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AIs may use 
randomness 
to finally master 
this ancient game 
of strategy
By Jonathan Schaeffer, 
Martin Müller & Akihiro Kishimoto
Photography by Dan Saelinger
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For decades, researchers have taught computers to play games 
in order to test their cognitive abilities against those of humans. 
In 1997, when an IBM computer called Deep Blue beat Garry 
Kasparov, the reigning world champion, at chess, many people 
assumed that computer scientists would eventually develop arti-
ficial intelligences that could triumph at any game. Go, however, 
with its dizzying array of possible moves, continued to stymie 
the best efforts of AI researchers. 

But that climactic competition in 2009 showed that a computer 
might yet become a Go champion. In that match, an AI defeated 
a world-class human Go player in a no-handicap game for the 
first time in history. Although that game was played on a small 
board, not the board used in official tournaments, Fuego’s win 
was seen as a major milestone. 

Remarkably, the Fuego program didn’t triumph because it 
had a better grasp of Go strategy. And although it considered 
millions of possible moves during each turn, it didn’t come close 
to performing an exhaustive search of all the possible game 
paths. Instead, Fuego was a know-nothing machine that based 
its decisions on random choices and statistics. 

The recipe for building a superhuman chess program is 

now well established. You start by listing all possible moves, the 
responses to the moves, and the responses to the responses, gener-
ating a branching tree that grows as big as computational resources 
allow. To evaluate the game positions at the end of the branches, 
the program needs some chess knowledge, such as the value of 
each piece and the utility of its location on the board. Then you 
refine the algorithm, say by “pruning” away branches that obvi-
ously involve bad play on either side, so that the program can search 
the remaining branches more deeply. Set the program to run as 
fast as possible on one or more computers and voilà, you have a 
grand master chess player. This recipe has proven successful not 
only for chess but also for such games as checkers and Othello. It 
is one of the great success stories of AI research.

Go is another matter entirely. The game has changed little since it 
was invented in China thousands of years ago, and millions around 
the world still enjoy playing it. Beginners often learn Go on a board 
composed of a grid of 9 lines by 9 lines before working their way up 
to the official board with its 19-by-19 grid. Game play sounds simple 
in theory: Two players take turns placing stones on the board to 
occupy territories and surround the opponent’s stones, earning 
points for their successes. Yet the scope of Go makes it extremely 
difficult—perhaps impossible—for a program to master the game 
with the traditional search-and-evaluate approach. 

For starters, the complexity of the search algorithm depends 
in large part on the branching factor—the number of possible 
moves at every turn. For chess, that factor is roughly 40, and a 
typical chess game lasts for about 50 moves. In Go, the branch-
ing factor can be more than 250, and a game goes on for about 
350 moves. The proliferation of options in Go quickly becomes 
too much for a standard search algorithm. 

There’s also a bigger problem: While it’s fairly easy to define 
the value of positions in chess, it’s enormously difficult to do so 
on a Go board. In chess-playing programs, a relatively simple 

one of the world’s top players of the ancient 
game of Go, sat hunched over a board cov-
ered with a grid of closely spaced lines. To the 
untrained eye, the bean-size black and white 
stones scattered across the board formed a 
random design. To Chou, each stone was part 
of a complex campaign between two opposing 
forces that were battling to capture territory. 
The Go master was absorbed in thought as he 
considered various possibilities for his next 
move and tried to visualize how each option 
would affect the course of the game. Chou’s 
strategy relied on a deep understanding of Go, 
the result of almost 20 years of painstaking 
study. • Although Chou looked calm, he knew 
he was in big trouble. It was 22 August 2009, 
and Chou was matched against a Go-playing 
computer running Fuego, an open-source 
program that we developed at the Univer-
sity of Alberta, in Canada, with contributions 
from researchers at IBM and elsewhere. The 
program was playing at the level of a grand 
master—yet it knew nothing about the game 
beyond the basic rules.
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evaluation function adds up the material value of pieces (a queen, 
for example, has a higher value than a pawn) and computes the 
value of their locations on the board based on their potential to 
attack or be attacked. 

Compared with that of chess pieces, the value of individual Go 
stones is much lower. Therefore the evaluation of a Go position 
is based on all the stones’ locations, and on judgments about 
which of them will eventually be captured and which will stay 
safe during the shifting course of a long game. To make this 
assessment, human players rely on both a deep tactical under-
standing of the game and a clear-eyed appraisal of the overall 
board situation. Go masters consider the strength of various 
groups of stones and look at the potential to create, expand, or 
conquer territories across the board.

Rather than try to teach a Go-playing program how to perform 
this complex assessment, we’ve found that the best solution is to 
skip the evaluation process entirely. Over the past decade, sev-
eral research groups have pioneered a new search paradigm for 
games, and the technique actually has a chance at cracking Go. 
Surprisingly, it’s based on sequences of random moves. In its sim-
plest form, this approach, called Monte Carlo tree search (MCTS), 
eschews all knowledge of the desirability of game positions. 
A program that uses MCTS need only know the rules of the game. 

From the current configuration of stones on the board, the 
program simulates a random sequence of legal moves (playing 
moves for both opponents) until the end of the game is reached, 
resulting in a win or loss. It automatically does this over and over. 
The magic comes from the use of statistics. The evaluation of a 
position can be defined as the frequency with which random 
move sequences originating in that position lead to a win. For 
instance, the program might determine that when move A is 
played, random sequences of moves result in a win 73 percent 
of the time, while move B leads to a win only 54 percent of the 
time. It’s a shockingly simple metric. 

It may seem counterintuitive to try to win a deeply strategic 
game with a program that uses random moves to evaluate its 
different choices. But there are lots of precedents that show 
the efficacy of this statistical approach. For example, most 
Internet search engines do not attempt to analyze a query to try 
to understand the semantics of what is being asked for—they just 
apply some simple numerical schemes to rank results. Monte 
Carlo methods are also standard in disciplines such as particle 
physics, weather forecasting, chemistry, and finance. They are 
often the best approach for solving complex problems in which 
problem-specific knowledge is hard to formalize. 

A Go-playing AI can repeatedly apply its MCTS algorithm 

until resources—time or memory—run out. Like many other 
search methods, MCTS constructs a game tree, in which 
each possible move creates branches of new possible moves, 
which are conventionally drawn pointing downward. For a 
basic example of this algorithm, imagine that a Go program 
is trying to decide on its next move. It would therefore repeat 
these four steps:

1. Tree descent: From the existing board position (the root 

Growing 
the Tree
In these four simulations of a simple 
Monte Carlo tree search, the program, 
playing as black, evaluates the winning 
potential of possible moves. Starting 
from a position to be evaluated (the 
leaf node), the program plays a random 
sequence of legal moves, playing for 
both black and white. It plays to the end 
of the game and then determines if the 
result is a win (1) or a loss (0). Then it 
discards all the information about that 
move sequence except for the result, 
which it uses to update the winning ratio 
for the leaf node and the nodes that 
came before it, back to the root of the 
game tree. 
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node of the search tree), select a candidate move (a leaf node) 
for evaluation. At the very beginning of the search, the leaf node 
is directly connected to the root. Later on, as the search deep-
ens, the program follows a long path of branches to reach the 
leaf node to be evaluated. 

2. Simulation: From the selected leaf node, choose a ran-
dom sequence of alternating moves until the end of the game 
is reached. 

3. Evaluation and back propagation: Determine whether the sim-
ulation ends in a win or loss. Use that result to update the statistics 
for each node on the path from the leaf back to the root. Discard 
the simulation sequence from memory—only the result matters. 

4. Tree expansion: Grow the game tree by adding an extra 
leaf node to it. 

An MCTS-based program needs some intelligent way to select 
which branches of the game tree to grow. Good policies for doing 
that strike a balance between exploration (branching off nodes 
with few simulations and therefore high uncertainty about their 
prospects for leading to a win) and exploitation (pursuing moves 
that branch off the most promising nodes). 

The best policies for expanding the tree also rely on a 
decision-making shortcut called rapid action value estima-
tion (RAVE). The RAVE component tells the program to col-
lect another set of statistics during each simulation. If the 
random sequence of moves results in a win, every grid point 
where the program placed one of its stones (thus roughly 
half the locations on the board) is given a numerical bonus. 
In this quick and dirty method, each board location accu-
mulates a RAVE statistic as simulations are played out. Then, 
when the program is considering a move, it can look at both 
the win-loss statistic for that move as well as the RAVE sta-
tistic for that location. 

These policies control the selective growth of the game tree. 
In typical MCTS programs, this growth is uneven: Promising 
lines of play are explored much more deeply than other lines. 
Because the search tree is grown one node at a time, the algo-
rithm can be stopped at any time, and it will return the best 
move found so far. 

Determining the best move is tricky, however. The most 
natural approach would be to pick the move with the highest 

The Games Computers Play

Tic-tac-toe
104

Perfect

Oware
1011

Perfect

Checkers
1020

Perfect

Othello
1028

Superhuman

9-by-9 Go
1038

Best 
professional

Chess
1045

Superhuman

Xiangqi 
(Chinese chess)

1048

Best 
professional

Shogi 
( Japa  nese chess)

1070

Strong 
professional

19-by-19 Go
10172

Strong 
amateur

In two-player games 
without chance or hidden 

information, AIs have 
achieved remarkable 

success. However, 
19-by-19 Go, with its 

staggering array of 
possible game positions, 

remains a challenge.

Game positions: 
Computer strength:
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probability of leading to a win. But this is usually too risky. 
For example, a move with 7 wins out of 10 trials may have 
the highest odds of winning (70 percent), but because this 
number comes from only 10 trials, the uncertainty is high. 
A move with 65,000 wins out of 100,000 trials (65 percent) 
is a safer bet. This suggests a different strategy: Choose the 
move with the largest number of wins. And this is indeed the 
standard approach. 

Since methods based on MCTS replaced the traditional 

knowledge-based approaches, we have seen amazing improve-
ments in the playing strength of Go programs. On the 9-by-9 
board, top programs are on a par with the best human play-
ers. On the standard 19-by-19 board, a program called Crazy 
Stone has convincingly defeated a top professional while play-
ing with a handicap of only four stones, 
indicating that the program plays as 
well as a very strong amateur. 

The most basic Go-playing program 
using MCTS would employ only mini-
mal knowledge of the game—namely, 
which moves are legal and who wins 
at the end of the game. This produces 
surprisingly successful Go-playing 
programs. But the latest research 
indicates that a little bit more knowl-
edge can boost the performance of 
MCTS programs.

At the University of Alberta, we are 
finding ways to include some game-
specific knowledge to give the pro-
gram certain tendencies as it chooses 
its random moves. For example, a pro-
gram can be biased so that its random 
move sequences aren’t really so ran-
dom. Instead, they often incorporate 
moves that would naturally follow from the opponent’s previous 
move. Such obvious actions would include a move that would 
defend the program’s stones from immediate capture, and a 
move that would seize an immediate opportunity to capture 
an opponent’s stones. 

The program can also be given some pieces of knowledge 
that can be applied without requiring it to perform true evalu-
ations of game positions. For example, a program may have a 
database of simple patterns of stones that can occur within a 
3-by-3 region of lines. After an opponent’s move, the program 
checks the areas around that stone to see whether the resultant 
configurations match any of the stored patterns. If it does find 
a match, it plays the next move associated with that pattern in 
its database. If it finds several matching patterns, it chooses 
among the associated next moves at random. 

When AI researchers first applied Monte Carlo methods to Go 
around 2005, computer Go programs improved dramatically 
and rapidly. Over the past few years, progress has been slower, 
but the research community is still optimistic. If we continue 

to refine our programs, enhancing the power of randomness 
with a dash of knowledge, we believe our AIs will eventually 
perform as well as Go’s human grand masters. 

In the early days of developing chess-playing programs, 

researchers tried to get computers to play chess the way people 
do. Very quickly, it became clear that chess AIs couldn’t efficiently 
learn and apply enough strategic knowledge to be successful. 
Programmers then adopted a search-intensive approach that 
required only enough knowledge to understand the rules and 
to evaluate the strength of a given board configuration. MCTS 
takes this one step further by questioning the need for making 
any such evaluations. It may seem paradoxical, but we’re already 
seeing the benefits of such intelligence-free artificial intelligence 
in the game of Go—and that may be just the beginning. 

In recent years, AI researchers have 
been trying to develop a program that 
can learn to play any game well—Go, tic-
tac-toe, chess, whatever—given only the 
rules of the game as input. Historically, 
all the strong game-playing programs 
have been able to play only one specific 
game. They were “idiot savants” that 
could do one thing very well, but noth-
ing else. If AI researchers can develop a 
program capable of more general learn-
ing, however, we might create a more 
flexible kind of computer intelligence. 
This would be a big step toward the real 
goal of artificial intelligence research: 
fashioning a general-purpose learner. 

The AI community has been able to 
gauge progress in this area at the Gen-
eral Game Playing (GGP) competition, 
held at the annual conference of the 
Association for the Advancement of Arti-

ficial Intelligence. There, programs are given only the rules of a 
game and then have to play it in a tournament. From the rules, 
a GGP program can usually infer the appropriate search algo-
rithm to find suitable moves. But these programs quickly run 
into trouble as they try to learn the game-specific knowledge 
that will allow them to make evaluations. One program might 
try to make deductions based on the rules of the game. Another 
might learn by playing against itself and making inferences. Yet 
neither strategy has proven effective. To date, there have been no 
truly successful approaches to machine learning in this sphere. 

Instead, in recent tournaments virtually all the GGP pro-
grams have used a variation of MCTS to avoid the knowledge-
acquisition problem altogether. These programs still have a 
long way to go. But there may come a day soon when an AI will 
be able to conquer any game we set it to, without a bit of knowl-
edge to its name. If that day comes, we will raise a wry cheer for 
the triumph of ignorance.  n

post your comments at http://spectrum.ieee.org/go0714

GOING FOR IT: Chess-playing programs bested 
human grand masters more than a decade ago, 
but Go-playing programs weren’t contenders until 
their coders embraced Monte Carlo tree search 
techniques in the late 2000s. 
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