Partial Order Bounding: A new Approach to
Evaluation in Game Tree Search

Martin Miller

FElectrotechnical Laboratory, Umezono 1-1-4, Tsukuba, 305 Japan
Current address: Department of Computing Science, University of Alberta,
FEdmonton, Canada T6G 2F8

Abstract

In computer game-playing, the established method for constructing an evaluation
function uses a scalar value computed as a weighted sum of features. This paper
advocates the use of partial order evaluation, and describes an efficient new search
method called partial order bounding (POB).

Previous tree search algorithms using a partial order evaluation have attempted
to propagate partially ordered values through the search tree, which leads to many
problems in practice, such as the complexity of backing up sets of incomparable
evaluations. POB compares partially ordered values only in the leaves of a game
tree, and backs up boolean values through the tree. A closely related new algorithm,
linear extension partial order bounding (LE-POB), uses a standard scalar alpha-
beta search with values from a suitably chosen linear extension of the partial order
evaluation. As an application, the effectiveness of partial order evaluation is shown
in the case of modeling capturing races called semeai in the game of Go.

Key words: Game tree search, evaluation functions, partial order evaluation,
partial order bounding, computer Go, semeai

1 Evaluating and Comparing Game Positions in Game Tree Search

Researchers building game-playing programs based on minimax tree search
seek practical answers to the two main questions of when and how to evalu-
ate game positions. The usual answer to the question “When?” is: the later
the better. Although games with pathological behavior, where deeper search
is detrimental, have been studied extensively [29,31], in practice deep search
works very well, and yields programs that avoid most tactical and many strate-
gical mistakes.

Preprint submitted to Elsevier Preprint 26 February 2001



The standard answer to the second question, “How to evaluate?”, is to use a
scalar evaluation such as an integer or real number, which is computed as the
weighted sum of feature values } w;v;. Nonlinear feature combinators such as
neural networks [4,6,39,41] and a generalized linear evaluation model [9] have
also gained some popularity.

Individual evaluation features are usually designed by a programmer in in-
teraction with an expert player. Feature weights are carefully tuned using a
combination of engineering and automatic parameter tuning techniques [2].

The basic fixed-depth search scheme has some well-known weaknesses, such
as the horizon effect, and the large errors introduced by the static evalua-
tion of unstable positions. Furthermore, search tends to spend a lot of time
exploring obscure variations that no human would consider worth thinking
about. A large amount of theoretical and practical work has addressed these
weaknesses of the minimax search model, leading to refinements that mostly
address the question of which positions should be evaluated. The problem of
unstable positions is typically solved by not evaluating such positions at all,
and performing a quiescence search instead, in the hope of reaching states that
are easier to evaluate. A common-sense approach is to try to search interesting
variations deeper and less interesting variations less deeply. Search extensions
on one hand, and pruning methods based on the result of shallow searches
such as null move pruning [5] and ProbCut [8] on the other hand, are used for
this purpose.

This paper describes a different, more radical approach to the basic questions
of “when” and “how” to compare evaluations. Since many pairs of positions
are really incomparable from the limited knowledge and accuracy incorporated
in an evaluation function, it seems that forcing a comparison by mapping
all positions to the same numeric scale does more harm than good. From
this point of view, using only a partial ordering of positions seems to be a
natural approach. The main technical contribution of this paper is an efficient
method for combining partial order evaluation with minimax search. Partial
order bounding (POB) provides a way to use partial order position evaluation
in conjunction with any minimax-based search engine such as alpha-beta or
proof-number search.

The structure of this paper is as follows: Section 2 reviews the problem of
constructing an evaluation function for game tree search, points out some of
the problems with the usual approach of using a weighted sum of features, and
argues in favor of using partial order evaluation instead. Section 3 contains
the main contribution of the paper, a simple new method called partial order
bounding (POB) for search in game trees using partial order evaluations. It
is shown that with this method efficient search engines based on standard
methods such as alpha-beta or proof number search can be combined with the



higher expressive power of an evaluation function based on a partial order of
values. Subsection 3.3 introduces linear extension partial order bounding (LE-
POB) which performs a scalar alpha-beta search using values from a linear
extension of the partial order evaluation.

Section 4 studies some examples of partial order evaluation functions and sys-
tematic ways to construct new evaluations by modifying or combining existing
ones. Section 5 contains a case study and experimental results for partial or-
der evaluation in capturing races called semeai in the game of Go. Section 6
discusses several related previous search methods in detail, and Section 7 sum-
marizes the approach and discusses future work. The rules of Go are described
briefly in the Appendix.

2 Evaluation by a Weighted Sum of Features

In the standard model of computer game-playing, position evaluation is a
two step process. The first step maps a game position to an abstract rep-
resentation. A number of relevant attributes are computed and collected in
a high-dimensional feature vector v. Within such a vector, a single feature
value v; 1s usually simple: 0 or 1 to encode the truth value of a boolean pred-
icate, a small integer counting pieces of a specific kind in board games, or
a real number measuring influence, mobility, or the probability of achieving
some (sub-)goal in the game. Given a feature vector v, in the second step a
scalar-valued evaluation is computed as the weighted sum of feature values by
eval(v) = 3 w;v;.

2.1 Classical Weighted Sum Fvaluation Functions: Strengths and Weaknesses

To motivate the introduction of partial order evaluation, we first discuss the
strengths and weaknesses of the weighted sum evaluation scheme. For a re-
cent survey of other alternatives to standard alpha-beta minimax search and
evaluation, see Junghanns [18].

2.1.1 Strengths of Weighted Sum Fvaluation

The weighted sum approach to evaluation has been very successful in prac-
tice. It has proven to be a useful abstraction mechanism, with many desirable
properties, such as simplicity, and ease of use in efficient minimax-based algo-
rithms. Furthermore, in some games there is a natural mapping of positions to
a numerical evaluation, for example the expected number of captured pieces



in Awari or the balance of territory in Go. In games that end in a simpler
outcome such as win, loss or draw, a scalar evaluation can be interpreted as
a measure of the relative chance of winning. It has been shown [34] that even
if the final outcomes are restricted to only the two values win or loss, a more
fine-grained evaluation at interior nodes is beneficial.

A big advantage of scalar evaluations is that they can also be used for move
ordering. Good move ordering is essential for the speed of alpha-beta [19]. In
iterative deepening search, using the search result of the previous iteration
yields a move ordering that is often close to optimal [32].

Finally, scalar evaluation is quite robust against errors in the evaluation func-
tion as long as they are systematic. An evaluation function needs only relative
consistency for the positions that are compared with each other, it does not
require absolute accuracy of the values. In the case of a complex game with
relatively restricted moves, it is likely that within one search, many positions
are very similar to each other. If all but a few features are the same, then rel-
ative evaluation is reduced to comparing those few differing features. In such
a case 1t is easier for an evaluation function to be relatively consistent.

2.1.2  Criticizing the Weighted-Sum Approach

Despite the great success of the weighted sum approach to evaluation, the
method has quite a few weaknesses, and many of the methods discussed in
Junghanns’ survey [18] were designed to address such weaknesses. The main
drawback of using a single number for evaluation is that information is lost.
All kinds of features are weighted, added and compared, even those for which
addition and comparison do not really make sense. In the following we look
at a few of the ensuing problems.

2.1.2.1 Unstable Positions A simple, stable position and a highly dy-
namic, unstable one can end up with the same static evaluation, though their
semantics are very different. Highly unstable features such as passed pawns in
chess have no good static evaluation. Whichever way the weights are chosen,
the evaluation will be wrong in a large percentage of cases. The traditional
remedy is to not evaluate unstable positions and perform a quiescence search
to try to reach a stable position. Stable positions are considered ‘easy’ to
evaluate, while unstable ones are considered ‘hard’. Search extensions for qui-
escence search are usually decided by a feature vector which may contain other
features than the evaluation function.

Quiescence search cannot solve all problems of unstable features. In a case such
as passed pawns in chess, such features can remain on the board for a long



time. Shogi endgames often feature a large number of pieces left hanging while
both players launch an all-out attack on the opponent’s king. An example in
Go are large groups with unclear status, which are both difficult to attack and

hard to defend.

2.1.2.2 Long Term Strategic Features One problem of the weighted
sum model is that in games with a mix of short-term tactical and long-term
strategic features, it is difficult to maintain control over long-term features.
Human experts are admired for their ability to formulate long range plans,
follow them through many tactical complications and eventually make them
succeed. In a weighted sum evaluation, it is difficult to assign good weights
to such features. Giving them a big weight does not work, since it causes a
program to cling too strongly to such far-away goals and it will therefore lose
tactically. However, using small weights does not work either since small values
are very likely to get lost among the inevitable score fluctuations caused by
short-lived tactics.

From a strategic point of view, the program behavior resulting from a weighted
sum evaluation is not human-like. However, it is debatable whether that is a
good or a bad thing. The reduction of all tactical and strategical features of
a position to a single number does lead to flexible play, since all positions
with the same evaluation are treated equally by a program, no matter how
different they really are. It seems that following long-term strategies needs
to be modeled explicitly by a method outside the scope of weighted sum
evaluation.

2.1.2.3 Close-to-Terminal Positions Besides the problem of unstable
evaluations, another case where the loss of information resulting from con-
densing the feature vector into a single number is critical are positions that
can ‘almost’ be evaluated statically. In positions that have only a few distin-
guished destabilizing features, it makes sense to employ a simplest-first policy
and initially focus search on those moves that can be resolved exactly with
little work. In other words, if radical simplification leads to a sure win, there
is no need to search the complicated variations. Human players often use this
kind of reasoning, but standard search methods cannot take advantage of such
information even if it is contained in the evaluation vector.

2.2  Goals of Partial Order Fvaluation

The main goal of partial order evaluation is to make comparisons between
positions only when they are meaningful. In contrast, standard scalar eval-



uations are applied and used to compare positions regardless of whether the
underlying positions are comparable. By refraining from judgment in doubtful
cases, partial order evaluation aims at increasing the confidence in the validity
of better and worse judgments derived by search.

One major target are games with long-term strategic features, which are diffi-
cult to model by a weighted sum evaluation. Another suitable class of games
are those with partially decomposable positions, such as middle game posi-
tions in Go or Amazons. Such positions can often be split into one main part
and several independent small parts. The values of such small parts often in-
fluence a search of the main part in subtle ways that cannot be summarized
by a single number, but can be expressed in terms of a partial order bound,
which determines which of the possible search outcomes are overall wins. An
example of this kind of search in Go is studied in Section 5.

2.3  Problems of Using a Partial Order Fvaluation in Minimax Tree Search

When using partially ordered evaluations, the result of a search cannot be
just a single value from the partially ordered set. (We will sometimes use the
equivalent but shorter term poset for partially ordered set.) Computing min-
ima and maxima of such values is an ill-defined problem. A totally ordered
set such as the integers or reals is closed under the application of the opera-

tors min and max: if xq,...,x, are values from a totally ordered set T', then
both min(zy,...,2,) and max(z;,...,z,) are again elements of 7', with the
properties min(zy,...,z,) < z; and max(zy,...,z,) > z; for all 1 < < n.

Furthermore, the minimum and the maximum coincide with one of these val-
ues. For values from a partially ordered set, it is no longer possible to define
a min or max operator with these properties.

Several different approaches to overcome this fundamental problem have been
tried. In some special cases such as probability distributions, it is possible to
define meaningful min and mazx operators with similar but more restricted
properties. Another solution which works if the poset is a lattice is to define
the least upper (greatest lower) bound on a set of incomparable values as
the maximum (minimum) of these values. However, this approach obviously
loses information, and propagating such bounds by a tree backup makes the
approximation weaker and weaker. Another solution [12] is keeping track of a
set of nondominated sets of outcomes. However, this approach can lead to very
high complexity in the case when there are many incomparable values. A viable
search procedure seems to require extra assumptions, such as totally ordered
private preferences of the players. The method of Dasgupta, Chakrabarti and
DeSarkar [12], which uses such an approach, is discussed in more detail in
Section 6.1.



2./ Qutline of the Partial Order Bounding Approach

Partial order bounding retains the first step of constructing an evaluation
function from the scalar case, namely the mapping of a position to a high-
dimensional feature vector. Such a vector can in principle contain all details
of a position [9], but usually it involves some amount of preprocessing that
leads to an abstract representation of a game position. In complex games such
as chess and Go, the time used for computing good features dominates the
overall processing time.

The second construction step for evaluations is different from the scalar case:
instead of reducing the whole vector to a single scalar value, a partial order
is defined over the feature vectors, and this partial order is used for compar-
ing positions. In fact, the partial order bounding approach does not really
depend on the intermediate construction of a feature vector, it works for any
poset. A poset can be represented in other ways, such as an implicit function
representation with lazy evaluation, or in terms of other, more dynamic data
structures that are not easily mapped to a vector of fixed features [38].

3 Partial Order Bounding: A New Approach to Partial Order Search

As argued in the preceding section, partial order evaluations are potentially
useful since they are more expressive than scalar evaluations. One reason for
the fact that they have not been popular in game tree search so far seems to
be that previous partial order search methods have tried to back up partially
ordered values through the tree. Depending on the method used, this leads
either to potentially large sets of incomparable options, or to a loss of infor-
mation, or both. In addition, some methods are applicable only for restricted
types or specific representations of partial orders. See Section 6 for a detailed
discussion of previous work on search using partial order evaluations. Par-
tial order bounding (POB), as a new approach to partial order evaluation in
search, avoids such problems by separating the comparison of partially ordered
evaluations from the tree backup.

3.1 Null Window Search

Partial order bounding is based on the idea of null window searches, which
have already become very popular in search using scalar evaluation through
methods such as Pearl’s SCOUT [31] and Plaat’s MTD(f) [32]. Rather than

directly computing minimax values, null window search is used to efficiently



compute bounds on the game value. These searches are used to establish that
other moves are not better than the best known move in SCOUT, and to
discover the minimax value by a series of null window searches in MTD(f). An
important implementation detail of null window search is the use of fail-soft
alpha-beta [13], which can return a value outside the alpha-beta window in the
case that the search fails high or low. This method improves performance in
the case of re-search with a different window.

To summarize, the goal of null window search is to establish an inequality
between a given fixed bound and the unknown evaluation of a node. POB
extends this idea to the case of partial order evaluation.

3.2 Definition of Partial Order Bounding

This section formally defines partial order bounding. For completeness, the
required concepts from the theory of partially ordered sets are stated. Then
POB is defined as a method for using a poset P as an evaluation for a minimax-

based search method M.

3.2.1 Basic Definitions: Posets, Comparison Relations and Antichains

The definitions follow standard conventions. For more information on posets
see textbooks such as [35,42].

Definition 1 A partially ordered set or poset P is a set (also called P) to-
gether with a reflexive, antisymmetric and transitive binary relation <. The
dual relation > is defined by x > y <= y < x. Two elements x and y
of P are called comparable if x < y or y < x, otherwise x and y are called
incomparable. The relation x < y is defined by x <y < =<y A x #y,
and x > y is equivalent to y < x.

A poset is graphically represented by drawing its Hasse diagram, which is a
graph of the transitive reduction of the poset. A downward leading edge is
drawn between two elements x and y if and only if x > y and there is no
element z such that x > z > y.

Example 2 Figure 1 shows a poset P = {A,B,...,K}. In P, relations be-
tween elements such as J > F and K > C hold, but for example J and GG
are incomparable elements. This can be seen from the diagram since there is
neither an always downward leading path from J to G, nor one from G to J.

Definition 3 A nonempty subset A of P is called an antichain if and only if
any two distinct elements of A are incomparable.



Example 4 Figure 2 shows an antichain in P consisting of the two elements
E and G. Another example of an antichain would be {B,C,G}. Every one-

element subsel is also an antichain.

3.2.2  Defining a Partial Order Bound for Search

Antichain {E,G}

Fig. 2. Example of an antichain

o)
i

In the case of a partially ordered set P, a bound B C P can be given by an
antichain in P that describes the minimal acceptable outcomes a player wants
to achieve.

Definition 5 Given a partially ordered set P and an antichain B C P, the
success set of B in P is defined by S(B) = {x € P|3b € B : x > b}. The
failure set of B in P is the complement of the success set: F(B) = P — S(B).

The success set contains all values that are “good enough” with respect to the
given bound, while the failure set contains the remaining insufficient values.
Search is used to decide whether the first player can achieve a result = € S(B),
or whether the opponent can prevent this from happening.



Success set {E,G,H,|,J,K}

Failure set {A,B,C,D,F}

Fig. 3. Success set and failure set for the bound {F, G}

Example 6 Figure 3 shows the partition of P into success and failure sets by
the antichain bound {F,G} of Figure 2.

3.2.3 Partial Order Bounding

Definition 7 Given a posel P, an antichain B C P, and a minimazx lree
search method M that uses a boolean or other scalar evaluation, the search

method of partial order bounding POB(M, P, B) is defined as follows:

o Replace the leaf evaluation of M as follows: evaluate leaf nodes using the
partial order evaluation, resulting in a value v € P.

o Classify the outcome as success if v € S(B) and as failure otherwise.

o Back up the value success or failure through the tree by method M, using the
two totally ordered values success and failure with the ordering success >
failure.

Example 8 The example lree shown in Figure J is taken from Fig. 2(a) of
[12]. Leaves have been evaluated by pairs of integers. As the partial order-
ing, a vector dominance order (see Section 4.2.2) is used. In the diagram,
as usual squares represent MAX nodes and circles MIN nodes. For illustra-
tion, we consider the following two oul of the large number of possible bounds:
By =A{(5,7),(10,3)} and By = {(5,8),(6,4)}. In this example, MAX can ob-
tain the bound By but fails to obtain the bound B,. Leaf evaluations and backed
up values are shown in the figure, with a plus sign representing success and a
minus sign representing failure for MAX. Note that MAX would not succeed
by selecting a single-element subset of By in this example.

The partial order bounding approach separates the comparison of partially

10



Bli +

Bli + Bli -

(11.5) (5,7) (6.8) (7.3)
Bli + Bli + Bli + Bli -
B2: + Bz: - Bzi + B2: -

Fig. 4. Example of search using POB

ordered values from the value backup procedure in the tree or game graph. This
simplifies the computation compared with previous approaches, since there are
no sets of incomparable values that must be computed, stored, and backed up.
Still, the full power of partial order evaluation is available for making decisions
during the search, or rather for refraining from making doubtful decisions.

A big advantage of partial order bounding is that it can be combined with any
minimax-based search method, such as alpha-beta or proof-number search [1].
The new evaluation method can be added to a sophisticated state of the art
search engine with minimal effort. All search enhancements of such an engine
are automatically available to the new algorithm. Of course it must be checked
how well they work with a partial order evaluation in each case.

The following are the main differences between POB and previous partial
order search methods such as [12]:

e Comparison of partial order evaluations occurs only at leaf nodes. The eval-
uation is compared to a prespecified bound B, resulting in one of two out-
comes: success or failure. There is no backup of (sets of ) partial order eval-
uations through the search tree.

e POB requires an input parameter: a bound B in the form of an antichain
in P which separates the acceptable outcomes, called the success set, from
the unacceptable ones, the failure set.

e POB allows any representation of a partial order, not just vectors with a
partial order defined by vector dominance.

The selection of a suitable bound B depends on both the application domain
and the specific problem instance. In applications with exact partial order

11



specifications of possible solutions, such as some of the capturing races to
be described in Section 5, a single bound is sufficient to completely specify a
search problem. With a heuristic partial order evaluation function, an iterative
process can be used to test different bounds. In this respect, POB is compa-
rable to Plaat’s MTD(f), which uses a series of null window calls to find a
scalar minimax value. The big difference is that with partial order evaluation
there is no single best solution. Many different incomparable bounds may be
achievable for a given problem.

3.2.4  Combining Partial Order Bounding with Proof-Number Search Methods

Partial order bounding is a proof procedure: it backs up a boolean result. With
a small modification, POB can be used with the family of search methods
specialized for finding proofs and disproofs, such as proof-number search [1]
and its refinements. These search methods use not only the two values success
and failure but also a third value unknown. POB can be adapted accordingly
to use two bounds that separate the success and failure sets from a third
unknown set in the middle. Search repeatedly expands a most-proving node
with value in the unknown set, until a proof or disproof of the root within
the current success and failure bounds is obtained. Again, after a proof or
disproof is obtained, a new search with different bounds can be started. As in
[1], a heuristic initialization of proof and disproof numbers derived from the
partial order evaluation of leaf nodes can be used to direct the search towards
promising nodes.

3.3 LE-POB: Search Using Linear Extensions of a Partial Order

Linear extension partial order bounding (LFE-POB) is another, closely related
new search method that embeds POB within a standard integer-valued mini-
max search. Given a poset P and a bound B, LE-POB uses a suitable linear
extension K(P) as its evaluation for minimax search.

Definition 9 Given an n-element posel P, a linear extension, or extension
to a total order, of P is an order-preserving bijection between P and a sel of
n consecutive integers.

Remark: the usual definition uses the fixed set of integers {1,...,n}, but the
definition given above is more convenient for the purpose of defining LE-POB.

Given a poset P and an antichain B C P, a linear extension E(P) of P is

useful if it can separate the success set from the failure set. This is guaranteed
if the image of B, the set {E(b)|b € B}, consists of consecutive integers.

12



Definition 10 F(P) is dense with respect to B if and only if all elements
of B are mapped to consecutive integers. This is equivalent to the following

condition: For all x € P, minyep{E(b)} < F(z) < maxyep{F(b)} = z € B.

J>mOUrn'nG)I_c_><|'u

= N WHh OO N O

Fig. 5. Poset P and linear extension F(P)

Example 11 Figure 5 shows the poset P and one of ils linear extensions
E(P). In this example, E(P) is dense with respect to the bound By = {F, G},
which is mapped to successive numbers {6,7}. However, E(P) is not dense
with respect to By = {E, G}, since its image {5,7} has a gap al 6.

3.3.1 The LE-POB Algorithm

Definition 12 Given a poset P, an antichain B C P, a linear extension E(P)
that is dense with respect to B, and a fail-soft (see Section 3.1) alpha-beta based
minimax tree search method M for integer evaluations, linear extension partial

order bounding LE — POB(M, P, B, E(P)) is defined as follows:

Compute b = min{E(b;)|b; € B}, ub = max{E(b;)|b; € B}. Then perform
a search using M with initial window (Ib — 1,ub + 1) and integer-valued leaf
evaluation function E(P).

The outcome of a LE-POB search is related to the outcome of POB searches
in the following way:

(1) If the search does not fail low, then the initial bound B is achievable.
Furthermore, if the return value v is larger than (b it proves the smaller
success set S’ = {z € P|E(z) > v}. Therefore the stronger bound con-
sisting of the minimal elements of S is also achievable.

(2) If the LE-POB search fails low, the initial bound is not achievable. A
fail-soft return value v < [b disproves B and all other bounds for which
all elements are mapped to values above v.

13



It is possible to use null window search with (Ib— 1,1b) instead of ({b—1,ub+
1), but in this case, less information about possible smaller success sets is
computed.

3.3.2 Constructing a Suitable Linear Fxtension

Given a bound B, finding a suitable linear extension that is dense with respect
to B is easy:

(1) Determine S(B) and F(B) as in Definition 5. Partition P into the three
sets S(B)— B, B and F/(B) with the induced partial order on the subsets.

(2) Run a standard algorithm for generating a linear extension such as [36,43]
on each subset separately. The computation for B can be skipped since
the ordering provided by any permutation of the elements of an antichain
B is a linear extension.

(3) Concatenate the results, shifting the intervals if necessary so that they
are adjacent with F(B) lowest, B in the middle, and S(B) — B highest.

3.3.3 Searching Several Bounds Simultaneously

It is possible to use LE-POB with several bounds By, ..., B, simultaneously,
as long as the chosen linear extension is dense with respect to all of them, and
the alpha-beta window contains all the images. The different bounds can for
example represent a number of qualitative judgments, such as “about even”,
“a little better”, “a little worse”, “much better”, “sure win”, “disaster”, etc.

3.4 Search Control with Partial Order Fvaluation

To select bounds for POB, two cases must be distinguished: if the partial order
evaluation is exact, the bound needed to accomplish a specific goal is known
precisely. See Section 5 for the example of semeai in Go. In contrast, in a
heuristic partial order evaluation, there is no such predetermined bound.

With partial order evaluation, search control becomes an iterative process
involving a series of calls with progressively refined bounds. In this respect
it is similar to the MT search framework of Plaat et al. [32]. However, with
partial order evaluation the situation is less clear-cut than with scalar minimax
search, where search converges to a single minimax value.

Specifying a partial order bound can be compared to the way a human player
analyses a game position: he or she typically starts with a static position
analysis, then formulates possible goals and plans, and searches selectively

14



within the framework of these goals and plans, all the while avoiding clearly
bad positions and keeping an eye open for unexpected chances. If the initial
goals turn out to be unrealistic, search is restarted with lowered aspirations.
On the other hand, if the initial goals can be achieved, the player will strive
for a little extra.

In a game with long-term strategic features, many components of a bound
will remain the same from move to move. A natural choice of bound elements
are therefore those from the previous move, with refinements reflecting the
progress of the game since then.

How does POB address the problems of the weighted sum approach discussed
in Section 2.1.27 How can it handle unstable positions, long term strategies
and close-to-terminal positions? Unstable positions can be handled flexibly:
In good positions, the success set can be restricted to eliminate risks. On
the contrary, in bad-looking positions, bounds should exclude only the simple
inferior positions, in order to direct play towards greater complications. In a
similar manner, long term strategies and close-to-terminal positions can be
dealt with. Evaluations where a desirable long-term feature is missing can be
excluded from the success set, and a simplest-first search can be implemented
by choosing small success (or failure) sets containing only simple, clear position
evaluations.

4 Examples of Partial Order Evaluation Functions

Partially ordered sets offer a rich variety of possible structures, and their
theory has been thoroughly researched. However, the use of partial order eval-
uation in game tree search is not yet well understood. The aim of this section
is to start research in that direction by giving some examples of possible poset
evaluations.

4.1  Efficiency of Partial Order FEvaluation

Because scalars such as integers and reals are directly supported by current
hardware, it seems appropriate to start the discussion with the issue of ef-
ficiency of posets. Although results on many special cases are known, the
complexity of some basic algorithms for posets still remains unresolved [38].
For large posets, tradeoffs between storage and computation time must be
considered.

In POB, only a single operation on posets is needed: the comparison of one

15



value with a fixed antichain bound. If the bound has only a few elements, this
comparison can be conveniently expressed in terms of the primitive operation
of comparing two values. If a bound contains a large or infinite number of
elements, an efficient implicit test can still exist.

Example 13 Let a partial order evaluation be given by intervals over the
reals, with a comparison operator [x1,y1| > [22,y2] & 1 > 22 AN y1 > Ya.
Then the set B={[2—-0,246]|0 < § <1} of intervals with center 2 and
lower bound at least 1 is an antichain bound of infinite cardinality. However,
it is easy lo compare any given inlerval [x,y| against B by using the above
implicit definition of the set B.

4.1.1 Relative Cost of Scalar and Partial Order Fvaluation

At first sight, it seems unlikely that a partial order evaluation can be as ef-
ficient as integers or reals with their direct hardware support. However, for
a typical complex game, the cost of comparing evaluations will be negligible
compared to the cost of computing feature values. For this reason, many high
performance game-playing programs already employ lazy evaluation [15]. At
first, exact scores such as mate or repetition draws are detected. Next, only
a few important features with high weight are computed, and the contribu-
tion of the remaining features is estimated by bounds. If the bounds suffice
to cause a cutoff in the search, the time for computing the remaining fea-
tures is saved. The same idea of lazy evaluation can be used with posets. The
fine-grained comparison of partial order evaluations should allow at least com-
parable savings through lazy evaluation, and features which are not required
for comparing a position with the current bound need not be computed at all.

4.2 Partial Order Fvaluations that are Similar to Scalar Fvaluation

A number of partial orders can be constructed in a straightforward manner
from a given total order. We discuss the following cases:

e Exceptions: specific pairs of incomparable values

e Low-dimensional posets that can be represented by a small number of scalars

e Partial orders representing uncertainty about the true value of a scalar, such
as intervals, triples, and probability distributions

4.2.1  FEzceplions

Exceptions from a total ordering remove comparability for specific pairs of
values. For example, exceptions can be used to make values such as sure-draw

16



and balanced-active-position incomparable.

4.2.2  Small Scalar Vectors as Low-Dimensional Posets

The standard approach to evaluation in multiobjective search [37,14,12,11]
uses a m-dimensional vector of scalar values from domains Y7 ...Y,,. A partial
order on such vectors is defined by the following vector dominance relation:

y<y & y <yl Viel,...,m.

In partial order terminology, the poset defined by the vector dominance re-
lation is the direct (or cartesian) product of the totally ordered domains,

Vi®...0Y,.

In general, each poset P can be represented as the direct product of dim(P)
total orders, where dim(P) is the dimension of P [30]. However, it might be
intractable to find such a representation for a given poset. Practical algorithms
exist for posets of “modest size” [46], but no efficient general method is known.

4.2.3  Uncertain Scalar Values

Uncertainty about the true value of a scalar can be represented by a par-
tial order. Intervals, “fat values” such as triples containing a lower bound, a
realistic value and an upper bound [5], and probability distributions [3] are
prominent examples. Different kinds of partial orders can be defined over such
structures. One natural interpretation of an interval is as a pair of upper and
lower bounds on the unknown true value. The corresponding partial order is
a dominance order as in Section 4.2.2. Intervals can also be interpreted as
representing different kinds of probability distributions, such as triangular,
constant in the interval, as the points p £+ ko of a normal distribution over
the reals, and others. In the safest but weakest ordering, two values are com-
parable only if their ranges are disjoint. An example of a stronger ordering of
probability distributions is stochastic dominance [33].

Antichain bounds on intervals can be constructed for example by fixing the
lower bound, the upper bound, or some linear combination of the two such as
the center of the interval as in Example 13. In addition, a desired minimum
or maximum interval width can be specified. Bounds defined implicitly in
terms of a comparison function can contain a large or even infinite number of
elements, but they are typically very easy to compare with a given value.

17



4.3 Constructing New Partial Order Fvaluations From Old

Textbooks on partial orders such as [35] describe a number of methods for
constructing new posets from existing ones. All these techniques apply to
the problem of constructing a partial order evaluation. Some examples are
generating direct products of posets, with vector dominance as in Section
4.2.2 as a special case, as well as adding, deleting and merging values in a
poset.

4.3.1 Adding New Values to an Fvaluation

Completing a given evaluation An evaluation might be incomplete, since
it might not be applicable to all possible positions. In this case a special
value unknown can be added to the set of possible evaluations, which is
incomparable with all other values, except for sure wins and losses.

Adding bounds on values to a poset For each value € P, bound val-
ues can be added as new elements to the set. Let =¥ represent such an
unspecified value at least as good as z, ¥ > z, and let = stand for a
value worse-or-equal to x, = < z. A partial order over the extended set
PU{z*,z~} can be defined as the transitive closure of the partial order on
P plus the new relations 27 > z and z > z~.

4.4 Developing Partial Order Fvaluation Functions

There are several established ways to develop scalar evaluation functions, such
as knowledge engineering with the help of human experts and textbooks, anal-
ysis of games played by a program, and automatic weight tuning using training
samples from collections of test problems, master games, or minimax search
scores. Some of these techniques can be adapted to construct partial order
evaluation functions.

4.4.1 Knowledge Transfer from Human Experts

In knowledge engineering involving input from human experts, the step of
expressing expert knowledge in terms of numeric evaluations has always been
problematic. When developing a partial order evaluation, this step is no longer
necessary. Relative evaluations such as “better”, “worse”, or “unclear”, which
correspond more closely to an expert’s judgment, can be directly implemented
in a partial order.

18



4.4.2  Learning Partial Order Fvaluations

Constructing a partial order evaluation for a given set of elements can be
viewed as a learning problem. The task is to learn whether > y is true or false
for each pair of elements. There is a vast arsenal of classifier learning methods
that are applicable to this problem. See [22] for an overview of methods for
learning classifiers. The main problem is to assure that the learned classifier
is consistent, so that it really represents a partial order.

Example 14 Cohen, Schapire and Singer discuss “learning how to order
things” [10]. In their work, a relalive ordering between items is constructed
by means of a graph with weighted directed arcs. A weight represents the de-
gree of confidence that the first of two linked items is preferable to the second.
Such a directed graph does not necessarily represent a poset, since the orien-
tation of arcs might be inconsistent. However, if the graph is consistent, it
provides a parameterized representation of a family of posets. For each mini-
mum weight level w,,;,, the transitive closure of the subgraph consisting of all
edges with weight w > Wy, is a partial order. In [10], the method was applied
to the problem of ranking web pages according to their relevance, but it also
seems to be directly applicable to the construction of evaluation functions in
games.

4.4.3 Converting an Fristing Weighted Sum Fvaluation

A simple proposal for how to convert an existing scalar weighted sum evalua-
tion to a partial order is given by the following iterative method:

(1) Identify feature values and value combinations for which the value com-
parison is unstable and often overturned by deeper searches.

(2) Make unstable comparison instances incomparable in the partial order.

(3) Use the resulting new evaluation for tests, iterate steps (1) - (3).

(4) The remaining cases with high error rate indicate situations where new
evaluation features must be found.

5 Partial Order Evaluation of Capturing Races in the Game of Go

Q COOO

O 000
000 OQO®
b @b @

000 ceee

Fig. 6. Simple semeai with 3 against 2 liberties

19



Fig. 8. Semeai with big eyes and many liberties

This section contains a case study in which partial order evaluation is used
to model the state of capturing races or semeai in the game of Go. See the
Appendix for a brief explanation of the rules of Go, and definitions of the
terms block, liberty, capture and eye. For details on Go rules, see [7] or an
online source such as www.usgo.org.

A semeai is a race to capture. Both players try to be the first to capture the
opponent’s stones, in order to save their own stones. Figures 6 and 8 show
two examples of semeai situations. In the figures, by convention the stones on
the outside marked by a diamond are assumed to be safe by having enough
liberties outside the area shown. Such stones form the boundary of a problem
and are not considered as possible targets for capture. In a semeai problem,
players try to secure their own unmarked blocks of stones and try to capture
the opponent’s unmarked stones.

Example 15 Figure 6 shows a black block consisting of three stones that has

K

three liberties marked ‘a’, and a white three stone block that has two liberties

marked ‘b’. The surrounding large blocks are considered to be safe.

Black wins this race even if White plays first. Figure 7 shows one possible
continuation. After three mouves, both players have only a single liberty left,
but it is Black’s turn, and the move at ’a’ captures the three white stones and
wins the fight. Removing the white stones gives the adjacent black block three
new liberties and space that quarantees a connection to the safe black stones
below.

In semeai, an evaluation based on two incomparable features called liberty
count and eye status can be used to model the strength of each player’s posi-
tion. We will show that this partial order evaluation is more powerful than a
single scalar value.

Skill in analyzing capturing races is an important component of Go playing
strength for both humans and computer programs. Misjudging or misplaying a

20



semeal usually costs a large number of points and often decides a game. Tech-
niques for analyzing semeai have been developed centuries ago, and passed on
among Go players. Informal descriptions of semeai-related techniques, aimed
at human players, are available in Go books and articles [17,21]. For a formal
description and classification of semeai, and more discussion of game-specific
details, see [25].

In the cases studied here, there are only two possible outcomes: either one
player can win and take all the points in the local region, or with best play
both players end up coexisting in a so-called seki. In general, semeai can be
arbitrarily complex and involve many blocks of stones. The outcome of such
semeai can also be complex, with each player winning some part of the semeai
and losing the rest of the area. Semeai can also involve local move repetition
called ko. In such cases, the situation cannot be properly analyzed by minimax-
based searches alone. Techniques from combinatorial game theory are better
suited to evaluate such situations [26,27].

Two types of semeai problems are considered here. The problem instances
have been carefully selected to be challenging as semeai problems, yet avoid
many other difficulties of Go such as ko fights, ill-defined boundaries and other
non-local dependencies which typically appear in textbook problems designed
for human players.

The first type of problem can be solved statically by a partial order evalua-
tion. The second, more complex type of capturing races is solved by a search
using partial order bounding. In this type of semeai, the configuration of one
player’s stones is fixed, and the question becomes whether the second player
can obtain a sufficiently good combination of liberty count and eye status. Fig-
ure 14 in Section 5.4.1 shows some examples of this type of problem, which
occurs frequently in practice when one player does not have enough room to
make a living group but can counterattack against the opponent’s surround-
ing stones. In the examples, the exact winning condition for the second player
can be expressed by a partial order bound, and partial order bounding can
be used to search for a winning move. If no winning move exists, a different
bound can be used to determine whether coexistence in seki is possible.

5.1 Related Work on Analysis of Semeai

Techniques for analyzing and playing semeai have been known among Go
players for many centuries. See Hunter [17] for a detailed tutorial of semeai-
related techniques. The first concise description of the classical semeai formula
in a western language was given by Lenz [21]. Both of these earlier works were
written for a human audience and are not sufficiently precise and complete for

21



a computer implementation.

Landman [20] proposes a table-based algorithm for simple semeai involving
one block of each player. Both blocks are allowed to have either no eyes or
one single point eye. In similar fashion, Nakamura [28] analyses some cases
of semeai, including one instance where one player has two blocks. Neither
Landman’s nor Nakamura’s analysis is applicable in semeai with so-called big
eyes, such as the example in Figure 8. Furthermore, the correctness of their
basic semeai analysis methods depends on a rather large number of implicit
assumptions.

In [25] we developed the first formal description and classification of semeai,
including a number of technical conditions that must be fulfilled to ensure
that a semeai analysis is valid. The two main conditions restrict the structure
of empty areas and eyes to so-called plain liberty regions and plain eyes. The
paper [25] contains a more in-depth discussion of these important game-specific
details than is possible here.

5.2  Partial Order Semeat Fvaluation

In semeai, having many liberties is always a good thing. However, having an
eye is a second important factor that determines the relative strength of blocks
in a semeai. The contribution of an eye to one player’s strength in a semeai is
measured by the eye status, which is related to the size of the eye. Blocks with
no eye are assigned an eye status of 0. All blocks with so-called small eyes of
size 1, 2 or 3 behave the same way in a semeai and are therefore assigned an
eye status of 1. Larger eyes of size 4 to 7 all behave differently, and are assigned
their respective size as an eye status. There are no plain eyes larger than size
7. The possible values for eye status are therefore {0,1,4,5,6,7}. Having the
better eye status can be a huge advantage in a semeai in some cases, but it is
less important in other cases. For more details on semeai, see [17,25].

Example 16 Figure 8 shows a semeai where each of the players has sur-
rounded a small area. On the left, Black has surrounded four empty points
and a single white stone. On the right, White has surrounded a 2 x 2 area. In
this example Black has an eye status of 5 and White has an eye status of 4.

The number of liberties and the eye status together determine the relative
strength of a block in a semeai. However, they cannot be reduced to a single
scalar evaluation. Figure 9 shows the Hasse diagram of the partial order of
(liberty, eye status) pairs. To save space, the lines between vertically aligned
items are not drawn in the figure. For example, (14,0) > (13,0) and (6,5) >
(8,1), but (6,5) and (10, 1) are incomparable.

22



| :3.,'4/1() 5 —2,7

/13,1/114/ ’5/5,6
20T
L0 0 — 24— 65" 5%
100— i — 847 _ 55— ¢
90/ 9,1/ 7’4/ 4’5/1,6
80— Sl 64-" 3%
7.0 Z}/ 547 _ 25
60— S — 44" _ 15
et

- 3,1/ ’
0
1:0/ 1,1

0.0

Fig. 9. Partial order evaluation of (liberty, eye status) pairs

5.3 Using POB to Solve Semeai Problems

Fig. 10. A semeai search problem

Figure 10 shows a semeai at an earlier stage. The left side is the same as in
Figure 8, and contains a black block which has four liberties inside an eye with
an eye status of 5. Furthermore, there are two liberties shared between the
black and the large white block to its right. The eye status and liberty count
of the white block are not yet settled, indicated by the big question mark in
the open-ended area to the right of the white block. Search in this area can
be used to find out whether White can survive. By using game-specific semeai
knowledge [25], the minimal strength that the white stones must achieve in
a position with White to play can be specified by the partial order bound
B ={(9,0),(2,5)}. Figure 11 shows this bound and the corresponding success
set. A search can use partial order bounding with bound B to greatly constrain

23



the search space.

Fig. 11. Partial order bound and success set for semeai problem

5.4  FEzxperimental Results

We tested the idea of partial order evaluation and search using partial or-
der bounding in three experiments. The first two experiments compare the
semeal problem-solving capability of the new method against the technique
proposed by Landman [20]. The first experiment uses a set of basic semeai
examples to illustrate the power of a static evaluation function based on the
partially ordered features of liberty count and eye status. The second exper-
iment incorporates POB into a standard search framework in order to solve
more complex semeai instances, which cannot be solved statically by our tech-
niques. POB is compared to a search using Landman’s evaluation. The third
experiment is a practical test pitting our Go program FEzxplorer against two
of the leading commercial programs in full-board situations containing many
semeai problems.

5.4.1 FExperiments 1 and 2: Semeai Problem-Solving

Three methods labeled L1, .3 and POB are compared in these tests: L1 uses
Landman’s original semeai evaluation which recognizes semeai with single-
point eyes. L3 uses an improved Landman-style evaluation for all small plain
eyes up to a size of three points, which is the limit to where his method is

24



applicable. POB uses the static semeai evaluation based on the partial or-
dering of (liberty, eye status) pairs as in Figure 9. The implementation of all
three methods is identical in all other aspects, including search enhancements
such as iterative deepening and transposition tables. Most significantly, all im-
plementations share the same semeai move generator, which encodes a large
amount of Go-specific knowledge about which moves are equivalent, and which
moves are dominated by other moves in a semeai situation. For all three tested
methods, the current implementation runs at a speed of about 1000 semeai
evaluations per second on a Macintosh G4/450. A fully incremental imple-
mentation would probably be at least one order of magnitude faster. For more
Go-specific details on move generation and search, see [25].

To obtain a better measure of the relation between problem complexity and
solution effort, a series of intermediate search problems is obtained from each
original problem by considering the simplified semeai problem after each step
of one specific correct solution sequence. Problems starting near the end of the
solution sequence are typically much easier to solve than the original problem.
Each position is solved twice, once with Black moving first and once with
White moving first.

The node counts for solving simplified problems often show a strong odd/even
fluctuation. This is caused by the fact that the situation is unsettled in the
starting position and after an even number of moves, whereas after an odd
number of moves the situation favors the previous player. Therefore, odd and
even ply starting positions are listed in separate columns in the tables.

For each position the table contains two entries: the number of nodes searched
to solve the semeai problem if black moves first and if white moves first. For
example, in the results for problem B in Table 2, the entry 13/6 in row W9,
column L3 is read as follows: consider the semeai problem after move White
9 (W9) in the sample solution of problem B given in Figure 13. Using method
L3, this problem takes 13 nodes if Black moves first and 6 nodes if White
goes first (13/6). By comparison, the same problem takes 106/73 nodes with
method L1 and is solved statically by the partial order evaluation.

Figure 12 shows three semeai problems A, B and C. In problems A and B,
it 1s White’s turn, whereas in Problem C it is Black’s turn to play. Figure 13
shows sample solution sequences. and Tables 1, 2 and 3 the number of nodes
taken by the three solution methods.

These rather basic semeai clearly demonstrate the advantage of being able
to evaluate large eyes. Problem A, with a single eye of size 2, can be solved
statically by both POB and L3. L1 already requires search.

Problems B and C contain larger eyes of size 4 and 5, which are reduced to
small eyes only a few moves before the end. Only partial order evaluation

25



Q00®
CRO® CROR® 000O®
IO 6 14 010 IO 6 14 1010 090PCO®
EPO000® RBOO0O® 0100000
O0000RE® O000ORE® 110907100
E18]0]010] Lo) 1$10]0,0]0] Lo) 0000000
0000000 0000000 DRODDOO
RO00000 1610), Jololele) D000
OO 00 0000
9000 0000 OO
000 0000 Q000

Fig. 13. Sample solution sequences for problems A, B and C. Solution B: 13 at 1,
15 at 5, 16 at 3, 17 at 5. Solution C: 13 at 1, 15 at 3, 17 at 5, 19 at 3, 22 at 16, 23
at 5,24 at 1, 25 at 3

is able to solve these problems statically. In contrast, both L7 and L3 take
hundreds of nodes to solve problem B and thousands of nodes to solve problem

C.

The second experiment involves some more complex semeai that cannot be
solved statically by the partial order evaluation. In this experiment, search us-
ing partial order bounding is compared to search using Landman’s approach.
In problem D, none of the intermediate problems on the sample solution se-
quence can be solved statically by POB, so search must be used in each in-
stance. However, POB clearly outperforms L1 and L3 in all nontrivial situ-
ations. In problems E and F, only the original problem requires a search by
POB, and this search needs orders of magnitude less nodes than L1 and L3.

26



Start .1 L3 POB | Start I.1 L3 POB

W 13 2/2 static | static | B 12 29/6 static | static
W11 10/6 | static | static | B 10 | 127/22 | static | static
W9 28/22 | static | static | B 8 354/55 | static | static
W7 63/55 | static | static | B 6 781/113 | static | static
W5 | 123/113 | static | static | B4 | 1496/204 | static | static
W 3 | 216/204 | static | static | B2 | 1543/229 | static | static

W1 | 243/229 | static | static | Orig. | 1594/258 | static | static
Table 1
Results for problem A

Start L1 L3 POB | Start L1 L3 POB
W 17 2/2 static | static | B 16 9/5 static | static

W 15 9/2 static | static | B 14 9/14 static | static
W 13 | 20/14 | static | static | B 12 2/27 static | static
W11 | 35/2 2/2 | static | B10 | 84/73 2/6 static
W9 | 106/73 | 13/6 | static | B8 | 224/213 | 139/25 | static
W7 |225/213 | 31/25 | static | B 6 559/345 | 399/58 | static
W5 | 359/345 | 66/58 | static | B 4 594/374 | 434/75 | static
W 3 |390/374 | 85/75 | static | B 2 633/407 | 473/96 | static

W1 | 425/407 | 108/96 | static | Orig. | 676/444 | 516/121 | static
Table 2
Results for problem B

9.4.2  FEzxperiment 3: A Comparison With Commercial Go Programs

The partial order semeai module has been integrated into our Go program
FEzplorer [23]. For testing how the semeai knowledge of our program compares
to that of leading commercial Go programs, we constructed two full board
Go positions that contain a large variety of semeai positions. Starting from
these positions, shown in Figures 16 and 17, we played Explorer against two
recent world championship winning programs, The Many Faces of Go and
Go 4++. Fzxplorer is able to play these types of positions perfectly, but its
opponents made a number of serious mistakes. In most test games, Fxplorer
turned around several semeai that it should have lost in theory, and thereby
gained a large number of points over the game-theoretically optimal result,
which was determined by self-play. Detailed results are listed in Tables 7 and
8. The test positions and game records in SGF format are available on the
web at http://www.cs.ualberta.ca/“mmueller/cgo/semeai.html.

27



Start L1 L3 POB | Start L1 L3 POB
B 25 2/5 static | static | W 24 9/20 static | static
B 23 2/14 static | static | W 22 20/20 static | static
B 21 2/27 static | static | W 20 35/2 2/2 static
B19 | 20/44 20/5 | static | W18 |  54/2 9/2 | static
B 17 2/65 2/14 static | W 16 7T/ 20/20 static
B 15 54/90 54/27 | static | W 14 | 104/104 35/35 static
B 13 77/119 77/44 | static | W 12 | 135/135 54/54 static
B1l | 2/152 2/65 | static | W 10 | 346/630 | 132/513 | static
B9 246/475 | 213/189 | static | W 8 | 1292/1767 | 418/1396 | static
B7 873/1313 | 646/433 | static | W 6 | 1784/3028 | 627/2433 | static
B5 1222/1807 | 916/644 | static | W 4 | 1831/3083 | 662/2484 | static
B3 1265/1856 | 955/681 | static | W 2 | 1882/3142 | 701/2539 | static
B1 1312/1909 | 998/722 | static | Orig. | 1937/3205 | 744/2598 | static
Table 3
Results for problem C
Start L1 L3 POB Start L1 L3 POB
Wol| 22/2 18/2 18/2 | B20 | 12/44 2/32 | 2/32
W19 | 90/56 64/32 64/32 | B18 | 2/120 2/84 | 2/84
W 17 129/2 93/2 93/2 B 16 89/195 15/159 2/119
W15 | 261/205 222/153 175/113 | B 14 180/345 40/305 2/207
W 13 | 429/305 385/294 268/187 | B 12 285/537 77/490 2/306
W11 552/2 505/2 321/2 | B 10 | 383/764 | 126/717 | 2/365
WO | 740/686 | 766/704 | 459/334 | B8 | 532/897 | 187/915 | 2/509
W7 984 /745 1025/914 | 600/450 | B 6 691/1166 | 260/1196 | 2/656
W5 1242/933 | 1298/1199 | 757/580 | B 4 868/1449 | 345/1491 | 2/819
W3 | 1526/1135 | 1597/1500 | 930/724 | B 2 1063/1758 | 442/1812 | 2/998
W1 1827/1355 | 1924/1820 | 1119/882 | Orig. | 1272/2084 | 551/2161 | 2/1193
Table 4

Results for problem D

28



Y0V O@ODOO
CLLLLIL00000

Fig. 15. Sample solution sequences for problems D, E and F. Solution D: 13 at 7,
15at 9, 17 at a, 18 at 11, 19 at 7, 21 at 9. Solution E: 16 at 6. Solution F: 14 at a,
16 at 2, 18 at b, 21 at 35, 22 at 4, 23 at 6, 24 at a, 25 at 15, 26 at 2, 27 at 17, 28
at 19, 29 at 20, 30 at b, 31 at 4, 32 at a, 33 at 15, 34 at 17.

To summarize the experiments, by using partial order evaluation techniques
a large variety of basic semeai situations can be evaluated much earlier than
with previously proposed methods, and this ability leads to much more ac-
curate semeai play than the techniques currently used by leading commercial
programs.

5.5  Limilations of the Semeai Solver

The current semeai solver is limited in a number of ways:

e Each problem must be completely surrounded by a wall of safe stones. This
is a severe restriction, but the same precondition is currently required by
exact solvers for the domains of life and death problems [45] and endgames

29



Start L1 L3 POB | Start L1 L3 POB
W 19 5/2 static | static | B 18 20/9 static static
W 17 14/2 static | static | B 16 20/20 static static
W 15 27/2 static | static | B 14 2/35 2/2 static
W 13 | 178/146 28/14 | static | B 12 93/218 6/38 static
W 11 | 517/354 | 133/78 | static | B 10 273/533 25/143 | static
W9 | 1008/742 | 367/245 | static | B 8 429/1028 58/381 | static
W 7 | 1049/781 | 396/272 | static | B 6 460/1071 75/412 | static
W5 | 1094/824 | 429/303 | static | B 4 495/1118 96/447 | static
W3 | 1143/871 | 466/338 | static | B 2 534/1169 121/486 | static
W1 |1196/922 | 507/377 | static | Orig. | 5664/70072 | 465/2599 | 242/6
Table 5

Results for problem E

[24]. Wolf [44] discusses the issues involved in the generalization of a life and
death problem solver to handle “open-ended” problems. The same issues

arise in semeail.

e The solver cannot yet handle semeai that include ko fights. A full solution
to this problem seems to be outside the scope of minimax based search, as

Fig. 16. Full board semeai problem 1

discussed at the start of this section.

e The solver is much less efficient for eyes and liberty regions that do not fulfill
the strict conditions of plain eye and plain liberty regions [25]. In practice,
such areas are often equivalent to some plain eye or plain liberty region.
However, the current program does not contain any specialized knowledge
or local search methods for these cases, and therefore reverts to a brute

30



Start L1 L3 POB | Start L1 L3 POB
W 35 5/2 static static | B 34 20/9 static static
W 33 14/2 static static | B 32 20/20 static static
W 31 27/2 static static | B 30 2/35 2/2 static
W 29 44/20 5/20 static | B 28 2/54 2/9 static
W 27 65/2 14/2 static | B 26 7777 20/20 static
W 25 90/54 27/54 static | B 24 104/104 35/35 static
W23 | 119/77 44/77 | static [B22 | 2/135 2/54 | static
W 21 152/104 65/104 static | B 20 170/170 )77 static
W 19 189/2 90/2 static | B 18 209/209 104/104 static
W 17 230/170 119/170 static | B 16 252/252 135/135 static
W 15 275/209 152/209 static | B 14 299/299 170/170 static
W 13 2/1396 2/189 static | B 12 2/350 2/209 static
W11 1615/2286 1487/1359 | static | B 10 | 1007/2531 498/2029 | static
W9 11617/10397 | 11674/10176 | static | B 8 6851/11651 | 2482/11708 | static
W 7 | 20318/18891 | 20422/18743 | static | B 6 9462/20356 | 3335/20460 | static
W 5 | 20395/18966 | 20499/18818 | static | B 4 9529/20435 | 3390/20539 | static
W 3 | 20476/19045 | 20580/18897 | static | B 2 9600/20518 | 3449/20622 | static
W1 | 20584/19109 | 20672/18945 | static | Orig. | 5316/37363 | 5316/37457 | 174/6
Table 6
Results for problem F

Opponent B starts | Gain | W starts | Gain

Ezxplorer B+36 - | B+6 -

Many Faces (B) | W+103 | +139 | W85 +91

Many Faces (W) | B+53 +17 | B4+117 +111

Go j++ (B) W40 | 476 | W40 | +46

Go 4++ (W) B+116 +80 | B+129 | +123

Table 7

Results of full board semeai problem 1

force approach in such regions. Augmenting the partial order evaluation by
values representing upper and lower bounds as proposed in Section 4.3.1
would probably improve the performance dramatically in many of these
cases. For example, problem D in Figure 14 could be solved statically with
such a refined partial order evaluation.

31




Q
O

0000000000V

999946949

?ié

Fig. 17. Full board semeai problem 2

Opponent B starts | Gain | W starts | Gain
Explorer W-+9 - | W+69 -
Many Faces (B) | W+93 +84 | W73 +4
Many Faces (W) | B4+95 +104 | B+139 | 4208
Go 4++ (B) W+99 +90 | W+99 +30
Go 4++ (W) B+55 +64 | B4+51 +120

Table 8

Results of full board semeai problem 2

6 Related Work: Other Search Methods that Use Partial Order
Evaluation

This section surveys a number of previous search methods that make use of
partial order evaluation.

6.1 Multiobjective Search Methods

In the multiobjective approach to decision making, multiple potentially con-
flicting and incommensurate objectives are investigated simultaneously. Fach
single objective is evaluated by a scalar. All evaluations together form a vector,
and a dominance relation between vectors is defined as described in Section

4.2.2.
Multiobjective search has been studied by a number of authors [11,12,14,37].
The first multiobjective search method, multiobjective A* (MOA*), was de-

32



veloped by Stewart and White [37]. Given an OR-graph with vector-valued
edge costs, MOA* finds all nondominated paths from a start node to a given
set of goal nodes.

Harikumar and Kumar introduced an iterative deepening version of MOA*
called IDMOA* [14]. Dasgupta, Chakrabarti and DeSarkar developed a multi-
objective heuristic search method for AND/OR graphs and partial order game
tree search [11,12]. This method uses vector-valued leaf node evaluations, with
a partial order defined by the vector dominance relation.

Despite using a partial order for evaluation, the method of [12] crucially relies
on a total order, namely a players’ private preference. A player’s preference
¢ is a many-to-one mapping from the partially ordered set P to a number,
which preserves the partial order on P. A player knows only his or her own
preferences, and is indifferent regarding which of the outcomes among those
with the same preference ¢ are chosen. Sets of possible outcomes which are
incomparable in P are compared using the following procedure [12, p.240-241]:

Compare(Sy, Sy, @)
To compare sets of outcomes 57 and S5
on the basis of preferences ¢
1. If only 57 is empty, declare Sy as better.
Likewise, if only S5 is empty, declare Sy as better.
If both S; and S5 are empty then
select S7 or S5 randomly and declare it to be better
2. let z; be the worst outcome in S} and
x9 be the worst outcome in Sy based on ¢.
3. 1f x; and x, are of equal preference then
3.1 Drop all outcomes from S; and S; that are of
equal preference to
3.2 Goto [Step 1]
4. 1f x, is better than x5 based on ¢,
then declare S; as better
else declare Sy as better.

This approach to partial order evaluation needs a reasonably strong ordering
by the player’s preference ¢. If too many values are mapped to the same
preference the comparison breaks down. In the case studied in this paper,
where a player has no a priori preference between incomparable values, the
comparison of any two nonempty sets of outcomes degenerates to the final line
of step 1 in Compare(): random selection.

33



6.1.1 Comparison of Dasgupta, Chakrabarti and DeSarkar’s method with
POB

Despite sharing the common goal of using partial order evaluation in game tree
search, the approach of [12] and POB are very different in spirit. Dasgupta,
Chakrabarti and DeSarkar assume that players have distinct, totally ordered
private preferences. In contrast, in POB the partial order evaluation reflects a
lack of knowledge of the player about the correct evaluation. The player simply
cannot decide which option to choose and therefore prefers to avoid a decision
at this point, hoping that deeper search will lead to better opportunities to
make a meaningful comparison later.

In [12], backing up sets of nondominated options through the tree is expen-
sive. Sets of options must be compared with each other, converted from a
min-representation to a max-representation, and different kinds of dominated
options must be eliminated. The size of option sets can grow very large. For
example, in the case of 2-dimensional real-valued vectors, for each constant ¢
and each set of reals X the set {(z,c—z)|x € X} is an antichain of cardinality
| X|. In the case where there is a large number of incomparable options, the
algorithm of [12] has to enumerate all of them. Although it is difficult to really
compare the methods because of their different assumptions and goals, POB
seems to have a large advantage in terms of efficiency since it only needs to
propagate boolean values.

6.2 Barbara Huberman’s “Program to Play Chess End Games”

In her 1968 Ph.D. thesis “A Program to Play Chess End Games” [16] Bar-
bara Huberman develops a method that is similar to partial order evaluation.
Huberman’s work is a case study in knowledge engineering in the domain of
chess endgames. Starting from rules and examples in chess textbooks, she de-
velops evaluation rules which, in combination with shallow searches, guarantee
a program’s progress towards the goal of mating the opponent king. While not
always optimal in the sense of finding the shortest way to mate, the program
can find a win from every winning starting position in the endgames of king
and rook against king, king and two bishops against king, and king-knight-
bishop against king. Of course, on today’s hardware such endgames can be
exhaustively analyzed within a few seconds by means of retrograde analysis
[40]. However, it is interesting to compare Huberman’s search framework to

POB.
In the forcing tree model of [16], a predicate better(p,q) defined over game

positions is used to track the progress of the attacker. From a starting posi-
tion p with the attacker to play, search is used to build a forcing tree ending

34



in defender-to-play positions ¢; where better(p,q;) holds for all ¢;. Iterative
deepening tree search is used to check whether a better position can be forced
at depth 1, 3, 5, and so on. The search tree is pruned using another predicate
worse(p, q), which recognizes failures and likely failures of the attacker.

For chess endgames, better and worse predicates are defined in terms of game
stages and substages, which represent high-level goals taken from textbooks,
such as pushing the opponent king to the edge of the board. Progress in this
model is defined as moving forward to the next (sub-)stage.

6.2.1 Comparison of Huberman’s Approach with POB

The basic better-worse framework of Huberman’s thesis can be regarded as
a partial order evaluation, and is quite close in spirit to POB. Instead of
explicitly defining search over partially ordered evaluations as in POB, a par-
tial ordering of positions is implicit in the properties of the predicates used.
The better and worse predicates lead only to a partial ordering of positions
since there are many pairs of positions p,q for which none of the relations
better(p, q), better(q,p), worse(p,q) or worse(q, p) hold.

A common feature of the forcing tree model and POB is that search is only
used to satisfice, not to optimize. Search stops at the first move recognized as
better, even though other, much better moves might exist. Similarly, POB does
not distinguish between the different evaluations within a success set. LE-POB
combines both satisficing and optimizing to some degree: it ensures a better
result if possible, but it is also able to search for much better evaluations which
are evaluated higher in the linear extension of the poset evaluation.

Huberman’s stage-substage model with its linear progress towards a single,
predefined goal is not as close to the spirit of POB. The strict definitions of
better and worse in terms of (sub-)stages guarantee progress only in well-
controlled, restricted domains such as the chess endgames studied. In the
POB model, there is no single prescribed direction of play. The framework is
flexible and allows different ways to make progress, within the limits of the
current partial order bound. Also, in Huberman’s model the better predicate
always compares positions to a single value, namely the evaluation of the
current position. POB has no such restriction, it allows any kind of partial
order bound, including bounds containing many incomparable values. Finally,
in the case that search with the initial bound fails, in POB it is possible to
re-search with a more modest bound.

35



6.3 Search Using Uncertain Scalar Values

Many game tree search methods model uncertainty about the true value of
a scalar evaluation by a probability distribution, or by a small set of scalars
representing for example optimistic, pessimistic and realistic evaluations. See
[3,18] for detailed discussions. Just like standard minimax search, these meth-
ods are based on the empirically well-founded assumption that deeper search
can be used to reduce uncertainty about the true value.

In contrast, POB does not assume the existence of a “true” scalar evaluation,
which can be discovered by a deeper search. The degree of uncertainty in
a position evaluation is modeled directly by the partial order. Searches are
tailored to test whether it is possible to achieve a given level of evaluation.

In POB, search is controlled by the bound defining the success set. If the
success set contains only high certainty evaluations, search goes deeper at
unclear situations. On the other hand, if the player to move is in an unfavorable
situation, the bound can be set in such a way that the success set includes
unclear positions, and therefore search is used to avoid clear losses.

7 Conclusion and Future Work

Partial order bounding (POB) is a simple but powerful new partial order game
tree search method. The method extends the idea of null window searches,
which test whether an evaluation better than a given bound can be achieved,
from the case of scalar evaluations to partially ordered sets, by using an an-
tichain bound that divides a poset into success and failure sets. POB has
been used to solve semeai problems in Go and validated by a comparison to
a standard alpha-beta search.

There are many promising directions for future work, to extend the ideas
developed in this paper:

e Build heuristic partial order evaluations for many specific games and apply
POB.

e Develop software tools for constructing efficient representations of partial
orders and bounds.

e Use the POB approach in single-agent search algorithms similar to IDMOA*
[14], and thereby extend the scope of this type of search methods to arbitrary
representations of partial orders.

e Use machine learning methods to learn partial order evaluations.

e Apply POB in the context of combinatorial game search.

36



7.1 Acknowledgements

A preliminary version of this research was presented at a talk at the AAAI
1999 Spring Symposium on Search Techniques for Problem Solving under Un-
certainty and Incomplete Information in Stanford. I would like to thank the
participants for useful comments, especially Murray Campbell for the exam-
ple of passed pawns as an unstable long-term feature in chess, and Richard
Korf who pointed me to Barbara Huberman’s Ph.D. thesis [16]. I also want
to thank my colleague Reijer Grimbergen at ETL for many discussions about
problems of evaluation in shogi and other games, and the anonymous referees
for their valuable suggestions on how to improve this paper, especially the
experimental section.

Appendix: The Rules of Go

This is only a very brief summary of the Go rules. For details, see [7] or an
online source such as www.usgo.org. Go is played between two players called
Black and White, who alternatingly place a stone of their own color on an
empty intersection on a square grid. Black plays first. The standard board has
19 x 19 lines, but smaller sizes are sometimes used. The goal of the game is
to control a larger area than the opponent, by placing stones such that they
surround empty points and unsafe opponent stones, and cannot be captured
by the opponent.

®
-9 @ - - 100
e s
|
[

! +b+

Fig. 18. The capturing rule

Stones of the same color connected horizontally or vertically form a unit called
a block. Empty points adjacent to a block are called liberties of the block. A
block is captured and removed from the board if its last liberty is occupied
by the opponent. Figure 18 shows two white stones with a single liberty at
‘a’. If Black plays there, the two white stones are captured and removed from
the board. If White plays on the same point first, the white stones have three
liberties at ‘a’, ‘b’ and ‘c’ and Black needs to fill all of them to capture the

37



three connected stones. Capturing and recapturing stones can potentially lead
to the infinite repetition of positions, which is forbidden by the rules. Players
can pass at any time; two or three consecutive passes end the game. An eye is
a (small) area surrounded by one player. The area can contain stones of both
colors and empty points. Blocks with two separate eyes are safe from capture.
Blocks with a single eye can still be captured, but they are often stronger than
blocks without an eye.

References

[1] L.V. Allis. Searching for Solutions in Games and Artificial Intelligence. PhD
thesis, University of Limburg, Maastricht, 1994.

[2] T.S. Anantharaman. Evaluation tuning for computer chess: Linear discriminant
methods. ICCA Journal, 20(4):224-242, 1997.

[3] E. Baum and W. Smith. A bayesian approach to relevance in game playing.
Artificial Intelligence, 97(1-2):195-242, 1997.

[4] J. Baxter, A. Tridgell, and L. Weaver. Experiments in parameter learning

using temporal differences. International Computer Chess Association Journal,
21(2):84-99, 1998.

[5] D. Beal. The Nature of Minimax Search. PhD thesis, Universiteit Maastricht,
1999.

[6] D. F. Beal and M. C. Smith. Temporal coherence and prediction decay in TD
learning. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI-99), pages 564-569, 1999.

[7] R. Bozulich. The Go Players Almanac. Ishi Press, Tokyo, 1992.

[8] M. Buro. Experiments with Multi-ProbCut and a new high-quality evaluation
function. Technical Report 96, NECI, Princeton, N.J., 1997.

[9] M. Buro. From simple features to sophisticated evaluation functions. In H.J.van
den Herik and H.lida, editors, Computers and Games: Proceedings CG’98.
LNCS 1558, pages 126-145. Springer Verlag, 1999.

[10] W.W. Cohen, R.E. Schapire, and Y. Singer. Learning to order things. Journal
of Artificial Intelligence Research, 10:243-270, 1999.

[11] P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Multiobjective heuristic search
in AND/OR graphs. Journal of Algorithms, 20(2):282-311, 1996.

[12] P. Dasgupta, P. Chakrabarti, and S. DeSarkar. Searching game trees under a
partial order. Artificial Intelligence, 82(1-2):237-257, 1996.

[13] J. Fishburn. Analysis of Speedup in Distributed Algorithms. PhD thesis,
University of Wisconsin, Madison, 1981.

38



[14] S. Harikumar and S. Kumar. Iterative deepening multiobjective A*.
Information Processing Letters, 58(1):11-15, 1996.

[15] E. Heinz. Efficient interior-node recognition. ICCA Journal, 21(3):157-168,
1998.

[16] B. J. Huberman. A Program to Play Chess End Games. PhD thesis, Stanford
University, 1968. Available from University Microfilms, Inc., www.umi.com, Nr.
69-8199.

[17] R. Hunter. Counting liberties, How to win capturing races. In R. Bozulich,
editor, The Second Book of Go, chapter 7 and 8. Kiseido, Tokyo, 1998.

[18] A. Junghanns. Are there practical alternatives to alpha-beta? ICCA Journal,
21(1):14-32, January 1998.

[19] D.E. Knuth and R.W. Moore. An analysis of alpha-beta pruning. Artificial
Intelligence, 6:293-326, 1975.

[20] H. Landman. Eyespace values in Go. In R. Nowakowski, editor, Games of No
Chance, pages 227-257. Cambridge University Press, 1996.

[21] K.F. Lenz. Die Semeai-Formel. Deutsche Go-Zeitung, 57(4), 1982.
[22] T. Mitchell. Machine Learning. McGraw-Hill, 1997.

[23] M. Miiller. Computer Go as a Sum of Local Games: An Application of
Combinatorial Game Theory. PhD thesis, ETH Ziirich, 1995. Diss. ETH Nr.
11.006.

[24] M. Miiller. Decomposition search: A combinatorial games approach to game
tree search, with applications to solving Go endgames. In IJCAI-99, pages
578-583, 1999.

[25] M. Miiller. Race to capture: Analyzing semeai in Go. In Game Programming
Workshop in Japan ’99, volume 99(14) of IPS.J Symposium Series, pages 61-68,
1999.

[26] M. Miiller. Generalized thermography: A new approach to evaluation in
computer Go. In J. van den Herik and H. lida, editors, Games in AI Research,
pages 203-219, Maastricht, 2000. Universiteit Maastricht.

[27] M. Miiller, E. Berlekamp, and B. Spight.  Generalized thermography:
Algorithms, implementation, and application to Go endgames. Technical Report
96-030, ICSI Berkeley, 1996.

[28] K. Nakamura. Graph theoretic analyses of Go board phases. In J. van den
Herik and H. lida, editors, Games in AI Research, pages 239-249, Maastricht,
2000. Universiteit Maastricht.

[29] D.S. Nau. Pathology on Game Trees revisited and an alternative to minimaxing.
Artificial Intelligence, 21(1-2):221-244, 1983.

39



[30] O. Ore. Theory of Graphs, volume 38 of Colloquium Publications. American
Mathematical Society, Providence, 1962.

[31] J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Wesley Publishing Company, 1984.

[32] A. Plaat, J. Schaeffer, W. Pijls, and A. De Bruin. Best-first fixed-depth minimax
algorithms. Artificial Intelligence, 87:255-293, 1996.

[33] S. Russell and P. Norvig. Artificial Intelligence: a Modern Approach. Prentice
Hall, 1995.

[34] A. Scheucher and H. Kaindl. Benefits of using multivalued functions for
minimaxing. Artificial Intelligence, 99:187-208, 1998.

[35] R. Stanley. FEnumerative Combinatorics Vol. 1. Number 49 in Cambridge
Studies in Advanced Mathematics. Cambridge University Press, 1997.

[36] G. Steiner. An algorithm to generate the ideals of a partial order. Operations
Research Letters, 5:317-320, 1986.

[37] B. Stewart and C. White. Multiobjective A*. Journal of the ACM, 38(4):775-
814, 1991.

[38] M. Talamo and P. Vocca. An efficient data structure for lattice operations.
STAM Journal on Computing, 28:1783-1805, 1999.

[39] G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves
master-level play. Neural Computation, 6:215-219, 1994.

[40] K. Thompson. Retrograde analysis of certain endgames. [CCA Journal,
9(3):131-139, 1986.

[41] S. Thrun. Learning to play the game of chess. In G. Tesauro, D. Touretzky, and
T. Leen, editors, Advances in Neural Information Processing Systems (NIPS)
7. MIT Press, 1995.

[42] W. Trotter. Combinatorics and Partially Ordered Sets. Dimension Theory.
Johns Hopkins University Press, Baltimore, 1992.

[43] Y. Varol and D. Rotem. An algorithm to generate all topological sorting
arrangements. The Computer Journal, 24:83-84, 1981.

[44] T. Wolf. About problems in generalizing a tsumego program to open positions.
In H. Matsubara, editor, Game Programming Workshop in Japan 96, pages
20-26, Computer Shogi Association, Tokyo, Japan, 1996.

[45] T. Wolf. Forward pruning and other heuristic search techniques in tsume go.
Information Sciences, 122:59-76, 2000.

[46] J. Yanez and J. Montero. A poset dimension algorithm. Journal of Algorithms,
30:185-208, 1999.

40



