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Abstract

Monte Carlo Tree Search (MCTS) is a popular tree search framework for choos-

ing actions in decision-making problems. MCTS is traditionally applied to

applications in which a perfect simulation model is available. However, when

the model is imperfect, the performance of MCTS drops heavily.

In this work, we introduce the Uncertainty Adapted MCTS (UA-MCTS)

framework; an adaptation of the MCTS framework to model uncertainty. We

define model uncertainty as the difference between the actual environment and

the imperfect model. In UA-MCTS we modify each of the 4 steps selection,

expansion, simulation, and backpropagation in MCTS so that they consider

uncertainty. Although we provide a method to learn the uncertainty of the

model, UA-MCTS is not restricted to our specific learning method.

In the Reinforcement Learning (RL) domain, we propose the DQ-MCTS

framework. DQ-MCTS uses the learned values from DQN, a state of the

art model-free RL method, to improve MCTS performance. Since DQN is a

model-free method, the errors in the model do not affect the learned values.

DQ-MCTS uses DQN learned values to initialize the newly added nodes in the

expansion step and to evaluate the last states in the simulation step.

We experimentally evaluate UA-MCTS and DQ-MCTS on the determin-

istic domains from the MinAtar test suite. Our results demonstrate that UA-

MCTS strongly improves MCTS in the presence of model error, and that

DQ-MCTS can perform better than MCTS but not better than DQN.
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Chapter 1

Introduction

The Monte Carlo Tree Search (MCTS) [6] framework is a search-based method

for decision-making problems. MCTS is best known for its achievements in

computer Go [19]. Moreover, MCTS has significant success in other game

applications such as Hex [4, 17], Shogi [18], and Poker [15] and in non-game

applications such as video parsing [3], harvest scheduling [14], robot controllers

[7], cost evaluation of polynomials [11], function approximation [16], and the

Travelling Salesman problem [5]. In all of these applications, MCTS has ac-

cess to a perfect simulation model in which search steps can be efficiently

performed. However, in many practical applications, a perfect model is not

available and MCTS has only access to an imperfect model. Yet such a model

can still be useful.

While previous approaches to using search with imperfect models exist

[21, 22], surprisingly, to the best of our knowledge, there is no prior work that

directly adapts MCTS to deal with imperfect models. In this thesis, we adapt

MCTS to this setting.

When MCTS has an imperfect model, its performance drops heavily. We

show this in our experiments in chapter 3. To overcome this, we propose

Uncertainty Adapted MCTS (UA-MCTS) as an improved version of the MCTS

framework that directly considers the uncertainty in imperfect models in the

MCTS algorithm. We define uncertainty as a measure of the distance between

the perfect model and the imperfect model that is available to the search

algorithm. We propose a method to learn the uncertainty of an imperfect
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model. But UA-MCTS is not restricted to this specific method for learning

the uncertainty. UA-MCTS is a general framework and it can use any other

method that captures the uncertainty.

The problem of imperfect models has been addressed in the Model-Based

Reinforcement Learning (MBRL) literature. In MBRL, the model of the envi-

ronment can be given but is imperfect, or it may not be given at all, in which

case the agent needs to learn the model itself. Due to the compounding error

phenomenon in imperfect models, MBRL agents can fail catastrophically [25].

Abbas et al. [1] proposed a method to use an imperfect model selectively.

Model-free RL methods do not use a model for learning, they only use real

interaction with the environment. Therefore, the errors in the model do not

affect the values learned by these methods. Such learned values can be used

as a heuristic in the MCTS framework when the model is imperfect. In this

thesis, we propose the DQ-MCTS framework which uses the learned values

from a pretrained DQN [13] to improve MCTS performance when the model

is imperfect.

In Chapter 2 we provide the background for our work. In Chapters 3 and 4,

we present the details of our UA-MCTS and UA-DQN frameworks and also the

details and results of our experiments. We test the performance of UA-MCTS

and DQ-MCTS by running experiments using three deterministic MinAtar

environments [26]. In Chapter 5 we provide a conclusion and directions for

possible future work.

The methods and results in this work were developed in close collabo-

ration with Kiarash Aghakasiri. UA-Expansion, UA-Simulation, and DQ-

Simulation methods are developed by myself. Kiarash Aghakasiri developed

UA-Simulation, UA-Backpropagation, and DQ-Expansion. We both discussed

the details and results of these methods together. All other ideas and imple-

mentations are equal collaborated work. The methods mentioned here are

described in Chapters 3 and 4.
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Chapter 2

Background

2.1 Reinforcement Learning

Reinforcement learning (RL) [20] is learning from interactions with an envi-

ronment to maximize a numerical signal, called reward. An agent must choose

actions in the environment, and observe the immediate reward and the changed

situation.

2.1.1 Markov Decision Process

S0, A0, R1, S1, A1, R2, S2, A2, R3, · · · .

An MDP is a 5-tuple (S,A,R, p, γ) where:

• S is the set of states. A state is a representation of the environment.

• A is the set of actions.

• R is the set of rewards. Each reward is a numerical signal.

• p is the dynamics of the MDP: p(s′, r|s, a)
.
= Pr{St = s′, Rt = r|St−1 =

s, At−1 = a}. It defines the probability of both the reward Rt and the

next state St based only on the current state St−1 and action At−1.

• γ is the discount rate and 0 ≤ γ ≤ 1. It determines how much the future

rewards are important to the current state.

In a finite MDP, S, A, and R are finite sets.

In deterministic MDP, for all state-action pairs (s, a) there is only one next

state s′ and reward r, so p(s′, r|s, a) = 1.
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2.1.2 Episodes, Returns, and Policies

In general, there are two types of tasks in RL: episodic and continuing tasks

[20]. In episodic tasks, the agent’s interactions with the environment break

into subsequences called episodes. Each episode ends in a terminal state; a

special state that resets the agent’s state to one of the starting states with

a zero reward. In continuing tasks there is no terminal state and the agent

interacts with the environment forever.

The goal of an RL agent is to maximize the expected return after time step

t which is defined as below:

Gt
.
=
∞∑
k=0

γkRt+k+1.

For episodic tasks, RT , RT+1, RT+2, · · · are all zero where T is the time step

when the agent reached a terminal step.

A policy maps each state s in the state space to a probability π(s, a) for

each action a in the action space.

2.1.3 Value Functions and Bellman Equation

The value of a state s under policy π is denoted as vπ(s) and defined as:

vπ(s)
.
= Eπ[Gt|St = s] = Eπ[

∞∑
k=0

γkRt+k+1|St = s]

vπ is called the state-value function [20]. The value of terminal states is

always zero. The Bellman equation for a state-value function vπ indicates the

relationship between the value of each state and its successor states and is

defined as follows [20]:

∀s ∈ S, vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)] (2.1)

The value of taking action a in state s and then following the policy π is

denoted as q(s, a) and defined as:

qπ(s, a)
.
= Eπ[Gt|St = s, At = a] = Eπ[

∞∑
k=0

γkRt+k+1|St = s, At = a]

This is called the action-value function [20]. The Bellman equation for

qπ(s, a) indicates the relationship between the value of each state-action and
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its successor state-actions. It is defined as follows [20].

∀s ∈ S, ∀a ∈ A, qπ(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′

π(a′|s′)qπ(s′, a′)] (2.2)

Every MDP has an optimal policy [20]. The optimal state-value function

v∗ corresponds to an optimal policy. For an optimal policy π∗, for all states

s and all other policies π, v∗(s) ≥ vπ(s). Similarly, q∗ is the optimal action-

value function corresponding to the optimal policy. The Bellman optimality

equations for v∗ and q∗ are defined as follows:

∀s ∈ S, v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

∀s ∈ S, ∀a ∈ A, q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + max
a′

q∗(s
′, a′)]

2.1.4 Reinforcement Learning Methods

Solving the reinforcement learning task means finding an optimal policy, where

the agent chooses actions that result in maximum cumulative rewards. Rein-

forcement learning methods can be categorized into two general cases: Model-

based and model-free [20]. In model-based methods such as dynamic program-

ming (DP), it is assumed the agent has access to the model of the environment.

The model is a prediction of the transition dynamics. In model-free reinforce-

ment learning methods, such as Monte Carlo methods and temporal difference

(TD) learning, the agent assumes that it does not have access to the model of

the environment and it can only learn from interaction with the environment.

2.1.5 Model-Based Reinforcement Learning

Model-based reinforcement learning methods mostly use planning : the com-

putation process that uses transition dynamics to evaluate and improve policy

[20]. Model-free reinforcement learning methods rely on learning: the com-

putation process that does not use the transition dynamics to evaluate and

improve policy [20]. In this thesis, we denote the transition dynamics for any

state-action (s, a) as M(s, a) which outputs one possible next state-reward pair

(s′, r) based on p. In the deterministic MDP case, M(s, a) outputs exactly one

next state-reward pair.
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Dynamic programming is a model-based reinforcement learning method. In

DP, the agent finds the optimal policy by doing iterations of policy evaluation

and policy improvement steps. This process is called policy iteration.

In policy evaluation, the agent uses equation 2.2 to find the value function

of policy π. The agent starts with a random estimate of the action-value

function denoted as Q(s, a). Then, it updates Q(s, a) for all the state-actions

using the following formula until Q(s, a) does not change anymore for any

state-action.

Qπ(s, a)←
∑
s′,r

p(s′, r|s, a)[r + γ
∑
a′
π(a′|s′)Qπ(s′, a′)]

When Q(s, a) does not change anymore, the value of the policy π has been

found because it satisfies the Bellman equation. The above update is called

full backup. It requires full access to the transition dynamics p.

In policy improvement, a new policy π′ is achieved by choosing the greedy

policy with respect to the current estimated value function Q:

π′(s) = argmax
a

Qπ(s, a)

Starting with an arbitrary policy π0, using policy evaluation the agent finds

the estimated value function Qπ0 for π0. Then using policy improvement,

the agent achieves π1. Again, by using policy evaluation, the agent finds

Qπ1 , and so on until the policy cannot be improved. The resulting policy is

optimal. Below the sequence of obtained policy and action-value functions is

demonstrated.

π0
E−→ Qπ0

I−→ π1
E−→ Qπ1

I−→ · · · I−→ Qπ∗
E−→ π∗

E−→ and
I−→ denote the policy evaluation and policy improvement steps re-

spectively.

2.1.6 Model-Free Reinforcement Learning

Temporal difference (TD) methods are model-free methods for evaluating the

value function. TD learning does not need access to the transition dynamics.

It updates the value function from the samples it obtained by interacting with

the environment. Below is the update formula for TD learning:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)]

6



Generalized policy iteration (GPI) is a more general approach to value

iteration [20]. In GPI, the value function does not need to be evaluated com-

pletely in each iteration; it just needs to get updated. Moreover, a complete

policy improvement is not needed in each iteration; a partial improvement is

enough. The combination of TD methods for learning the value function and

using an ε-greedy policy is a kind of GPI. An ε-greedy policy chooses the opti-

mal action based on the current estimation of value function with probability

1− ε, and chooses a random action with probability ε.

Both DP and TD methods use a technique called bootstrapping ; estimating

the value of a state or state-action based on the value of their successors.

Q− learning [24] is a TD learning method combined with the ε-greedy policy

that tries to update the action-value function by the formula:

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a
Q(St+1, a)−Q(St, At)]

Here St, At, Rt+1 and St+1 are obtained from interactions with the real

environment and α is a step size parameter.

2.1.7 Function Approximation and Deep Q-Networks

When the size of the state space S or the state-action space S × A is too

large, there is not enough memory to store all the state or state-action values.

In this case, RL methods use function approximation to estimate a value or

action-value function.

A Deep Q-Network (DQN) [13] is a variant of Q-learning with function

approximation. It uses a convolutional neural network to approximate the

action-value function.

DQN training uses two techniques for stability: experience replay and tar-

get network. In experience replay, the agent uses a replay buffer B to store

transitions. For each update, the agent gets a sample batch from the replay

buffer B. Using the replay buffer eliminates the correlations between the tran-

sitions since the samples are random. Moreover, using a batch of samples,

results in a smooth gradient update. The target network is used to compute

the estimated value of the successors. It is an older version of the action-value

function network and is not updated after each step for stability. It updates
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periodically with a frequency F to the current learned action-value function.

After each interaction with the environment, the agent gets a batch of

transitions from the replay buffer B and updates the neural network with

stochastic gradient descent using the following formula:

wt+1 = wt + α[Rt+1 + γmax
a
Q−(St, a,w

−)−Q(St, At,wt+1)]∇Q(St, At,wt)

(2.3)

Here, Q is the current action-value function network, Q− is the target

action-value function network, w is the weight vector of Q, and w− is the

weight vector of Q−.

Algorithm 1 shows pseudo code for the DQN algorithm.

2.1.8 Model Learning and Uncertainty

An RL agent may or may not have access to the true model of the environment

M . The model that the agent is using is denoted as M̂ . M̂ can be perfect

or it can have some errors and be imperfect. The agent can learn a model

by itself from interacting with the environment. Learning the model of the

environment can be viewed as a supervised learning task. The inputs are the

current state and action and the outputs are the next state and reward.

There are generally three types of models of the environment: 1) Distri-

bution models, 2) Sample models, and 3) Expectation models [23]. Given a

state and action, each of these types of models predicts a different type of out-

put. Distribution models predict the distribution of the possible next states

and rewards. Sample models predict one of the possible next states and the

associated reward. Expectation models predict an expectation over the possi-

ble next states and rewards. Learning an expectation model is a much easier

choice for an RL agent especially when the size of the state or state-action

space is large. Neural networks are a common choice for learning such models.

A learned or given model M̂ may be imperfect and have some errors. We

define the function true uncertainty U(s, a) for each state-action pair (s, a) as

the squared difference between vectors representing the predictions made by

8



M̂ and M . These differences are caused by three main sources of predictive

uncertainty in the model [1]:

• Aleatoric uncertainty: This uncertainty is caused by the stochasticity in

the transition dynamics. If there are multiple next states and rewards

for a state-action, then the expectation model will learn an expectation

of these next states and rewards and has aleatoric uncertainty. Aleatoric

uncertainty is irreducible because it cannot be reduced by increasing the

capacity of the model or by gathering more data.

• Parameter uncertainty: Given a dataset and a hypothesis class for the

model, there might be multiple choices for the best parameter set that

describe the data. The uncertainty about which of these parameter sets

generated the data is parameter uncertainty. Parameter uncertainty can

be reduced by gathering more data.

• Structure uncertainty: This type of uncertainty occurs when the chosen

model class does not have the capability to learn the observed data. This

uncertainty can be reduced by increasing the capacity of the model.

2.2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) approaches sequential decision-making prob-

lems by selective lookahead search. [6]. MCTS has shown great performance

in stochastic and deterministic games such as Hex [4, 17], Shogi [18], and

Poker [15], and in real-world planning [3, 7, 14] and optimization [8, 11, 12]

problems. MCTS first became popular for its application in computer Go [19].

Before MCTS, Go was one of the few classical board games where computers

could not achieve strong human-level performance.

Monte Carlo methods are a class of methods that approximate a value by

taking random samples in the action space. Monte Carlo methods can be used

to approximate the action-value function q(s, a) by getting the mean of returns

of random samples from that state-action:
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Q(s, a) = 1
N(s,a)

N(s)∑
i=1

Ii(s, a)zi

Here, Q(s, a) is the estimated action-value function, N(s, a) is the number

of times that action a is selected from state s, N(s) is the number of simulations

from state s, zi is the result of the ith simulation, and Ii(s, a) is 1 if action a

was selected from state s in the ith simulation and 0 otherwise.

MCTS uses the Monte Carlo method to approximate the value of state-

action pairs in a MDP. This algorithm builds a tree incrementally until it

reaches the limits of the computational budget such as time or memory. With

more computation, more accurate values are obtained. Each node in this

search tree represents a state in S, and each edge represents an action from

A from a state. MCTS predicts the value of each edge by using Monte Carlo

methods.

One iteration of MCTS consists of of 4 steps: Selection, Expansion, Simu-

lation, and Backpropagation.

1. Selection: The method chooses a child recursively starting from the root

of the tree based on the tree policy, until it reaches a terminal or expand-

able node. The tree policy chooses among the children of a node within

the tree. An expandable node is a node which has unvisited children.

2. Expansion: If the selected node is expandable and nonterminal, all of its

children are added to the tree.

3. Simulation: One or more simulations are run from the newly added node

based on the default policy. We denote a single simulation as a rollout.

This is the Monte Carlo sampling part of MCTS. A rollout will stop when

it reaches a terminal node, or after a predefined maximum depth. The

default policy produces the actions in the rollout. The rollout is used to

find the first estimated value for a newly added node. An average of all

rollouts outcomes is returned as the outcome of the simulation step.

4. Backpropagation: The results of the simulation are backed up through

the path of selected nodes towards the root.
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One of the main questions about MCTS is whether it can find the optimal

action. The UCT method [10] extended the UCB algorithm in bandit prob-

lems to MCTS. UCT introduces a tree policy which balances exploitation and

exploration. Exploitation means searching in parts of the tree with higher es-

timated values to achieve a more accurate value. Exploration means searching

in parts of the tree that have not been visited enough to reduce uncertainty

and make sure that any promising path has not been missed. The UCT value

for node i defined as:

UCT (v) = X(v) + 2c
√

2 lnN(Par(v))
N(v)

where c is the exploration constant, Par(i) is the parent of node i in the

tree, and N(i) is the number of times node i has been visited. X(i) is the

approximated value of node i and is equal to Q(i)/N(i). Q(i) is the sum of

the rewards for all simulations containing node i.

The probability that UCT chooses the optimal action converges to 1 in the

limit [10].

One of the main advantages of MCTS is it does not need any domain-

specific knowledge except the value of terminal states which are known in RL

environments. MCTS can be used by an RL agent for planning at decision

time. When MCTS is used in an RL domain, it needs full access to the

transition dynamics.

MCTS with UCT is described in Algorithm 2. In this thesis, we use the

following notation for node v in the search tree T :

• Each node in T represents a state. S(v) is the feature vector of the state

of the node v.

• Each node in T (except the root node) has a parent. Par(v) is the parent

of v in T and Par(root) = NULL.

• R(v) is the reward observed when adding node v to the tree.

• Each node v has a set Ch(v) of children in T .

• N(v) is the number of times v has been visited throughout the search.

11



• Q(v) is the sum of rewards observed at v.

• NI is the total number of iterations of the MCTS main loop.

• NS is the number total of simulations used to evaluate a leaf node.

• DS is the maximum depth of each rollout.
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Algorithm 1 DQN Algorithm.

Initialize a replay buffer B of size N
Initialize an action-value function Q with random weights w0

Initialize Q− as a copy of Q with weights w− = w0

counter ← 0
for episode← 1 to E do

s1 ← initial state of the environment
for t ← 1 to T do

rand← a random number between 0 and 1
if rand < ε then

at ← a random action
else

at ← max
a
Q−(st, a, w

−)

end if
st+1, rt+1 ← execute action at
store transition (st, at, rt+1st+1) to buffer B
(si, ai, ri+1, si+1)← a random sample mini batch from B
if si+1 is terminal then

yi ← ri+1

else
yi ← ri+1 + max

a′
Q−(si+1, a

′,w−)

end if
perform a gradient descent update on (yi−Q(si, ai,wt))

2 and update
wt to wt+1 based on update formula 2.3

counter ← counter + 1
if counter = F then

w− ← wt+1

counter ← 0
end if

end for
w0 ← wT

13



Algorithm 2 MCTS Algorithm with UCT.

function MCTS(s0)
create a root node v0 with state s0
for NI do

vs ← Select(v0)
if N(vs) > 0 then

vs ← Expand(vs)
end if
value← Simulate(S(vs))
Backpropagate(vs, value)

end for
vbest ← choose the most visited child of v0
return action(vbest)

end function=0

Algorithm 3 MCTS Selection Algorithm.

function Select(v)
while v is expanded do

v ← argmax
vi∈Ch(v)

Q(vi)
N(vi)

+ c
√

lnN(v)
N(vi)

end while
return v

end function

Algorithm 4 MCTS Expansion Algorithm.

function Expand(v)
for ai ∈ A do

si, ri ← M̂(S(v), ai)
create a node vi with state si and reward ri
N(vi)← 0
Q(vi)← 0

end for
return a random child of v

end function
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Algorithm 5 MCTS Simulation Algorithm.

function Simulate(s, depth)
for i← 1 to NS do

gi ← Rollout(s)
αi ←1/NS

end for

return
NS∑
i=1

αi ·gi
end function

function Rollout(s)
count← 0
rewards← 0
discount← 1
while s is not terminal & count < DS do

choose a random action a from A
s, r ← M̂(s, a)
count← count+ 1
rewards← rewards+ discount · r
discount← discount · γ

end while
return rewards

end function

Algorithm 6 MCTS Backpropagation Algorithm.

function Backpropagate(v, value)
while v is not NULL do

N(v)← N(v) + 1
Q(v)← Q(v) + ·value
value← value · γ +R(v)
v ← Par(v)

end while
end function
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Chapter 3

MCTS and Model Uncertainty

MCTS can be used by AI agents in sequential decision-making problems. How-

ever, in its original form, it needs a perfect simulation model. If the agent’s

model is imperfect, then MCTS does not perform well at all. We show this

in Section 3.2. In this chapter, we propose a new framework that adapts the

MCTS framework to the case where the agent’s model is imperfect. If an agent

knows which parts of the model have a higher uncertainty, then one strategy is

to behave more conservatively in those parts. In our approach, we discourage

searching through the inaccurate parts of the model, where the uncertainty is

high, and encourage searching through the more certain parts.

In section 3.1, we describe our approach to adapt the MCTS framework to

model uncertainty. In Section 3.2, we describe our modified version of MinAtar

environments and our method for learning the model uncertainty, explain our

experimental design to investigate UA-MCTS’s efficiency, and present the re-

sults of the experiments.

3.1 UA-MCTS

How can search in an imperfect model M̂ improve decision-making in M? Of

course, this task is hopeless if there is no exploitable relation between M̂ and

M . Vemula et al. study robust robot path planning [21, 22]. In the case

where the robot behaves differently from the model while interacting with the

real environment, their approach completely disables these parts of the model

and replans. For example, a motor may be malfunctioning, or an arm may be
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overloaded with too much weight. The algorithms Cmax and Cmax++ plan

and learn in a real-time A* search framework.

In our UA-MCTS approach, we adapt MCTS to behave more conserva-

tively in states where the uncertainty U is large. We discourage, but do not

completely give up on, searching through the more uncertain parts of the

model. One design goal is to prevent inaccuracies from compounding as the

search tree grows.

Of course, the true uncertainty U is not available to the agent. However,

after each search, one action a is executed from some state s in the real world.

The difference between the real next state and the predicted next state by M̂

is a sample of U . From these samples, the agent can build and improve an

estimate Û(s, a). In Section 3.2.2 we provide a specific method for learning Û .

However, UA-MCTS is a general framework: Û and its implementation can

be chosen freely and is not restricted to our specific learning method.

MCTS iterates 4 steps: selection, expansion, simulation, and backpropa-

gation. We modify each of these 4 steps in UA-MCTS to adapt MCTS to

uncertainty. In the following section, we describe these modifications. The

MCTS framework remains the same as described in Algorithm 2. We use

the same notation we used in section 2.2. Each step uses Û , the uncertainty

estimation.

3.1.1 UA-Selection

We changed the selection step of MCTS in a way that children with a higher

uncertainty have a lower chance to be selected. We adapt the UCT formula to

uncertainty by introducing a new multiplicative term 1−αv in the exploration

term. The new UCT formula (UAS-UCT) is shown in equation 3.1. This new

term is proportional to the certainty of the children. Therefore children with

higher uncertainty will be selected in the selection step with a lower probability.

αv is a softmax of Û with a temperature parameter τ and is defined in equation

3.2. Algorithm 7 provides a pseudo-code for UA-Selection, with the modified
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parts in red. More details are explained in Kiarash [2].

UAS − UCT (v) =
Q(v)

N(v)
+ 2c

√
2 lnN(Par(v))

N(v)
× (1− αv) (3.1)

αv
.
=

eÛ(v)/τ∑
vi∈Ch(Par(v))

eÛ(vi)/τ
(3.2)

Algorithm 7 UA-Selection Algorithm

Parameter: temperature τ for softmax

function UA-Select(v)

while v is expanded do

for vi ∈ Ch(v) do

αi ← eÛ(vi)/τ∑
vj∈Ch(v)

eÛ(vj)/τ

end for

v ← argmax
vi∈Ch(v)

Q(vi)
N(vi)

+ c
√

lnN(v)
N(vi)

· (1 - αi)

end while

return v

end function

3.1.2 UA-Expansion

We changed the MCTS expansion step so that it discourages adding children

with high uncertainty. When expanding node v, we choose one of its children

for possible elimination based on a probability function defined for each of the

children. The chosen child is eliminated from the tree with a fixed probability

τ , a hyperparameter of the search. With probability 1 − τ , no child is elimi-

nated. Assume vi is the ith child of node v. αi is the corresponding probability

of eliminating of ith child node, vi. It is defined as in equation 3.3. αi is higher

if the child node vi has a higher uncertainty.

αi
.
=

Û(vi)∑
vj∈Ch(v)

Û(vj)
(3.3)
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Pruning children with high uncertainty provides a search tree with more

certain edges. Therefore, the outcome of the search is more reliable. This

method also reduces the branching factor of the tree, which results in a deeper

search. Algorithm 8 provides a pseudo-code for UA-Expansion, with the mod-

ified parts in red.

Algorithm 8 UA-Expansion Algorithm

Parameter: probability τ for deleting a node

function Expand(v)

for ai ∈ A do

si, ri ← M̂(S(v), ai)

create a node vi with state si and reward ri

Û(vi)← Û(S(v), ai)

N(vi)← 0

Q(vi)← 0

end for

x← random number ∈ (0, 1)

if
∑

vj∈Ch(v)
Û(vj) > 0 and x < τ then

for ai ∈ A do

αi ← Û(vi)∑
vj∈Ch(v)

Û(vj)

end for

choose node vi with probability αi

delete node vi

end if

return a random child of v

end function

3.1.3 UA-Simulation

In MCTS, the final return of the simulation step is the (unweighted) average

of the returns of the NS rollouts. In UA-Simulation we weigh the return of

each rollout based on the total uncertainty of its trajectory, and then use a

weighted average of all rollouts for the return of the simulation. A rollout
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trajectory consisting of many nodes with high uncertainty should have a lower

weight. Here, we explain how we calculate an uncertainty estimation and a

weight for each rollout.

Assume T = {T1, T2, · · · , TNS} is the set ofNS rollout trajectories for a sim-

ulation and Ti is the ith rollout trajectory. Let σi be the uncertainty of a rollout

trajectory Ti, denoted as σi, with length h and trajectory (s1, a1, s2, v2, · · · , sh, ah, sh+1).

σi is computed as in equation 3.4. The uncertainty measure σi is the sum of

discounted uncertainties in the trajectory. The weight αi for the ith rollout is

calculated as a softmax function as in equation 3.5. This weight is higher if

the uncertainty of the trajectory Ti is lower.

σi
.
=

h∑
k=1

γk−1Û(sk, ak) (3.4)

αi
.
= e−σi/τ

/ NS∑
i=1

e−σj/τ (3.5)

τ in the above equation is the softmax temperature parameter. Equation

3.6 presents how the return of the simulation, G, is computed based on the αi

and gi, the return of the ith rollout.

G
.
=

NS∑
i=1

αi · gi (3.6)

Algorithm 9 provides a pseudo-code for UA-Simulation, with the modified

parts in red.

3.1.4 UA-Backpropagation

We changed the backpropagation step in a way that children with high uncer-

tainty have less impact on their parents while backpropagating values. The

value of a parent v is updated towards the backpropagated value from child

node vi based on Û(vi). If Û(vi) is high, then the update has a lower effect on

the value of v. Equation 3.7 shows the updated UCT formula (UAB-UCT). αi

in this equation is higher if the uncertainty of child vi is lower. αi is defined in
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Algorithm 9 UA-Simulation Algorithm

Parameter: temperature τ for softmax

function Simulate(s, depth)

for i← 1 to NS do

gi, σi ← Rollout(s)

αi ←1/NS

end for

for i← 1 to NS do

αi ← e−σi/τ
/

NS∑
i=1

e−σj/τ

end for

return
NS∑
i=1

αi ·gi

end function

function Rollout(s)

count← 0

rewards← 0

σ ← 0

discount← 1

while s is not terminal & count < DS do

choose a random action a from A
s, r ← M̂(s, a)

count← count+ 1

rewards← rewards+ discount · r
σ ← σ + discount · Û(s, a)

discount← discount · γ
end while

return rewards, σ

end function
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equation 3.8. Algorithm 10 provides a pseudo-code for UA-Backpropagation,

with the modified parts in red. More details are explained in Kiarash [2].

UAB − UCT (v) =

∑
vi∈Ch(v)

Q(vi)×N(vi)× αi∑
vi∈Ch(v)

N(vi)× αi
+ 2c

√
2 lnN(Par(v))

N(v)
(3.7)

αi =
e−Û(vi)∑

vj∈Ch(Par(vi))
e−Û(vj)

(3.8)

3.2 Experiments: Design and Results

In this section, we present the details of the experiments we have done to

investigate the performance of UA-MCTS. 1 We also investigate the effect of

UA-Expansion and UA-Simulation steps independently. We investigate two

scenarios:

• Offline scenario: the agent has access to the true uncertainty U of the

model, but not to the perfect model M itself. This scenario evaluates

the performance of UA-MCTS with a “perfect uncertainty” model. The

reason for this experiment is to separate out the difficulty of not knowing

M from the extra difficulty due to the training errors in the estimate Û .

• Online scenario: the agent does not have access to U , and therefore has to

learn an approximation Û online from real experience. The agent starts

with baseline MCTS without any of the UA adaptations, and collects

the buffer B of transitions that is used to train Û . Once this buffer is

full, the agent performs a fixed number e of training steps to create Û ,

and switches over to using UA-MCTS with Û .

The experiments are done on three modified environments in the MinAtar

framework [26]: Space Invaders, Freeway and Breakout.

1Implementation of the experiments can be found in https://github.com/

ualberta-mueller-group/imperfect_model_code.
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Space Invaders Freeway Breakout

NI 10 100 100
DS 20 50 50
NS 10 10 10

Table 3.1: Search hyperparameters for the modified MinAtar environments.

We test a total number of five algorithms. The two baselines use standard

MCTS without any UA modifications:

1) “True Model” MCTS is allowed to use M in its search.

2) “Corrupted Model” MCTS uses M̂ for all its planning.

3-5) All versions of UA-MCTS work as follows: they use M̂ for all their

planning. The UA-MCTS versions labeled “UA-Expansion” and “UA-Simulation”

use the UA modifications only for this one component of MCTS, and use un-

modified MCTS for the other three parts. The “UA-MCTS” version uses all

four enhancements.

For each combination of the environment, scenario, and algorithm, we per-

formed a parameter sweep over τ and c from the sets τ ∈ {0.1, 0.5, 0.9},

c ∈ {0.5, 1,
√

2, 2} respectively for 30 runs. The mean and standard deviation

of the best-performing configuration for each experiment is reported as the fi-

nal result. Table 3.1 presents the hyperparameters used for each environment.

For the online scenario and each of these combinations, we used 3 different

buffer sizes to investigate the effect of the learned uncertainty Û on the per-

formance of UA-MCTS and its components. We used 1000, 3000, and 7000

for the buffer size.

In Section 3.2.1 we describe the details of the environments. In Section

3.2.2 we describe our method for learning the uncertainty estimate Û . In

Sections 3.2.3 - 3.2.5 we describe the experimental setup and results for each

environment. Finally, in Section 3.3 we provide a summary of the results of

the experiments.
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3.2.1 Environments

We test the UA-MCTS framework on the three deterministic modified games

Space Invaders, Freeway and Breakout in the MinAtar framework [26]. We

modified the transition dynamics in each of these games, but the agent does

not have any information about these modifications. In each game the search

agent “believes” it is playing the real game. However, the rules of the game

itself have changed, and the agent only learns about this change slowly when it

acts in the real environment. More formally, M includes the new modifications,

but M̂ has no information about them. In the following, we explain the details

of each of the games and the way we modified them.

Space Invaders

In Space Invaders, the agent controls a player that tries to eliminate 24 aliens

by shooting at them [26]. The player is at the bottom of the screen in any of

the positions from 0 to 9. The player can move to the left (action “Left”) and

right (action “Right”), or it can shoot a bullet upward (action “Shoot”), or do

nothing (action “None”). At the start of the game, there are 24 aliens at the

top of the screen as a cluster and they move together in the same direction.

At each time step, all the aliens move one step to the left (or right), all in the

same direction. If one of them hits the wall, then they all switch direction and

move one step down. At each time step the bullet shot by the agent moves

one step up. If a bullet hits an alien, the alien is removed and the agent gets

a reward of +1. The aliens also shoot bullets downward. At each time step,

the bullets shot by the aliens move one step downward. If one of these bullets

or an alien hits the player, the agent dies and the game terminates. If all the

aliens are killed, the game also terminates.

We modified this environment so that executing the action “Shoot” does

nothing in five out of ten positions, at index 2, 3, 4, 5, and 6. But, the agent is

unaware of its limitations on shooting in these five positions. To have a better

performance, the agent should avoid staying in these positions to be able to

shoot and kill aliens.
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Figure 3.1 presents a snapshot of the Space Invaders environment. 2

Figure 3.1: A snapshot of the Space Invaders environment. The navy square
is the player, the grey square is the aliens’ bullet, the pink square is the player
bullet, and the green cluster are the aliens.

Freeway

In Freeway, the player’s goal is to reach the top of the screen without hitting

cars on the way [26]. The player begins at the bottom of the screen. At each

time step it can go one step up (action “Up”), down (action “Down”), or do

nothing (action “None”). If the player reaches the top of the screen, it gets a

reward of +1 and the game terminates. Cars move horizontally on the screen

with different speeds. If a car reaches an edge of a screen, it teleports to the

other side. If the player is hit by a car, the game terminates with a reward of

0.

We modified this environment so that executing the action “None” moves

the agent one step up in six out of ten positions, at index 1, 2, 3, 5, 6, and 7.

Therefore, to reach the top of the screen, the agent must plan ahead so that

it does not need to stay idle in these positions to not hit by a car. Figure 3.2

2The image is from https://github.com/kenjyoung/MinAtar.
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presents a snapshot of the Freeway environment. 3

Figure 3.2: A snapshot of the Freeway environment. The navy square is the
player, and the other rectangular shapes are the cars.

Breakout

In Breakout, the agent controls a paddle at the bottom of the screen to bounce

a ball to break 30 bricks at the top of the screen [26]. The agent can move the

paddle to the left (action “Left”) and right (action “Right”), or do nothing

(action “None”). The ball moves diagonally and based on which side of the

paddle it hits, it bounces to the left or right. The agent gets a reward of +1

for each brick broken by the ball. If the ball hits the bottom of the screen or

all the bricks are broken, the game terminates.

We modified the game so that the paddle fails to bounce the ball in two out

of ten positions, at index 2 and 4, and the game terminates. To overcome this,

the agent must plan ahead to keep the ball in play without using these cor-

rupted positions. Figure 3.3 presents a snapshot of the Breakout environment.

4

3The image is from https://github.com/kenjyoung/MinAtar.
4The image is from https://github.com/kenjyoung/MinAtar.
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Figure 3.3: A snapshot of the Breakout environment. The navy square is the
paddle, the pink-green shape is the ball, and the grey cluster are the bricks.

3.2.2 Learning the Model Uncertainty

In this section, we present our method to estimate the true uncertainty U .

In this work, we assume M̂ , the model that is given to the agent, is fixed.

Moreover, we assume there is no error in prediction of the next reward. We

try to estimate the uncertainty of the predicted next state by the model of the

environment. In the UA-MCTS framework the implementation for estimated

uncertainty, Û does not have any restrictions. Also Û does not need to be

fixed and it can change in each step.

We use an artificial neural network to learn an estimation of U . We collect

a buffer B with size β. For each interaction (s, a, r, s′) with the environment,

we add a sample 〈s, a, U(s, a)〉 where s, a are the current state and action, and

U(s, a) is the squared difference between the vector representing s′, the true

next state the next state predicted by M̂ .

U(s, a) =
(
M̂(s, a)−M(s, a)

)2
.

When the buffer B is full, we train an artificial neural network with the

inputs of (s, a) and the target U for a fixed number e of steps by performing
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a gradient descent update with a random batch from buffer B and the loss

function L (equation 3.9). After this one-time training, we do not change the

uncertainty model Û anymore for stability reasons.

L =
∑

s,a,U(s,a)∈B′

(
Û(s, a)− U(s, a)

)2

(3.9)

In our experiments, the neural network representing Û is a fully connected

neural network with two hidden layers with 32 units in each. We use a batch

size of 128, a number of training steps e = 5000, and the Adam optimizer

[9] with a step size of 10−3. In the UA-MCTS framework, we define the

uncertainty of node v, Û(v), as the trained uncertainty Û(s, a) where (s, a) is

the transition in the tree leading to node v.

3.2.3 Space Invaders

Offline Scenario

In this section, we present the performance of UA-Expansion, UA-Simulation,

and UA-MCTS for the offline scenario in the Space Invaders environment.

Figure 3.4 presents the performance of 5 algorithms for this case. The best

exploration constant c and temperature parameter τ are provided in Table 3.2.

When MCTS uses an imperfect model (MCTS Corrupted Model in the fig-

ures and tables), its performance drops in comparison to the case where it has

access to the true model (MCTS True Model). UA-Expansion, UA-Simulation,

and UA-MCTS restored the performance MCTS and even performed better

than MCTS with the true model. The reason is that the states in which the

player cannot shoot have a low value. These states have high uncertainty U

and UA-MCTS tends to avoid them. Therefore, with a limited budget for

search, Uncertainty Adapted methods performed better than MCTS with the

true model.

UA-Simulation perfomed worse than UA-Expansion and UA-MCTS. UA-

Expansion and UA-MCTS prevent building a tree within uncertain parts di-

rectly. UA-Expansion removes a child with a high uncertainty. However, UA-

Simulation only adjusts the outcome of a simulation based on the uncertainty
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of the rollouts. It needs to be combined with other components to improve

the performance.

MCTS-True Model

MCTS-Corrupted Model
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Figure 3.4: Performance of UA-Expansion, UA-Simulation, UA-MCTS, and
two MCTS baselines in the Space Invaders environment in the offline scenario.
Each error bar shows ± standard deviation.

Online Scenario

Figure 3.5 presents the performance of UA-Expansion, UA-Simulation, and

UA-MCTS for different buffer sizes β, as well as MCTS baselines. The best

exploration constant c and temperature parameter τ for each combination are

provided in Table 3.2.

We observe that UA-Expansion, UA-Simulation, and UA-MCTS performed

better than MCTS Corrupted Model and MCTS True Model. The perfor-

mance of these algorithms is better with the perfect uncertainty (offline sce-

nario). UA-MCTS performed better with a larger buffer size β.

3.2.4 Freeway

Offline Scenario

Figure 3.6 presents the performance of the 5 algorithms in the Freeway environ-

ment for the offline scenario. The best exploration constant c and temperature

parameter τ are provided in Table 3.3.

MCTS performance degrades when it does not have access to the true

model M . UA-MCTS almost achieves the MCTS True Model performance.
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Figure 3.5: Performance of UA-Expansion, UA-Simulation, UA-MCTS, and
two MCTS baselines for different βs for the Space Invaders environment in the
online scenario. Each error bar shows ± standard deviation.

Offline β =1K β =3K β =7K
c τ c τ c τ c τ

UA-Expansion
√

2 1 1 0.5 0.5 0.5 1 0.1

UA-Simulation 2 0.1
√

2 0.1 2 0.1 2 0.1
UA-MCTS 1 0.1 1 0.1 1 0.1 0.5 0.1
MCTS Corrupted Model 2 NA 2 NA 2 NA 2 NA
MCTS True Model 0.5 NA 0.5 NA 0.5 NA 0.5 NA

Table 3.2: Best exploration constant c and temperature parameter τ in the
Space Invaders environment. The first column presents the best hyperparam-
eters for the offline scenario and the other 3 columns present best hyperpa-
rameters for the online scenario.

The reason is that choosing action “None” in the five corrupted positions have

a high uncertainty and UA-MCTS tends to this. Moreover, UA-Expansion

and UA-Simulation outperform MCTS Corrupted Model.

Online Scenario

Figure 3.7 present the performance of UA-Expansion, UA-Simulation, and

UA-MCTS for different βs in the Freeway environment for the online scenario.

The best exploration constant c and temperature parameter τ are provided in

Table 3.3.

UA-Expansion and UA-MCTS performed better than MCTS Corrupted

Model, but they could not achieve MCTS True Model performance. Also,
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Figure 3.6: Performance of UA-Expansion, UA-Simulation, UA-MCTS, and
two MCTS baselines in the Freeway environment in the offline scenario. Each
error bar shows ± standard deviation.

their performance did not improve with a higher β. UA-Simulation performed

better than MCTS Corrupted Model with β = 1000 and 7000, but not did it

improve the performance with β = 3000.
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Figure 3.7: Performance of UA-Expansion, UA-Simulation, UA-MCTS, and
two MCTS baselines for different βs in the Freeway environment in the online
scenario. Each error bar shows ± standard deviation.

3.2.5 Breakout

Offline Scenario

Figure 3.8 presents the performance of MCTS and its components UA-Expansion,

and UA-Simulation. The best exploration constant c and temperature param-
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Offline β =1K β =3K β =7K
c τ c τ c τ c τ

UA-Expansion 1 0.1 1 0.5 2 0.1 2 0.1

UA-Simulation
√

2 0.5
√

2 0.5
√

2 0.1 1 0.1

UA-MCTS 2 0.1 2 0.1
√

2 0.1 1 0.1

MCTS Corrupted Model
√

2 NA
√

2 NA
√

2 NA
√

2 NA

MCTS True Model
√

2 NA
√

2 NA
√

2 NA
√

2 NA

Table 3.3: Best exploration constant c and temperature parameter τ in the
Freeway environment. The first column presents the best hyperparameters for
the offline scenario and the other 3 columns present best hyperparameters for
the online scenario.

eter τ are provided in Table 3.4.

MCTS Corrupted Model performance degrades significantly in comparison

to MCTS True Model. UA-Expansion and UA-MCTS performed much better

than the MCTS Corrupted Model. Moreover, UA-MCTS achieved the perfor-

mance of MCTS True Model. However, UA-Simulation could not improve the

performance of MCTS Corrupted Model.
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Figure 3.8: Performance of UA-Expansion, UA-Simulation, UA-MCTS, and
two MCTS baselines for different βs in the Breakout environment for the online
scenario. Each error bar shows ± standard deviation.

Online Scenario

Figure 3.7 present the performance of our approach for different βs in the

Breakout environment for the online scenario. The best exploration constant

c and temperature parameter τ are provided in Table 3.4.
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UA-Simulation did not improve the performance of MCTS Corrupted Model.

UA-Expansion and UA-MCTS performed better than MCTS Corrupted Model,

but there is a huge gap between their performance and performance of the

MCTS True Model. Since these algorithms performed much better with the

perfect uncertainty in the offline scenario, we hypothesise that the gathered

buffer does not have sufficient samples. We compared the number of unique

samples in the Space Invaders, Freeway, and Breakout environments. The

buffer gathered in the Space Invaders and Freeway environment has more than

90% unique samples, whereas it consists of less than 20% unique samples in

the Breakout environment. Therefore, the uncertainty learned poorly.
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Figure 3.9: Performance of UA-Expansion, UA-Simulation, UA-MCTS, and
two MCTS baselines for different βs in the Breakout environment in the online
scenario. Each error bar shows ± standard deviation.

Offline β =1K β =3K β =7K
c τ c τ c τ c τ

UA-Expansion
√

2 0.1 1 0.1 0.5 0.1 2 0.5
UA-Simulation 2 0.5 1 0.1 1 0.1 0.5 0.5

UA-MCTS
√

2 0.1 2 0.9
√

2 0.1 1 0.1
MCTS Corrupted Model 0.5 NA 0.5 NA 0.5 NA 0.5 NA
MCTS True Model 2 NA 2 NA 2 NA 2 NA

Table 3.4: Best exploration constant c and temperature parameter τ in the
Breakout environment. The first column presents the best hyperparameters
for the offline scenario and the other 3 columns present best hyperparameters
for the online scenario.
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3.2.6 Scaling Experiments

In this section, we scale the experiments we described in Sections 3.2.3 - 3.2.5

by scaling NI .

Figures 3.10-3.12 present performance of MCTS baselines with different NI

in the three environments. We observe that performance MCTS True Model

improves with a higher NI in all the three environments and is always better

than MCTS Corrupted Model. Performance of MCTS Corrupted Model does

not improve after certain value of NI which suggests that using a higher NI

in MCTS when the model is imperfect does not improve the performance.
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Figure 3.10: Performance of MCTS True Model and MCTS Corrupted Model
for different NIs in the Space Invaders environment. Each error bar shows ±
standard deviation.

Figures 3.13-3.15 present performance of UA-MCTS for the offline and

online scenarios with different NIs in the three environments. We observe

that in the offline scenario the performance of UA-MCTS improves with a

higher NI in all the environments. In the online scenario, the performance

of UA-MCTS improves with a higher NI in the Space Invaders and Freeway

environments, but not in the Breakout environment. The reason is that the

uncertainty learned poorly in the Breakout environment as we explained in

Section 3.2.5. Therefore, the performance of UA-MCTS does not improve

with a higher NI in the Breakout environment.
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Figure 3.11: Performance of MCTS True Model and MCTS Corrupted Model
for different NIs in the Freeway environment. Each error bar shows ± standard
deviation.

3.3 Chapter Summary

Our results show that baseline MCTS suffers from severe performance degra-

dation in the face of model uncertainty. Also, UA-MCTS outperforms MCTS

for imperfect models. It can recover from performance degradation, or at

least lessen its effects when used in conjunction with a learned uncertainty

estimate. The precision of the learned uncertainty model used by UA-MCTS

has a very strong effect on agent performance. Moreover, we observed that

UA-Expansion can restore MCTS performance, but UA-Simulation failed to

do in some of the cases. The reason is that UA-Simulation does not prevent

building a tree within the uncertain parts. It adjusts the sampled values.

UA-Simulation needs to combine with other components to improve MCTS

performance.
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Figure 3.12: Performance of MCTS True Model and MCTS Corrupted Model
for different NIs in the Breakout environment. Each error bar shows ± stan-
dard deviation.
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Figure 3.13: Performance of UA-MCTS in the offline and online scenarios for
different NIs in the Space Invaders environment. Each error bar shows ±
standard deviation.
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Algorithm 10 UA-Backpropagation Algorithm.

Parameter: temperature τ for softmax

function UA-Backpropagate(v, value)

while v is not NULL do

N(v)← N(v) + 1

α =
e−Û(v)/τ∑

n∈Ch(Par(v))
e−Û(n)/τ

Q(v)← Q(v)+ α ·value
value← value · γ +R(v)

v ← Par(v)

end while

end function

function UA-Select(v)

while v is expanded do

for vi ∈ Ch(v) do

for vj ∈ Ch(vi) do

αj =
e−Û(vj)/τ∑

n∈Ch(vi)
e−Û(n)/τ

end for

di =
∑

vj∈Ch(vi)
N(vj) · αj

end for

v ← argmax
vi∈Ch(v)

Q(vi)
di

+ c
√

lnN(v)
N(vi)

end while

return v

end function
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Figure 3.14: Performance of UA-MCTS in the offline and online scenarios for
different NIs in the Freeway environment. Each error bar shows ± standard
deviation.
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Figure 3.15: Performance of UA-MCTS in the offline and online scenarios for
different NIs in the Breakout environment. Each error bar shows ± standard
deviation.
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Chapter 4

MCTS and DQN

Heuristics can improve the performance MCTS when the model of the envi-

ronment is misleading. In domains where RL methods can be applied, the

learned values from RL methods can be a good heuristic. When the model of

the environment is imperfect, the learned values from model-free RL methods

are preferable because the errors in the model do not affect their learning. In

this chapter, we study how to improve MCTS performance in the imperfect

model domain by using DQN. We call this method DQ-MCTS.

In Section 4.1, we describe our method to use DQN within MCTS. In

Section 4.2, we describe our experimental design to investigate the performance

of DQ-MCTS, and presents the results of the experiments.

4.1 DQ-MCTS

One strategy to make MCTS work with an imperfect model is to use the

learned values from model-free RL methods as a heuristic. We pretrain a

DQN as such a heuristic for MCTS. Since DQN learns the value of state-action

pairs without using the model of the environment, the errors in the model do

not affect the learned values. We present two methods, DQ-Expansion and

DQ-Simulation, which use learned DQN values in MCTS in Sections 4.1.1 and

4.1.2. The DQ-MCTS method uses both these techniques.

39



4.1.1 DQ-Expansion

Usually, MCTS uses the default value of 0 as the initial value for newly added

nodes. Using a heuristic to evaluate the newly added nodes can guide the

search when the random rollouts can result in erroneous values due to model

errors. To do that, we estimate a node’s initial value using a DQN. Algorithm

11 provides the pseudo-code of this method. More details are explained in

Kiarash [2].

Algorithm 11 DQ-Expansion Algorithm.

function DQ-Expand(v)

for ai ∈ A do

si, ri ← M̂(S(v), ai)

create a node vi with state si and reward ri

N(vi)← 0

Q(vi)← DQNValueFunction(si)

end for

return a random child of v

end function

4.1.2 DQ-Simulation

When a rollout of MCTS is performed, inaccuracies in the model compound

as the search goes deeper. To prevent this, one idea is to stop a rollout early

by choosing a lower maximum depth DS of each rollout, and use a heuristic

to evaluate the endpoint s. This heuristic should give an approximation of

the return value from the endpoint s if the rollout was not stopped early. In

DQ-Simulation, we use a DQN for such an evaluation. Algorithm 12 provides

the pseudo-code of this method.

4.2 Experiments: Design and Results

In this section, we present the details and results of the experiments for testing

the performance of DQ-MCTS when the model of the environment is imper-
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Algorithm 12 DQ-Simulation Algorithm.

function Simulate(s, depth)
for i← 1 to NS do

gi ← Rollout(s)
αi ←1/NS

end for

return
NS∑
i=1

αi ·gi
end function

function Rollout(s)
count← 0
rewards← 0
discount← 1
while s is not terminal & count < DS do

choose a random action a from A
s, r ← M̂(s, a)
count← count+ 1
rewards← rewards+ discount · r
discount← discount · γ

end while
if s is not terminal then

bootstrap← DQNValueFunction(s)
rewards← rewards+ discount · bootstrap

end if
return rewards

end function

fect. 1 We also investigate the performance of the DQ-Simulation component

independently. The experiments are done on the three modified environment

MinAtar environments [26] described in Section 3.2.1. To reduce random-

ness, we pretrain 30 independent DQN for each of the environments for 30000

episodes. We then choose 3 time points for each environment to sample DQNs’

value function. In Section 4.2.1, we describe more details of training DQNs and

sampling from them. We want to investigate the effect of DS on DQ-MCTS.

We use different DS to observe its effect on DQ-MCTS. We hypothesize that

a lower DS causes better results, because it uses the model less and prevents

compounding the model’s error.

1Implementation of the experiments can be found in https://github.com/

ualberta-mueller-group/imperfect_model_code.
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We test total number of eleven algorithms.

1-3) ”DQN-t” A greedy policy w.r.t. the learned value function by DQN

at time step t.

4) “True Model” MCTS is allowed to use M in its search.

5) “Corrupted Model” MCTS uses M̂ for all its planning.

6-11) All versions of DQ-MCTS work as follows: they use M̂ for all their

planning and a sampled DQN value function. The time step that the value

function is sampled from is attached to the label of the algorithm. The DQ-

MCTS versions labeled “DQ-Simulation” use the DQ modifications only for

this one component of MCTS, and use unmodified MCTS for the other three

parts. The “DQ-MCTS” version uses both DQ-Expansion and DQ-Simulation

enhancements.

For each combination of the environment, algorithms 4-11, and DS, we

perform a parameter sweep over the exploration constant c from the set c ∈

{0.5, 1,
√

2, 2} respectively for 5 runs for algorithms 6-11 and 30 runs for al-

gorithms 4-5. Since we have 30 independent DQN runs, the total number

of runs for algorithms 6-11 is be 150. The mean and standard deviation of

the best-performing configuration for each experiment is reported as the final

result.

Table 4.1 presents the hyperparameters we used in each environment. In

Sections 4.2.2 - 4.2.4, we show the experiment setup and results for each envi-

ronment.

Space Invaders Freeway Breakout

NI 10 100 100
DS [0, 5, 10, 20] [0, 5, 10, 25, 50] [0, 5, 10, 25, 50]
NS 10 10 10

Table 4.1: Search hyperparameters for the modified MinAtar environments.

4.2.1 Pretraining DQN

For each environment, we pretrain 30 DQN for 30000 episodes independently.

Each neural network representing the state-action value function in DQN is a
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fully connected neural network with two hidden layers with 64 units in each.

The target network update frequency is 1000, and the replay buffer size is

10000. The ε starts with 1.0 and decays with time linearly. We use a batch

size of 32 and the RMSProp optimizer with a step size of 0.00025. Figure 4.1

presents the learning curve of the DQNs for each of the three environments.
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Figure 4.1: Learning curve of DNQ for the Space Inavder, Freeway, and Break-
out environments. The shaded region shows ± standard deviation.

For each of the environments and each of the 30 runs, we sampled the

learned state-action value function for each DQN in episodes 1000, 2000, 3000,

5000, 7000, 10000, 15000, and 20000. Then we measured the performance of

each learned value function by running experiments using the greedy policy

with respect to that learned value function for 30 episodes. Figure 4.2 presents

the performance of the sampled value functions for each of the environments.
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Figure 4.2: The average performance of sampled DQN value function at
episodes 1000, 2000, 3000, 5000, 7000, 10000, 15000, and 20000 over 30
episodes for (a) Space Invaders, (b) Freeway, and (c) Breakout environment.
Each error bar shows ± standard deviation.

4.2.2 Space Invaders

For the Space Invaders environment, we sampled the learned value function by

each 30 DQNs at episodes 3000, 7000, and 20000. For each of these samples

and each DS ∈ [0, 5, 10, 20], we evaluate the performance of DQ-Simulation

and DQ-MCTS.

Figure 4.3 presents the performance of the greedy policy with respect to the

sampled value functions (DQN-3000, DQN-7000, DQN-20000), MCTS Cor-

rupted Model, MCTS True Model, DQ-Simulation, and DQ-MCTS. We ob-

serve that with a lower DS, DQ-Simulation and DQ-MCTS perform better.

When DS gets higher, there is a higher probability that the rollouts reach
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incorrect states. By evaluating that incorrect state using the learned value

function, even when the value for the incorrect states has no error, a wrong

value will be calculated for the rollout. Therefore, using a lower depth is pre-

ferred when we have a heuristic to estimate the value of the states, because

it prevents accumulating errors in the model. Also, a better learned value

function (from DQN at episode 20000), resulted in better performance of DQ-

Simulation and DQ-MCTS when DS is 0. But when DS is higher, the errors in

the model accumulate and the performance of DQ-Simulation and DQ-MCTS

is not good at all. In general, DQ-MCTS and DQ-Simulation with DS = 0

performed better than all the MCTS with a corrupted model. MCTS with

the corrupted model performed better with a higher DS. Although there are

errors in the model, MCTS could benefit by performing deeper rollouts.

The best exploration constant c is provided in Table 4.2.

DS = 0 DS = 5 DS = 10 DS = 20

MCTS Corrupted Model 2 1 0.5 0.5
MCTS True Model 2 1 2 2

DQ-Simulation 3K
√

2 1
√

2 2
DQ-Simulation 7K 0.5 2 2 0.5
DQ-Simulation 20K 1 2 1 1

DQ-MCTS 3K
√

2 2 2
√

2
DQ-MCTS 7K 0.5 2 0.5 2

DQ-MCTS 20K
√

2
√

2 2 1

Table 4.2: Best exploration constant c for each method for the Space Invaders
environment

4.2.3 Freeway

For the Freeway environment, we sample the value function learned by 30

DQNs at episodes 7000, 10000, and 20000. We evaluate the performance

of DQ-Simulation and DQ-MCTS using the sampled value functions for 5

runs for each DS ∈ [0, 5, 10, 25, 50]. Figure 4.4 presents the performance of

the greedy policy with respect to the sampled value functions, MCTS with

corrupted and true model, DQ-Simulation, and DQ-MCTS. We can observe

that Freeway is a hard task for DQN, but even with a poorly learned value
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Figure 4.3: The performance of DQN-3000, DQN-7000, DQN-20000, MCTS-
Corrupted Model, MCTS-True Model, DQ-Simulation and DQ-MCTS in the
Space Invaders environment for (a) DS= 0, (b) DS= 5, (c) DS= 10, and (d)
DS= 20. Each error bar shows ± standard deviation.

function, DQ-MCTS and DQ-Simulation with DS = 0 performed better than

all the MCTS with a corrupted model. Also, we can observe that using a

higher DS did not improve the performance of MCTS with a corrupted model,

DQ-Simulation, and DQ-MCTS due to the compounded error from the model.

Moreover, we can observe that a better learned value function results in higher

performance in DQ-Simulation and DQ-MCTS when DS is low (0 and 5). The

best exploration constant c is provided in Table 4.3.

4.2.4 Breakout

For Space Invaders, we sample the value function learned by 30 DQNs at

episodes 7000, 10000, and 20000. We evaluate the performance of DQ-Simulation
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DS = 0 DS = 5 DS = 10 DS = 25 DS = 50

MCTS True Model 2 2 2 2
√

2

MCTS Corrupted Model 2 2
√

2 1
√

2
DQ-Simulation 7K 2 2 2 2 1

DQ-Simulation 10K 1
√

2
√

2 2 1

DQ-Simulation 20K 1 2
√

2 0.5 1

DQ-MCTS 7K 2
√

2 1 2 0.5

DQ-MCTS 10K 2
√

2 0.5
√

2 2

DQ-MCTS 20K
√

2 1 2 2 2

Table 4.3: Best exploration constant c for each method for the Freeway envi-
ronment

and DQ-MCTS using the sampled value functions for 5 runs for each DS ∈

[0, 5, 10, 25, 50]. Figure 4.5 presents the performance of the greedy policy with

respect to the sampled value functions, MCTS with corrupted and true model,

DQ-Simulation, and DQ-MCTS. We can observe the same results as in the

Freeway environment. We can observe that DQ-MCTS and DQ-Simulation

with DS = 0 performed better than MCTS with a corrupted model. Again,

with DS = 0 better learned value function (the learned value function at

episode 20000) resulted in higher performance in DQ-Simulation and DQ-

MCTS. Also, we can observe that using a higher DS did not improve the

performance of MCTS with corrupted model significantly, and decreased the

performance of DQ-Simulation, and DQ-MCTS due to the compounded error

from the model.

The best exploration constant c is provided in Table 4.4.

DS = 0 DS = 5 DS = 10 DS = 25 DS = 50

True MCTS 2
√

2 1 2 2

Corrupted MCTS 2
√

2 2 0.5 0.5

DQExpansion 7K 0.5
√

2 0.5 1 0.5
DQExpansion 10K 0.5 0.5 1 2 2

DQExpansion 20K 1
√

2 0.5
√

2 1

DQMCTS 7K 1
√

2 1 0.5 1
DQMCTS 10K 1 1 0.5 2 2

DQMCTS 20K 2 2 0.5
√

2 0.5

Table 4.4: Best exploration constant c for each method for the Breakout en-
vironment
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4.3 Chapter Summary

We observed that DQ-Simulation and DQ-MCTS with a low DS perform bet-

ter than MCTS with an imperfect model. When DS is low, a better DQN

results in higher performance in DQ-Simulation and DQ-MCTS. Also, we ob-

served that when DS is high, due to the compounded error from the model,

more unrealistic states will be added to the tree. Evaluating these unrealistic

states does not help the performance of DQ-Simulation and DQ-MCTS. One

major drawback of the methods presented in this chapter is that none of them

achieved the performance of the best DQN.
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Figure 4.4: The performance of DQN-3000, DQN-7000, DQN-20000, MCTS-
Corrupted Model, MCTS-True Model, DQ-Simulation and DQ-MCTS in the
Freeway environment for (a) DS= 0, (b) DS= 5, (c) DS= 10, (d) DS= 25, and
(e) DS = 50. Each error bar shows ± standard deviation.
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Figure 4.5: The performance of DQN-3000, DQN-7000, DQN-20000, MCTS-
Corrupted Model, MCTS-True Model, DQ-Simulation and DQ-MCTS in the
Breakout environment for (a) DS= 0, (b) DS= 5, (c) DS= 10, (d) DS= 25,
and (e) DS = 50. Each error bar shows ± standard deviation.
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed UA-MCTS, an adaptation of the MCTS framework

to model uncertainty. In UA-MCTS, the selection, expansion, simulation, and

backpropagation steps of MCTS are modified so that they discourage search-

ing through parts of the model with high uncertainty. Moreover, we proposed

a method to learn the uncertainty of the model. We tested the performance

of the UA-MCTS framework on three modified MinAtar environments. The

results show that UA-MCTS can outperform MCTS, or at least lessen the

negative effects of model errors when used in conjunction with a learned un-

certainty estimate. The precision of the learned uncertainty model used by

UA-MCTS has a very strong effect on agent performance.

The UA-MCTS framework is not restricted to our method of learning the

model uncertainty. Learning a more accurate model is one direction for future

work. Moreover, an uncertainty model can be continually learned in the real

environment and used in UA-MCTS. We also leave such online learning as

future work.

We proposed the DQ-MCTS framework, a combination of MCTS frame-

work with DQN, a state of art model-free RL method. Since model-free RL

methods do not use the model of the environment, the errors in the model

do not affect their learned values. In DQ-MCTS, we used the learned value

function of a pretrained DQN as a heuristic in the MCTS framework. The

value function learned by the DQN is used to initialize the value of the newly

added nodes in the tree and also bootstrap from the last state in the rollouts.
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The results showed that DQ-MCTS can perform better than MCTS when the

model is imperfect, but it could not achieve the performance of the pretrained

DQN.

DQ-MCTS can use other value functions instead of the DQN learned value

function. Comparing different model-free RL methods for pretraining a value

function is another interesting future work. These value functions do not

need to be fixed and they can change while the agent is interacting with the

environment. Learning such an online value function also remains as future

work.
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