough knowledge to understand the rules and
to evaluate the strength of a given board configuration. MCTS
takes this one step further by questioning the need for making
any such evaluations. It may seem paradoxical, but we’re already
seeing the benefits of such intelligence-free artificial intelligence
in the game of Go—and that may be just the beginning.

In recent years, AI researchers have
been trying to develop a program that
can learn to play any game well—Go, tic-
tac-toe, chess, whatever—given only the
rules of the game as input. Historically,
all the strong game-playing programs
have been able to play only one specific
game. They were “idiot savants” that
could do one thing very well, but noth-
ing else. If AI researchers can develop a
program capable of more general learn-
ing, however, we might create a more
flexible kind of computer intelligence.
This would be a big step toward the real
goal of artificial intelligence research:
fashioning a general-purpose learner.

The AI community has been able to
gauge progress in this area at the Gen-
eral Game Playing (GGP) competition,
held at the annual conference of the
Association for the Advancement of Arti-

ficial Intelligence. There, programs are given only the rules of a
game and then have to play it in a tournament. From the rules,
a GGP program can usually infer the appropriate search algo-
rithm to find suitable moves. But these programs quickly run
into trouble as they try to learn the game-specific knowledge
that will allow them to make evaluations. One program might
try to make deductions based on the rules of the game. Another
might learn by playing against itself and making inferences. Yet
neither strategy has proven effective. To date, there have been no
truly successful approaches to machine learning in this sphere.

Instead, in recent tournaments virtually all the GGP pro-
grams have used a variation of MCTS to avoid the knowledge-
acquisition problem altogether. These programs still have a
long way to go. But there may come a day soon when an AI will
be able to conquer any game we set it to, without a bit of knowl-
edge to its name. If that day comes, we will raise a wry cheer for
the triumph of ignorance. n

post your comments at http://spectrum.ieee.org/go0714

GOING FOR IT: Chess-playing programs bested
human grand masters more than a decade ago,
but Go-playing programs weren’t contenders until
their coders embraced Monte Carlo tree search
techniques in the late 2000s.

0

20

40

60

80

100

120

TOP HUMAN

GRAND MASTER

MASTER

AVERAGE CLUB PLAYER

1967 2011

CHESS-PLAYING
PROGRAM

1997

GO-PLAYING
PROGRAM

SPECTRUM.IEEE.ORG  |  north american  |  jul 2014  |  53

07.GoPlayingAIs.NA.indd 53 6/13/14 1:30 PM

