
The Two-edged Nature of Diverse Action Costs

Gaojian Fan, Martin Müller and Robert Holte
Computing Science Department

University of Alberta
Edmonton, Canada T6G 2E8

{gaojian, mmueller, rholte}@ualberta.ca

Abstract

Diverse action costs are an essential feature of many real-
world planning applications. Some recent studies have shown
that diversity of action costs makes planning more difficult,
and that searching using unit action costs can outperform
searching the same domain with diverse action costs. In
this paper, we provide experimental evidence and theoreti-
cal analysis showing that search can also benefit from ac-
tion cost diversity. We show that on several IPC problems
cost diversity has a positive effect (reduces search effort). We
then present a theoretical analysis establishing that these pos-
itive cases are not accidental. Our main result is a “No Free
Lunch” theorem showing that any negative effects of cost di-
versity are always perfectly counterbalanced by positive ef-
fects. Our theoretical analysis also shows that it is advanta-
geous to have a strongly concentrated distribution of solution
costs. In many domains, unit costs will give rise to a more
concentrated distribution than diverse costs, but we give an
example typifying domains in which the opposite is the case.

1 Introduction
Diverse action costs occur naturally in many planning prob-
lems. For example, in the IPC TRANSPORT domain, loading
and unloading a package is much cheaper than moving a ve-
hicle, and the cost of moving a vehicle varies widely with
the distance between locations.

In recognition of its importance, planning with action
costs has been studied in both the optimal and satisficing
settings in recent years. One notable trend is a focus on
the negative impact of diverse costs on planning. Several
studies demonstrate cases where planning with diverse ac-
tion costs is more difficult, in terms of the number of nodes
expanded, than planning in the same domain with unit costs,
where every action has a cost of 1 (Benton et al. 2010; Cush-
ing, Benton, and Kambhampati 2011; Wilt and Ruml 2011;
2014). Other studies showed that some search algorithms
perform better on domains with diverse action costs when
they use information (e.g. heuristics) based on unit costs in-
stead of relying entirely on information based on the given
costs (Thayer and Ruml 2009; Richter and Westphal 2010;
Thayer and Ruml 2011; Thayer, Benton, and Helmert 2012).

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

One clear disadvantage of diverse costs is a kind of “hori-
zon effect”. If a search space has huge regions reachable by
low-cost actions, but the solution requires a high-cost action
a, the low-cost regions will be exhaustively searched before
the state s reached by a is expanded. In the unit cost model,
state s would be expanded much earlier, allowing the solu-
tion to be found much more quickly.

Thus there is considerable evidence that action cost di-
versity is harmful for search. Is it true that this is generally
the case? This is the question we address in this paper. We
provide both theoretical and experimental investigations of
the effects of changing action costs on the number of nodes
expanded. Our experiments give a variety of examples, in-
cluding problems from the International Planning Competi-
tion (IPC), where diversity of action costs is beneficial, i.e.
the number of nodes expanded when the action costs are di-
verse is substantially lower than the number expanded using
unit costs.

Our main theoretical result is a “No Free Lunch” (NFL)
theorem about the impact, on the number of nodes expanded
by Dijkstra’s algorithm (Dijkstra 1959), of changing from
any cost function C to any other C′. We prove that for any
given state space S, the problem instances in S on which
fewer nodes are expanded using C are exactly counterbal-
anced by the problem instances on which fewer nodes are
expanded using C′. This implies, for example, that if start
and goal states are selected randomly, the expected number
of nodes expanded is the same no matter what cost function
is used.

The NFL theorem applies to all state spaces, including
the “ε-cost traps” that Cushing et al. (2010; 2011) designed
to illustrate that search with non-unit action costs can ex-
pand exponentially more states than search with unit costs.
For a particular type of trap, the cycle trap, we show exper-
imentally that the total number of nodes expanded over all
possible goal states is almost identical whether one uses unit
costs or the alternative cost function defined by Cushing et
al.

The reason the totals in the cycle trap experiment are not
exactly equal is that the NFL theorem does not take into ac-
count states that are the same distance from the start state
as the goal. We call such states TIE states. Our second the-
oretical contribution is to analyze the impact of TIE states.
We show that unit costs will often have an advantage over

non-unit costs because of TIE states (as is the case for cy-
cle traps) but we also describe a new planning domain—
Hazardous Logistics—in which TIE states work to the ad-
vantage of non-unit costs.

The remainder of the paper is organized as follows. In
Section 2 we review previous work on the impact of diverse
action costs on search. Section 3 gives three motivating ex-
amples in which diverse action costs are beneficial. Sec-
tion 4 describes the setting for our theoretical analysis and
experimentally shows that in this setting many of the IPC
problems from domains with non-unit costs are more easily
solved using the non-unit costs than using unit costs. Sec-
tion 5 contains the NFL theorem and the cycle trap exper-
iments. Section 6 contains our theoretical study related to
tie-breaking and the definition of the Hazardous Logistics
domain.

2 Related Work
Some domains with non-unit action cost functions have been
used in the International Planning Competition (IPC) since
2008. Many recent planners contain a search or evaluation
component where the true action cost function C is replaced
by the unit cost function U . We will call such a component
either C-based or U-based, depending on which cost func-
tion it uses. For example, a U-based heuristic, h(s), esti-
mates the number of actions that must be applied to state s
to reach a goal state.

The use of U-based heuristics was empirically shown to
improve the performance of many planners on IPC prob-
lems. For example, the first stage of LAMA (Richter, West-
phal, and Helmert 2011; Richter and Westphal 2010), the
winner of the IPC 2008 sequential satisficing track, uses
U-based FF and landmark heuristics. Later stages use C-
based heuristics. Explicit Estimation Search (Thayer and
Ruml 2011) uses both C-based and U-based heuristics to
determine the next node to expand in bounded suboptimal
search. Wilt and Ruml (2011) give examples where U-
based search algorithms outperform C-based ones. They
also demonstrate cases where U-based GBFS expands fewer
nodes than C-based GBFS (Wilt and Ruml 2014). The
A* algorithm sometimes performs better with U than with
C for the state spaces studied in (Wilt and Ruml 2011;
Wilt 2014).

Along with these empirical observations, the following
explanations for why U-based search is easier than C-based
search were proposed. Wilt and Ruml (2011; 2014) argue
that the difficulty of C-based search is due to large heuristic
errors and large local minima caused by action costs with
high variance. Cushing, Benton and Kambhampati (2011)
give a theoretical analysis of Dijkstra’s algorithm and pro-
vide examples where C-based search expands exponentially
many more nodes than U-based search.

All these studies seem to indicate that diverse action costs
are harmful for best-first search in planning. While there is
evidence to support this belief, it is not the full story. The pa-
rameterized complexity analysis by Aghighi and Bäckström
(2015; 2016) show that optimal planning is no harder with
positive integer costs than with unit costs, and that the differ-
ence between maximal and minimal costs is irrelevant to the

inherent complexity of planning. The literature also contains
some evidence that diverse action costs can speed up search.
In Wilt’s study of the effect of costs on A* (Wilt 2014), in
two out of the five domains, A* expands fewer nodes for
higher variance action costs. In two of four domains used
by Wilt and Ruml (2014), GBFS expands fewer nodes with
non-unit action costs. In the IPC domains FLOORTILE and
WOODWORKING, GBFS solves more problems when its FF
heuristic is C-based than when it is U-based (Nakhost 2013).

3 Motivating Examples
The following examples give evidence that diverse action
costs can be beneficial for search. Example 1 also foreshad-
ows the use of surely expanded nodes in our analysis in Sec-
tion 5. Example 2 illustrates the general gist of our later NFL
theorem by showing that for a previously published example
in which diverse costs are harmful, there exist other exam-
ples with the opposite search behaviour.

Example 1: IPC-11 PARCPRINTER Problem p08
To illustrate that diverse costs C can result in faster search
than unit cost U , consider the behaviour of A* with Fast-
Downward’s pattern database heuristic1 on problem p08
from the IPC-2011 PARCPRINTER domain. The original
IPC cost function C assigns a variety of costs to actions,
ranging from 125 to 127,790. A* using C expands 61,458
states to solve this problem (Figure 1), while using U it re-
quires 2,453,418 node expansions (Figure 2), more than 39
times as many.

The additional state expansions are not due to unlucky
tie-breaking with U . With a consistent heuristic, A* must
expand every state s for which f(s) < C∗, the optimal so-
lution cost (Pearl 1984). Such states are called “surely ex-
panded”, or SE for short. In this problem instance, there are
61,456 SE states under cost function C—all states to the left
of the red vertical line in Figure 1—but 2,453,415 under U ,
shown to the left of the red vertical line in Figure 2. When
using U , A* must expand millions of states more than with
C.

Example 2: 15-Puzzle
Consider the following successively more diverse cost func-
tions for the 15-puzzle: unit cost U , “linear” cost L, and
“square” cost L2, where an action a that moves tile T has
L(a) = T and L2(a) = T 2. Wilt and Ruml (2011) show a
15-puzzle instance for which the number of nodes expanded
by A*, with a suitably adjusted definition of Manhattan Dis-
tance (MD), increases dramatically when changing from U
to L and from L to L2. This is illustrated in column 3(a)
of Table 1, which shows the number of nodes expanded us-
ing each of these cost functions, for the instance with initial
state shown in Figure 3(a) and the standard goal state of the
15-puzzle. When using L2, A* ran out of memory with a
2GB limit on this problem.

In their example, tiles 14 and 15 occupy each other’s goal
locations in the initial state so each of these tiles must be

1In its default setting (www.fast-downward.org/Doc/
Heuristic#Pattern_database_heuristic)

0 0.5 1 1.5 2
·106

0

0.5

1

1.5

2

2.5
·104

Figure 1: Histogram of f -values and optimal solution
cost (751,642, the red vertical line) for IPC-2011 PAR-
CPRINTER problem p08 with cost function C.

0 10 20 30 40 50
0

0.5

1

1.5

·106

Figure 2: Histogram for f -values and optimal solution cost
(28, the red vertical line) for IPC-2011 PARCPRINTER
problem p08 with cost function U .

moved at least once, which requires using the most expen-
sive actions under L and L2. For problems whose solution
path does not necessarily use the expensive actions, we ob-
serve the opposite trend. For example, “reversing” the tile
numbers (i.e., each tile T is replaced with 16− T) maps the
state in Figure 3(a) to the state in Figure 3(b) and maps the
standard goal state to the state in Figure 3(c). The number of
nodes expanded by A* to solve this problem is shown in the
“Reverse” column of Table 1 and here we see the opposite
trend: the number decreases as the cost diversity increases.

Example 3: Heuristics = Diverse Action Costs
As our final motivating example, the very idea of using a
heuristic to guide search can be viewed as taking advan-
tage of action cost diversity, in the following sense. It is
well known (Martelli 1977; Ikeda et al. 1994; Edelkamp and

3(a) Reverse
U 33,798 33,798
L 1,841,122 3,660
L2 not solved 1,274

Table 1: Number of nodes expanded by A* for each cost
function on two different problems.

0 1 2 3

4 5 6 7

8 9 10 11

13121514

0 15 14 13

12 11 10 9

8 7 6 5

3 4 1 2

0 15 14 13

12 11 10 9

8 7 6 5

4 3 2 1

(a) (b) (c)

Figure 3: (a) tiles 14 and 15 in each other’s goal positions;
(b) state (a) “reversed”; (c) standard goal state “reversed”.

Schrödl 2012) that A* using a consistent heuristic h in com-
bination with the original action costs behaves the same as
Dijkstra’s algorithm using no heuristic but with action costs
adjusted as follows. If c(s, a, t) is the original cost of the
action a leading from state s to state t then the adjusted cost
is c′(s, a, t) = c(s, a, t) − h(s) + h(t). In this view, the
guidance a heuristic provides towards the goal is converted
to guidance towards the goal by diversified cost: the cost of
actions moving towards the goal (as estimated by the heuris-
tic) is reduced, while the cost of actions leading away from
the goal is increased. As an illustration, consider the Slid-
ing Tile Puzzle with unit cost and the Manhattan Distance
heuristic (MD). Any action that moves a tile towards its goal
position decreases MD by 1, so the adjusted cost of this ac-
tion is 0. In contrast, any action that moves a tile away from
its goal position increases MD by 1 and has an adjusted cost
of 2. A* solves problems much faster with MD than with
no heuristic, and Dijkstra’s algorithm with the correspond-
ing adjusted action costs (but no heuristic) will see the same
speedup compared to searching with unit costs. The adjusted
cost function has costs of 0 and 2 and is therefore more di-
verse than unit costs.

4 Theoretical Setting
The theoretical analysis that follows is described in terms
of forward search, i.e. search beginning at the start state
and applying the actions in the usual way to compute the
successors of a state. Because we assume that a problem
instance specifies a start state and a goal state (not a goal
condition), the theory applies, with no changes whatsoever,
to backward search. Our theory is not currently capable of
taking into account the effects of a heuristic function, so its
application is restricted to Dijkstra’s shortest path algorithm,
which is equivalent to A* with no heuristic.

To see whether diverse costs can be beneficial when
search is being done without a heuristic, we have run Di-
jkstra’s algorithm on all 12 of the IPC domains that have a
non-unit action cost function C. All these domains use inte-
ger costs. 0 action cost appears in five domains among which

101 102 103 104 106 108

101

102

103

104

106

108

unit cost

or
ig

in
al

IP
C

co
st

Figure 4: Number of nodes NC expanded using the original
IPC cost function (y-axis) vs.NU , nodes expanded using the
unit cost function (x-axis).

three domains (SOKOBAN, PEGSOL and OPENSTACKS)
have only 0 and 1 as their action costs.

Figure 4 is a log-log plot comparingNC on the y-axis with
NU on the x-axis for each IPC instance in these domains,
where NC is the number of nodes expanded to solve the in-
stance using C, and NU is the corresponding number for the
unit cost function U . Points below the y = x line represent
instances that required more nodes to be expanded using U
than using C (i.e. NU > NC). The dashed lines just above
and below the y = x line are y = 2x and y = x

2 respec-
tively. For points below the shaded zone, NU > 10NC , so
solving them with U requires more than 10× as many nodes
as with C. Points on the right-most (resp., top-most) edge of
the plot are instances that were not solved using U (resp., C)
within the 2G memory limit.

Overall, more nodes are expanded for U than for C to
solve these instances. On no instance is NC > 3.6NU and
only for 2 instances is NC > 2NU . By contrast, there are 30
instances for which NU > 2NC , and 10 instances are solved
with C but not with U .

In some of these domains, even though C is non-unit, the
ratio of the maximum cost to the minimum cost in C is not
large. On those domains we re-ran the experiment with an
exaggerated cost function E in which the i-th largest cost in
C is replaced by 10i if it is smaller than 10i.2 Figure 5 shows
the results, with NE on the y-axis and NU on the x-axis.
Overall, Figure 5 is very similar to Figure 4, showing that
the trends seen in Figure 4 are not caused by some peculiar
property of C in these domains.

Formal Preliminaries
We choose a formulation which clearly separates the two
main components of a planning problem, as in Katz &
Domshlak (2008):

2For the TRANSPORT domain only, we used 2i instead of 10i

to avoid numerical overflow problems in FastDownward.

101 102 103 104 106 108

101

102

103

104

106

108

unit cost

e
x
a
g
g
e
ra

te
d

c
o
st

Figure 5: Number of nodes expanded using an exaggerated
cost function (y-axis) vs. the number expanded using the
unit cost function (x-axis).

• A transition graph structure (TGS) is a triple S =
〈S,L, T 〉 where the state space S is a finite set of states,
L is a finite set of transition labels, and T ⊆ S×L×S is
a set of labelled transitions.

• A cost function for L is a mapping C : L 7→ R+
0 , where

R+
0 is the set of non-negative real numbers.

A transition graph is a pair T = 〈S, C〉, where S is a
transition graph structure with label set L, and C is a cost
function for L.

A planning problem in a transition graph structure S =
〈S,L, T 〉 is a pair 〈sinit, goal〉 where sinit ∈ S is the initial
state, and goal ∈ S is the goal state.

A path in S is a sequence (s0, l1, s1, ..., sn−1, ln, sn) such
that n ∈ N0 and (si−1, li, si) ∈ T for i ∈ {1, 2, ..., n}. In
our analysis we are only concerned with paths having s0 =
sinit, so we henceforth assume this holds. PathP is a solution
for problem 〈sinit, goal〉 if its final state is goal. The cost of
path P = (s0, l1, s1, ..., sn−1, ln, sn) is

∑n
j=1 C(lj).

dC(s, t) is the distance (cost of a least-cost path) from
state s to state t when the cost function is C. We abbreviate
dC(sinit, t) as dC(t). The optimal solution cost is dC(goal).

SE denotes the set of states that are “surely expanded”
by Dijkstra’s algorithm, which are the states that are strictly
closer to sinit than goal, i.e. {s | dC(s) < dC(goal)}. NE
(“never expanded”) denotes the set of states strictly further
from sinit than goal, i.e. {s | dC(s) > dC(goal)}. Under
no conditions will Dijkstra’s algorithm expand states in NE.
TIE is the set of states s with dC(s) = dC(goal). Dijkstra’s
algorithm might expand some (or all) of the TIE states, or it
might expand none.

These sets are, of course, functions of all the variables that
define a planning problem—S, C, sinit, and goal—but in the
following analysis S and sinit are held fixed, so we will write
SE(C,goal), and similarly for NE and TIE.

We begin our analysis by ignoring TIE in Section 5. Sec-
tion 6 then extends the analysis to account for these states.

5 No Free Lunch Theorem
In this section, for a fixed transition graph structure S and
start state sinit, we compare the SE and NE sets for two dif-
ferent cost functions, C and C′, considering all possible goal
states. Definition 1 states that the pair of states (s, t) fa-
vors C over C′ if, when the goal is t, s is surely expanded
when the cost function is C′ but never expanded when it is
C. Theorem 2 states that the number of pairs that favor C
over C′ is exactly the same as the number of pairs that fa-
vor C′ over C. This immediately implies Theorem 3, the
“No Free Lunch” (NFL) theorem, which can be paraphrased
thus: for a given start state, no cost function is any “easier”
for Dijkstra’s algorithm than any other cost function, when
all possible goal states are taken into consideration and TIE
states are ignored.

We consider all possible goal states but fix the initial state
because the key to our NFL theorem is to take an average
of the performance difference between C and C′ over a set
of problem instances, and the minimal set we could find that
had an average of 0 was the set defined by any one initial
state paired with all possible goal states. This zero aver-
age immediately implies a zero average over any set of ini-
tial states (for example, all possible initial states), as long as
each is paired with all possible goal states.

The key fact underpinning our analysis is the following
simple observation:

Lemma 1. For any cost function C and any states s and t,
s ∈ SE(C, t) if and only if t ∈ NE(C, s).

Proof.

s ∈ SE(C, t) ⇐⇒ dC(s) < dC(t)

⇐⇒ dC(t) > dC(s)

⇐⇒ t ∈ NE(C, s) .

Definition 1. A pair of states (s, t) favors C over C′ if s ∈
NE(C, t) and s ∈ SE(C′, t). favor(C, C′) is the set of state
pairs that favor C over C′.

Applying Lemma 1 to the definitions of favor(C, C′) and
favor(C′, C) gives the following:

Theorem 2. For any cost functions C and C′ there is a one-
to-one correspondence between the elements of favor(C, C′)
and favor(C′, C).

Proof. For any (s, t) ∈ favor(C, C′), s ∈ NE(C, t) and s ∈
SE(C′, t). This implies, by Lemma 1, that t ∈ SE(C, s) and
t ∈ NE(C′, s), i.e., that (t, s) ∈ favor(C′, C). Therefore
the mapping φ(s, t) = (t, s) is a one-to-one correspondence
between favor(C, C′) and favor(C′, C).

Definition 2. For cost functions C and C′ and state t,
δt(C, C′) is the number of states s such that (s, t) favors C
over C′.

By definition, we have

| favor(C, C′)| =
∣∣∣∣ ⋃
t∈S
{(s, t) | (s, t) ∈ favor(C, C′)}

∣∣∣∣
=
∑
t∈S

δt(C, C′) .
(1)

Let ∆t(C, C′) = δt(C, C′) − δt(C′, C) whose absolute value
|∆t(C, C′)| indicates how many more (if ∆t(C, C′) > 0) or
fewer (if ∆t(C, C′) < 0) states are expanded for solving the
problem when the goal is t with C′ than with C. By defini-
tion, ∆t(C, C′) = −∆t(C′, C).

Definition 3. For cost functions C and C′ we say state t
is a goal state that favors C over C′ if ∆t(C, C′) > 0.
goals-favor(C, C′) is the set of goal states that favor C over
C′.

The following theorem shows that the advantage that C
enjoys over C′ on the goal states that favor C over C′ is ex-
actly counterbalanced by the disadvantage it suffers on the
goal states that favors C′ over C.

Theorem 3 (No Free Lunch Theorem). For any two cost
functions C and C′,∑

t∈goals-favor(C,C′)

∆t(C, C′) =
∑

t∈goals-favor(C′,C)

∆t(C′, C) .

Proof.

| favor(C, C′)| = | favor(C′, C)| (by Theorem 2)

⇐⇒
∑
t∈S

δt(C, C′) =
∑
t∈S

δt(C′, C) (by Equation (1))

⇐⇒ 0 =
∑
t∈S

δt(C, C′)− δt(C′, C) =
∑
t∈S

∆t(C, C′) . (2)

Let T+ = goals-favor(C, C′) = {t | ∆t(C, C′) > 0}, T− =
goals-favor(C′, C) = {t | ∆t(C, C′) < 0} and T 0 = {t |
∆t(C, C′) = 0}. Since S = T+ ∪ T− ∪ T 0, we have

Equation (2)

⇐⇒ 0 =
∑

t∈T+∪T−∪T 0

∆t(C, C′) =
∑

t∈T+∪T−
∆t(C, C′)

⇐⇒ 0 =
∑
t∈T+

∆t(C, C′) +
∑
t∈T−

∆t(C, C′)

⇐⇒ 0 =
∑

t∈goals-favor(C,C′)

∆t(C, C′) +
∑

t∈goals-favor(C′,C)

∆t(C, C′)

⇐⇒ 0 =
∑

t∈goals-favor(C,C′)

∆t(C, C′) −
∑

t∈goals-favor(C′,C)

∆t(C′, C)

⇐⇒
∑

t∈goals-favor(C,C′)

∆t(C, C′) =
∑

t∈goals-favor(C′,C)

∆t(C′, C) .

From a probabilistic point of view, Theorem 2 also im-
plies the expected performance difference between two cost
functions is zero when goal states are drawn uniformly at
random and TIE states are ignored.

Theorem 4. Let D be the random variable for ∆t(C, C′)
when the goal state t is drawn uniformly at random from the
state space S. The expected value of D is zero, i.e.,

E[D] =
∑
d

d · P (D = d) = 0

where P (D = d) =
|{t | ∆t(C, C′) = d}|

|S| .

Proof. Let Td = {t | ∆t(C, C′) = d}. For any d,∑
t∈Td

∆t(C, C′)
|S| = d · P (D = d) .

As
∑
t∈S

∆t(C, C′) = 0 (Equation (2)) and S =
⋃
d

Td,

∑
d

d · P (D = d) =

∑
t∈S ∆t(C, C′)
|S| = 0 .

Example: ε-Cost Cycle Traps
The No Free Lunch (NFL) theorem applies to all state
spaces, including the “ε-cost traps” that Cushing et
al. (2010; 2011) designed to illustrate that search with a non-
unit cost function C can expand exponentially more states
than search with the unit cost function U . In their discussion
of these traps, Cushing et al. focused on the specific goal
states that revealed this exponential difference. Our NFL
theorem says that these differences in favor of U will be ex-
actly balanced by performance on other goal states in favor
of C.

We will illustrate this with one of the traps Cushing et al.
defined, the cycle trap. The states in a cycle trap are the
integers from 0 to 2k − 1 for some k. Actions increment
or decrement an integer modulo 2k, including the overflow
increment (increase 2k−1 to 0), and the overflow decrement
(decrease 0 to 2k−1). In the non-unit cost function C defined
by Cushing et al. the normal increment/decrement actions

0
1

2

3
4

5

6

7
1

4 1

1

1

11

1

Figure 6: The cycle trap for k = 3. Numbers in circles are
state IDs. Numbers next to edges are action costs.

−30 −20 −10 0 10 20 30
0

5

10

15

∆t(U , C)

co
u

n
t

Figure 7: Histogram for ∆t(U , C), for the cycle trap with
k = 6.

cost 1 and the overflow actions cost 2k−1. Figure 6 shows
the cycle trap for k = 3.

For initial state sinit = 0, if the goal state t is close to
2k − 1 then many fewer nodes will be expanded using U
than using C. For example, when t = 2k − 2, Dijkstra’s
algorithm using U expands 3 states while the search using
C has to expand 2k−1 + 2 states. The NFL theorem says
that this advantage for U on goal states such as 2k − 2 is ex-
actly counterbalanced by disadvantages for U on other goal
states. Figure 7 illustrates this for the cycle trap for k = 6.
It shows how many states t have a given value of ∆t(U , C)
(x-axis). There are 64 states in this space, and a quarter of
them have a large positive ∆t(U , C) value (the spike at the
right edge of the figure). However, these and all other states
with ∆t(U , C) > 0 are exactly counterbalanced by the states
with ∆t(U , C) < 0, i.e., their sum is equal to zero.

Table 2 shows NC and NU , the total number of nodes ex-
panded by Dijkstra’s algorithm with all possible goal states

k NU (k) NC(k)
2 5 6
3 25 26
4 113 116
5 481 488
6 1985 2000
7 8065 8096
8 32513 32576
9 130561 130688

10 523265 523520
11 2095105 2095616
12 8384513 8385536
13 33546241 33548288
14 134201345 134205440
15 536838145 536846336
16 2147418113 2147434496

Table 2: Total number of nodes expanded with cost func-
tions U and C for cycle traps of various sizes.

on cycle traps of sizes k = 2 to k = 16 using C and U
respectively.

While the values are very close, NC is always slightly
larger than NU . This can also be seen in the following for-
mulas, which give the exact number of nodes expanded for
any k:

NU (k) = 22k−1 − 2k + 1 ,

NC(k) = 22k−1 − 3 · 2k−2 ,
NC(k)−NU (k) = 2k−2 − 1.

The difference NC(k)−NU (k) is tiny relative to the total
number of states expanded, but not zero, because all cycle
trap state spaces contain slightly more TIE states with U than
they do with C. The NFL theorem guarantees that NC and
NU would be exactly equal if the effect of the TIE states
was removed. In Section 6 we show that TIE states often
(but not always) work in favor of the unit cost distribution,
as they did in this example.

6 Goal-Preference Tie-Breaking
The NFL theorem holds as long as there is no bias3 to a
particular problem taken into consideration. Such problem-
specific biases include the tie-breaking strategy of best-first
search, which breaks ties in favor of a goal state of a particu-
lar problem: goal states are expanded before non-goal states.
When this tie-breaking strategy is used, the expansion order
of TIE states can be different for different goals, and thus the
one-to-one correspondence in Theorem 2 is not guaranteed
to exist between those states.

For any cost function, let n ∈ N be the number of dis-
tances from the initial state to all states in the state space,
let Ai for i ∈ {1, 2, ..., n} be the set of states that have the
i-th smallest distance, and let ai = |Ai| for i ∈ {1, 2, ..., n}.
If the goal state is in Ai, then for all j < i the states in
Aj are surely expanded regardless of the tie-breaking. The
total number of surely expanded states for all goal states
in Ai is SE(Ai) = ai

∑i−1
j=1 aj . States in Ai are the TIE

states whose expansions depend on the tie-breaking strat-
egy. Let a bias-free search be Dijkstra’s search algorithm
that does not break ties in favor of a goal state and expands
TIE states in a fixed order. For a bias-free search, the total
number of states expanded when the goal state is from Ai is
SE(Ai) + 0 + 1 + 2 + · · ·+ (ai− 1) = SE(Ai) + ai·(ai−1)

2 ,

where ai·(ai−1)
2 is the cumulative number of extra expan-

sions in addition to the sure expansions for all goal states
in Ai by the bias-free search. If Dijkstra’s algorithm breaks
ties in favor of a goal state and there are no zero cost ac-
tions, none of these extra expansions by the bias-free search
are needed before the goal from Ai is found. In this best
case, the total number of expansions saved by tie-breaking
over all goal states from all Ai is

n∑
i=1

ai · (ai − 1)

2
=

1

2

n∑
i=1

a2i −
|S|
2
, (3)

3Excluding problem bias is also required for NFL theorems
for general search and optimization (Wolpert and Macready 1995;
1997).

unit linear square inverse sqrt
Predict 82, 676 88, 966 90, 426 90, 501 90, 663
Actual 82, 185 88, 318 89, 714 90, 026 90, 021

Table 3: The actual average performance of the search and
the prediction based on Equation (4) on 8-puzzle.

and the total number of expansions by Dijkstra’s algorithm
is

n∑
i=1

SE(Ai) =

n∑
i=1

ai ·
i−1∑
j=1

aj

=
(a1 + a2 + · · ·+ an)2 − (a21 + a22 + · · ·+ a2n)

2

=
1

2
(|S|2 −

n∑
i=1

a2i) (4)

The savings due to the best-case tie-breaking depend on
the sum-of-squares

∑n
i=1 a

2
i . By Equation (3), the larger

this sum is, the more expansions are saved by tie-breaking,
and by Equation (4), the fewer states are expanded by Di-
jkstra’s algorithm with tie-breaking. This sum of squares is
smaller when the distribution of ai is more spread out and
the minimum value is achieved when ai = 1 for all i. The
sum is larger when the distribution is more concentrated, and
its maximum is achieved for n = 1 and a1 = |S|. Although
the sum-of-squares could be as large as |S|2, this extreme
case is only achieved when all action costs are 0 (and the
best-case tie-breaking is not guaranteed). In problems en-
countered in practice, the sum is much smaller than |S|2.

Our experiments on the 8-puzzle show that the actual
average performance of the search matches the predic-
tion of Equation (4). We tested the five cost functions
for the 8-puzzle used previously (Wilt and Ruml 2011;
Wilt 2014). In Table 3, the entry “Predict” contains the aver-
age of (|S|2−∑n

i=1 a
2
i)/2, over 1, 500 random initial states

from which the whole distributions are generated. The “Ac-
tual” entry shows the average performance of search over
10, 000 random pairs of initial and goal states.

The benefit of the tie-breaking is linked to how concen-
trated the distance distribution is. On one hand, cost func-
tions that provide diverse action costs but no 0 cost seem to
naturally induce a more spread out distribution than the unit
cost function, which means that unit action cost can benefit
more from tie-breaking. On the other hand, cost functions
that contain 0 cost may induce a distance distribution that is
even more concentrated than that of the unit cost function,
suggesting actions with 0 cost may bring some advantages
through tie-breaking. Nevertheless, best-case tie-breaking
cannot be guaranteed when 0 cost actions exist, and they
may cause “g-value” plateaus which increase the number of
nodes expanded (Benton et al. 2010).

Hazardous Logistics
While unit action costs often produce a more concentrated
distance distribution than non-unit action cost, this is not
always the case. We construct a transition graph structure

industrial area residential area

T

Figure 8: An illustration for hazardous logistics. Thicker
circles represent industrial locations and thinner circles rep-
resent residential locations. The gray area indicates loca-
tions a residential mode truck can visit. A truck starts at the
leftmost location (the circle containing a “T”).

where the non-unit cost function induces the more concen-
trated distribution.

Consider a logistics-like problem where the locations are
grouped into residential and industrial regions. In industrial
regions, hazardous products may be transported. Each truck
can be in one of three modes: unassigned, residential and
industrial. An unassigned truck cannot move, but can be
assigned to residential or industrial mode at most once (to
avoid the risk of mixing hazardous and safe products). An
industrial mode truck is restricted to move within the indus-
trial region. A residential mode truck can only visit a cor-
ridor subset of industrial locations. For simplicity, we con-
sider only moving a truck, without transporting any prod-
uct. See Figure 8 for an illustration. In the initial state,
the truck is at the leftmost location of the map in the unas-
signed mode. The first step for using this truck is to make a
choice between industrial and residential mode. If the truck
is changed to industrial mode, then it can move only in the
industrial area. If the truck is changed to residential mode,
then it first moves across the industrial region and then in

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

(a
)
u
n
it
co
st

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

(b
)
n
on

-u
n
it
co
st

Figure 9: For the example of Figure 8, distance distribution
induced by unit cost function (a) is less concentrated than
that of non-unit cost function (b).

the residential area. In different modes, the truck generates
different sets of states. With unit cost, the reachable states
correspond to two peaks in a bimodal distribution since the
residential area is further away (Figure 9 (a)). However, if
we assign a cost of 6 for changing the truck into industrial
mode, then we get a more concentrated distribution as the
two peaks in unit cost become a single peak in a unimodal
distribution (Figure 9 (b)). The sum-of-squares is 62 for the
unit cost function, and 82 for non-unit cost.

7 Conclusion

We have presented substantial empirical evidence to show
that diverse cost functions can be beneficial for search. In
particular, increasing the cost of an action can have either a
positive or a negative effect on a given problem instance: it
can lead to additional search by delaying the application of
an expensive but necessary action, but it can also accelerate
the search by (temporarily) blocking irrelevant actions and
making a path to a goal more attractive to search.

While analyzing single instances can be useful in practice,
we have shown that the preference of one cost function over
another largely disappears when averaging over problem in-
stances within the same state space. Our No Free Lunch
theorem makes this claim precise. Furthermore, we have
analyzed the effect of tie-breaking, and shown that its effect
on search efficiency is controlled by the concentration of the
distribution of path costs. Unit costs often have better con-
centration than non-unit costs but we have introduced a new
planning domain, Hazardous Logistics, in which the oppo-
site is true.

This work raises an important question for satisficing
or cost-bounded search. Current systems use components
based on unit costs to speed up search. Our results show that
there might be better cost functions for this purpose than unit
costs.

We can imagine two possible ways in which the results
of this paper might benefit cost-optimal planning. Both
are speculative, we mention them as possible directions for
future research. The first is that depth-based tie-breaking
strategies (Asai and Fukunaga 2016; 2017) use distances
based on unit costs to guide the search in the final plateau
of domains with abundant zero-cost actions. Our work sug-
gests that distances based on non-unit costs could also be
used in such tie-breaking strategies and have the potential
to achieve better performance. The second possible applica-
tion is to cost-optimal algorithms that make use of an upper
bound on optimal solution cost, such as breadth-first heuris-
tic search (Zhou and Hansen 2004). It is possible they might
be able to quickly find a good bound using an alternative
cost function.

Acknowledgments

The authors gratefully acknowledge the funding from the
Natural Sciences and Engineering Research Council of
Canada.

References
Aghighi, M., and Bäckström, C. 2015. Cost-optimal and
net-benefit planning - A parameterised complexity view. In
Proceedings of the 24th International Joint Conference on
Artificial Intelligence, IJCAI-2015, 1487–1493.
Aghighi, M., and Bäckström, C. 2016. A multi-parameter
complexity analysis of cost-optimal and net-benefit plan-
ning. In Proceedings of the 26th International Conference
on Automated Planning and Scheduling, ICAPS-2016, 2–10.
Asai, M., and Fukunaga, A. S. 2016. Tiebreaking strategies
for A* search: How to explore the final frontier. In Proceed-
ings of the 13th AAAI Conference on Artificial Intelligence,
AAAI-2016, 673–679.
Asai, M., and Fukunaga, A. 2017. Tie-breaking strategies
for cost-optimal best first search. Journal of Artificial Intel-
ligence Research (JAIR) 58:67–121.
Benton, J.; Talamadupula, K.; Eyerich, P.; Mattmüller, R.;
and Kambhampati, S. 2010. G-value plateaus: A chal-
lenge for planning. In Proceedings of the 20th International
Conference on Automated Planning and Scheduling, ICAPS-
2010, 259–262.
Cushing, W.; Benton, J.; and Kambhampati, S. 2010. Cost
based search considered harmful. In Proceedings of the 3rd
Annual Symposium on Combinatorial Search, SoCS-2010,
140–141.
Cushing, W.; Benton, J.; and Kambhampati, S. 2011.
Cost based satisficing search considered harmful. CoRR
abs/1103.3687.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische Mathematik 1(1):269–271.
Edelkamp, S., and Schrödl, S. 2012. Heuristic Search -
Theory and Applications. Academic Press.
Ikeda, T.; Hsu, M.-Y.; Imai, H.; Nishimura, S.; Shimoura,
H.; Hashimoto, T.; Tenmoku, K.; and Mitoh, K. 1994. A fast
algorithm for finding better routes by AI search techniques.
In Proceedings of Vehicle Navigation and Information Sys-
tems Conference, 291–296.
Katz, M., and Domshlak, C. 2008. New islands of tractabil-
ity of cost-optimal planning. Journal of Artificial Intelli-
gence Research (JAIR) 32:203–288.
Martelli, A. 1977. On the complexity of admissible search
algorithms. Artificial Intelligence 8(1):1–13.
Nakhost, H. 2013. Random Walk Planning: Theory, Prac-
tice, and Application. Ph.D. Dissertation, University of Al-
berta.
Pearl, J. 1984. Heuristics – Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.
Richter, S., and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research (JAIR) 39:127–177.
Richter, S.; Westphal, M.; and Helmert, M. 2011. Lama
2008 and 2011. In International Planning Competition,
117–124.
Thayer, J. T., and Ruml, W. 2009. Using distance estimates
in heuristic search. In Proceedings of the 19th International

Conference on Automated Planning and Scheduling, ICAPS-
2009, 382–385.
Thayer, J. T., and Ruml, W. 2011. Bounded suboptimal
search: A direct approach using inadmissible estimates. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence, IJCAI-2011, 674–679.
Thayer, J. T.; Benton, J.; and Helmert, M. 2012. Better
parameter-free anytime search by minimizing time between
solutions. In Proceedings of the 5th Annual Symposium on
Combinatorial Search, SoCS-2012, 120–128.
Wilt, C. M., and Ruml, W. 2011. Cost-based heuristic search
is sensitive to the ratio of operator costs. In Proceedings of
the 4th Annual Symposium on Combinatorial Search, SoCS-
2011, 172–179.
Wilt, C. M., and Ruml, W. 2014. Speedy versus greedy
search. In Proceedings of the Seventh Annual Symposium
on Combinatorial Search, SoCS-2014, 184–192.
Wilt, C. M. 2014. Steps Towards a Science of Heuristic
Search. Ph.D. Dissertation, University of New Hampshire.
Wolpert, D., and Macready, W. 1995. No free lunch theo-
rems for search. Technical report, Santa Fe Institute.
Wolpert, D., and Macready, W. G. 1997. No free lunch the-
orems for optimization. IEEE Transactions on Evolutionary
Computation 1(1):67–82.
Zhou, R., and Hansen, E. A. 2004. Breadth-first heuristic
search. In Proceedings of the 14th International Conference
on Automated Planning and Scheduling, ICAPS-2004, 92–
100.

