Proceedings of SAT Competition 2018: Solver and Benchmark Descriptions, volume B-2018-1 of Department of Computer Science Series of Publications

B, University of Helsinki 2018.

Description of expSAT Solvers

Md Solimul Chowdhury
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
mdsolimu@ualberta.ca

Abstract—expSAT is a novel CDCL SAT solving method, which
performs random-walk based explorations of the search space
w.r.t the current search state to guide the search. It uses a
new branching heuristics, called expVSIDS, which combines the
standard variable selection heuristic VSIDS, which is based on
search performance so far, with heuristic scores derived from
random samples of possible future search states. This document
describes the expSAT approach and four CDCL SAT solvers
based on this approach, which we have submitted for the SAT
competition-2018.

I. THE expSAT APPROACH

This section presents the expSAT approach, part of which
is to appear in [1].

A. expSAT algorithm

Given a CNF SAT formula F, let vars(F), uVars(F)
and assign(F) denote the set of variables in F, the set of
currently unassigned variables in F and the current partial
assignment, respectively. In addition to F, expSAT also accepts
five exploration parameters nW,IW, 0s10p, Pexp and w, where
1 < W, IW < uVars(F), 0 < Osop, Pegp,w < 1. These
parameters control the exploration aspects of expSAT. The
details of these parameters are given below.

Given a CDCL SAT solver, expSAT modifies it as fol-
lows: (I) Before each branching decision, if the search-height,
% < Ostop, With probability pesp, expSAT performs
an exploration episode, consisting of a fixed number nW of
random walks. Each walk consists of a limited number of
random steps. Each such step consists of (a) the uniform
random selection of a currently unassigned step variable and
assigning a boolean value to it using a standard CDCL polarity
heuristic, and (b) a followed by Unit Propagation (UP). A walk
terminates either when a conflict occurs during UP, or after a
fixed number /W of random steps have been taken. Figure
1 illustrates an exploration episode. (II) In an exploration
episode of nW walks of maximum length [TV, the exploration
score expScore of a decision variable v is the average of the
walk scores ws(v) of all those random walks within the same
episode in which v was one of the randomly chosen decision
variables. ws(v) is computed as follows: (a) ws(v) = 0 if the
walk ended without a conflict. (b) Otherwise, ws(v) = 7 djc),
with decay factor 0 < w < 1, lbd(c) the LBD score of the
clause c learned for the current conflict, and d > 0 the decision
distance between variable v and the conflict which ended the

w

22

Martin Miiller
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
mmueller @ualberta.ca

Jia-Huai You
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada
jyou@ualberta.ca

current walk: If v was assigned at some step j during the
current walk, and the conflict occurred after step 7' > 7,
then d = j' — j. We assign credit to all the step variables
in a walk that ends with a conflict and give higher credit
to variables closer to the conflict. (III) The novel branching
heuristic expVSIDS adds VSIDS score and expScore of the
unassigned variables. At the current state of the search, the
variable bumping factor of VSIDS is g*, where g > 1 and
z > 1 is the count of conflicts in the search so far. To achieve a
comparable scale for expScore and VSIDS score, we scale up
the expScore by g* before adding these scores. A variable v*
with maximum combined score is selected for branching. (IV)
All other components remain the same as in the underlying
CDCL SAT solver.

Fig. 1: An exploration episode with nWW = 3 walks and
a maximum of [W 3 random steps per walk. (v,1,j)
represents that the variable v is randomly decided at the j**

step of it" walk.

Start State

Current SAT search state

Search Tree | -,

<
,-—--Ii'“" i P31 _cmee, -~
o A
/" 1,2y ®2Y .K""\ b Random Walk 3
7 Y 1 @.3,2)
i b4 H
Random Walk 1 v Lw22) s 2.3
*13) g : Random Walk 2 ‘(" i

B. Exploration Parameter Adaptation

In expSAT, (nW,IW, Osip, Dexp,w), the set of exploration
parameters, governs the exploration. The first two parameters
dictate how much exploration to perform per episode, the third
and fourth parameter dictate when to trigger an exploration
episode. w controls how exploration scores are computed.

How to adapt these parameters during the SAT search is
an interesting question, which is not addressed in [1]. The
expSAT based solvers submitted for this competition uses a
simple local search algorithm to adapt the first four explo-
ration parameters P = (nW,IW, 6s0p, Pewp) to dynamically
control when to trigger exploration episodes and how much

exploration to perform in an exploration episode. This local
search algorithm executes in parallel to the SAT search in
expSAT.

a) The Adaptation Algorithm: The idea of this al-
gorithm is to start with an initial value wval(P,1)
(nW W1, 0%y, Desp) Of the exploration parameters and

S
iteratively update the values between two consecutive restarts,
based on the performance of exploration in the previous
restarts.
Assume expSAT has just performed the j** (j > 2) restart.
Let o; the performance of exploration between (j — 1) and

jth restarts. We define o7 as follows:

o j
Wo * ——— + W3
rStepsi

o) = wy *

* rsLBDI
Here, rSteps’ is the number of random steps taken dur-
ing the exploration episodes, which has occurred between
(—1)*" and j*" restarts, ¢/, g¢/, rsLBDJ are the number of
conflicts, number of glue-clauses and the mean LBD value
of the (learned) clauses identified in these rSteps’ steps,
respectively. w1, wy and ws are three fixed weights.

After restart j, just before starting SAT search, the algorithm
updates the exploration parameter values by comparing o; and
oj_1. Let val(P, j) = (nW7,IW7,6,,,,pl,,) is the updated
value of exploration parameters before the search begins, just
after the (j — 1)** restart.

o If 07 < o771, then the performance of exploration
deteriorates after the (j — 1) restart. In this case, we
perform two operations on the exploration parameters
after j'* restart:

rStepsi

— Decrement: Let dp € P the parameter whose value
was increased from x to 2’ after the (5 — 1)*" restart.
We attribute this deterioration of performance to this
update. We revert the value of dp back to x from z’.

— Increment: Randomly select a parameter rp € P
and increase its value to 3’ from y, where rp # dp.

o If 07 — g7t! = (, then we only perform the Increment
operation, as we do not know whom to blame for the
stall.

The updated value of these parameters remain effective
until the (§ 4 1)** restart.

o If 07 > 0771, then the performance of exploration is
increasing after the (j — 1) restart and we do not
change any parameter value as the current value of the
exploration parameters leads to better performance.

For changing the value of a parameter z € P, we associate

a step size s, with x. Also, in order to prevent the unbounded
growth/shrink of the parameters we associate a lower and
upper bound with each of the parameters. That is, for x € P,
we have a [l,;, u,]. Whenever the value of = exceeds u, OR
the value of x is less than [, then the value of x is reset to
its initial value .

II. expSAT SOLVERS

We have submitted four CDCL SAT solvers based on the
expSAT approach, which are implemented on top of Glucose,

23

MapleCOMPSPS_LRB and MapleCOMPSPS. In the follow-
ing, we describe our solvers:

a) expGlucose: expGlucose is an extension of Glucose,
where we replace VSIDS by expVSIDS and and have kept
everything else the same as in Glucose.

b) expMC_LRB_VSIDS_Switch: The corresponding
baseline system MapleCOMPSPS_LRB switches between
branching heuristics LRB and VSIDS in between restarts.
In expMC_LRB_VSIDS_Switch, we replace VSIDS with
expVSIDS and have kept everything else the same as in
MapleCOMPSPS_LRB.

¢) expMC_LRB_VSIDS_Switch_2500: The correspond-
ing baseline system MapleCOMPSPS has three switches be-
tween VSIDS and LRB (i) VSIDS for initialization (first
50,000 conflicts), (ii) then run LRB for 2,500 seconds, and
(iii) then switches to VSIDS for rest of the execution of
the solver. In expMC_LRB_VSIDS_Switch_2500, we replace
VSIDS with expVSIDS for (iii) and have kept everything else
the same as in MapleCOMPSPS.

d) expMC_VSIDS_LRB_Switch_2500: This system is
a variant of expMC_LRB_VSIDS_Switch_2500. It uses ex-
pVSIDS for the first 2,500 seconds and then switches to LRB
for the rest of its execution.

REFERENCES

[1] MS Chowdhury and M. Miiller and J. You, “Preliminary results on
exploration driven satisfiability solving (Student Abstract).”, AAAI-
2018.

