
An Improved Safety Solver for Computer Go

Xiaozhen Niu and Martin Müller

Department of Computing Science
University of Alberta
Edmonton, Canada

�xiaozhen,mmueller�@cs.ualberta.ca

Abstract. Most Go-playing programs use a combination of search and heuristics
based on an influence function to determine whether territories are safe. However,
to assure the correct evaluation of Go positions, the safety of stones and territories
must be proved by an exact method.
The first exact algorithm, due to Benson [1], determines the unconditional safety
of stones and completely surrounded territories. Müller [3] develops static rules
for detecting safety by alternating play, and introduces search-based methods.
This paper describes new, stronger search-based techniques including region-
merging and a new method for efficiently solving weakly dependent regions. In
a typical final position, more than half the points on the board can be proved safe
by our current solver. This almost doubles the number of proven points compared
to the 26.4% reported in [3].

1 Introduction

This paper describes recent progress in building a search-based solver for proving the
safety of stones and territories. The main application is late in the game, when much of
the board has been partitioned into relatively small areas that are completely surrounded
by stones of one player. In previous work [3], the analysis of such positions was done
by a strict divide and conquer approach, analyzing one region at a time. The current
solver implements several techniques that relax this strict separation approach. One
technique merges several strongly related regions into a single one for the purpose of
search. Another technique deals with how to separately search a set of weakly dependent
regions in order to prove the safety of the union of all these regions.

This paper is organized as follows: the remainder of the introduction describes the
terminology and previous work. Section 2 provides a formal framework for the safety
prover, and Section 3 describes the solver: It gives an overview of the steps in the
proving algorithm, describes the new technique of region merging and introduces the
concept of weakly dependent regions. Section 4 deals with search enhancements, and
Section 5 describes the experimental setup and results, followed by conclusions and
future work in the final section.

1.1 Preliminaries: Terminology and Go Rules

Our terminology is similar to [1, 3], with some additional definitions. Differences are
indicated below. A block is a connected set of stones on the Go board. Each block has

2

a number of adjacent empty points called liberties. A block that loses its last liberty is
captured, i.e. removed from the board. A block that has only one liberty is said to be in

atari. Figure 1 shows two black blocks and one white block. The small black block �
contains two stones, and has five liberties (two marked A and three marked B).

Given a color �, let ��� be the set of all points on the Go board which are not of
color �. Then a basic region of color � (called a region in [1, 3]) is a maximal connected
subset of ���. Each basic region is surrounded by blocks of color �. In this paper,
we also use the concept of a merged region, which is the union of two or more basic
regions of the same color. We will use the term region to refer to either a basic or a
merged region. In Figure 1 � and � are basic regions and � �� is a merged region.

We call a block � adjacent to a region � if at least one point of � is adjacent to
one point in �. A block � is called interior block of a region � if it is adjacent to �

but no other region. Otherwise, if � is adjacent to � and at least one more region it is
called a boundary block of �. We denote the set of all boundary blocks of a region � by

�����. In Figure 1, the black block � is a boundary block of the basic region � but
an interior block of the merged region � � �. The defender is the player playing the
color of boundary blocks of a region. The other player is called the attacker.

� � � �
� � A A � �
� B � � B �
� B B � � �
� � � � � �

Fig. 1. Blocks, basic regions and merged regions.

Our results are mostly independent of the specific rule set used. As in previous work
[1, 3], suicide is forbidden. Our algorithm is incomplete in the sense that it can only find
stones that are safe by two sure liberties [3]. This excludes cases such as conditional
safety that depends on winning a ko, and also less frequent cases of safety due to double
ko or snapback. The solver does not yet handle coexistence in seki.

1.2 Previous Work on Safety of Blocks and Territories

Benson’s algorithm for unconditionally alive blocks [1] identifies sets of blocks and
basic regions that are safe, even if the attacker can play an unlimited number of moves
in a row, and the defender never plays. Müller [3] defines static rules for detecting safety
by alternating play, where the defender is allowed to reply to each attacker move. [3]
also introduces local search methods for identifying regions that provide one or two sure
liberties for an adjacent block. Experimental results for a preliminary implementation

3

in the program Explorer were presented for Benson’s algorithm, static rules and a 6 ply
search.

Van der Werf implemented an extended version of Müller’s static rules to provide
input for his program that learns to score Go positions [5]. Vilà and Cazenave developed
static classification rules for many classes of regions up to a size of 7 points [6]. These
methods have not been implemented in our solver yet.

1.3 Contributions

The main contributions of this paper are:

– A new method to merge regions and a search technique to prove that a merged
region provides two sure liberties.

– A new divide-and-conquer analysis of weakly dependent regions.
– A greatly improved �� search routine for finding 2-vital regions (defined in Section

2.1), with improvements in move ordering, evaluation function, and pruning by
recognizing forced moves.

– An improvement that takes external eyes of boundary blocks into account during
the search.

2 Establishing the Safety of Blocks and Territories

2.1 Definitions

The following definitions, adapted from [3], are the basis for our work. They are used
to characterize blocks and territories that can be made safe under alternating play, by
creating two sure liberties for blocks, and at the same time preventing the opponent
from living inside the territories. During play, the liberty count of blocks may decrease
to 1 (they can be in atari), but they are never captured and ultimately achieve two sure
liberties.

Regions can be used to provide either one or two liberties for a boundary block.
We call this number the Liberty Target �	 ��
 �� of a block � in a region �. A search is
used to decide whether all blocks can reach their liberty target in a region, under the
condition of alternating play, with the attacker moving first and winning all ko fights.

Definition: Let � be a region, and let ����� � ���
 � � �
 ��� be the set of boundary
blocks of �. Let �� � �	 ���
 �� , �� � ��
 ��, be the liberty target of �� in �. A defender
strategy
 is said to achieve all liberty targets in � if each �� has at least �� liberties in
� initially, as well as after each defender move.

Each attacker move in � can reduce the liberties of a boundary block by at most one.
The definition implies that the defender can always regain �� liberties for each �� with
his next move in �. The following definition of life under alternating play is analogous
to Benson’s:

Definition: A set of blocks � is alive under alternating play in a set of regions � if
there exist liberty targets �	 ��
 �� and a strategy
 that achieves all these liberty targets
in each � � � and

�� � �
�

���

�	 ��
 �� � �

4

Note that this construction ensures that blocks will never be captured. Initially each
block has two or more liberties. Each attacker move in a region � reduces only liberties
of blocks adjacent to �, and by at most 1 liberty. By the invariant, the defender has a
move in � that restores the previous liberty count. Each block in � has at least one
liberty overall after any attacker move and two liberties after the defender’s local reply.

It is easy to adapt this definition to the case where blocks have sure external liberties
outside of �. The sum of liberty targets for such blocks can be reduced to 1, if the block
has one sure external liberty, or 0, if the block is already safe.

Definition: We call a region � one-vital for a block � if � can achieve a liberty target
of one in �, and two-vital if � can achieve a target of two.

2.2 Recognition of Safe Regions

The attacker cannot live inside a region surrounded by safe blocks if there are no two
nonadjacent potential attacker eye points, or if the attacker eye area forms a nakade
shape. Our current solver uses a simple static test for this condition as described in [3].

3 Methods for Processing Regions

3.1 The Structure of the Safety Solver

Our safety solver includes the following sub-solvers:

Benson solver Implements Benson’s classic algorithm to analyze unconditional life.
Static solver Uses static rules to recognize safe blocks and regions under alternating

play, as described in [3]. No search is used.
1-Vital solver Uses search to recognize regions that are 1-vital for one or more bound-

ary blocks. As in [3] there is also a combined search for 1-vitality and connections
in the same region, that is used to build chains of safely connected blocks.

Generalized 2-Vital solver Uses searches to prove that each boundary block can reach
a predefined liberty target. For safe blocks, the target is 0, since their safety has
already been established using other regions. Blocks that have one external eye
outside of this region are defined as external eye blocks. For these blocks the target
is 1. For all other non-safe blocks the target is 2 liberties in this region. All the
search enhancements described in the next section were developed for this solver.
The 2-Vital solver in [3] could not handle external eye blocks, it would try to prove
2-vitality for all non-safe boundary blocks.

Expand-vital solver Uses searches to prove the safety of partially surrounded areas,
as in [3]. This sub-solver can also be used to prove that non-safe stones can connect
to safe stones in a region.

The basic algorithm of the safety solver is as follows:

1. The static solver is called first. It is very fast and resolves the simple cases.
2. The 2-Vital solver is called for each region. As a simple heuristic to avoid compu-

tations that most likely will not succeed, searches are performed only for regions
up to size 30.

5

3. The Expand-vital solver is called for regions that have some safe boundary blocks.
The safety of those blocks has been established by using other regions.
Our previous solver in [3] only used the steps so far.

4. (New) Region merging. After the previous steps, all the easy-to-prove safe basic
regions have been found. In this step the remaining unproven related regions are
merged. For each small-enough merged region (up to size 14 in the current imple-
mentation) the generalized 2-Vital solver is called. The mechanism is described in
detail in Section 3.2.

5. (New) Weakly dependent regions. A new algorithm deals with weakly dependent
regions. In this step both the 1-Vital solver and the 2-Vital solver are used. A de-
tailed description is given in Section 3.3.

6. (New) As in step 3, the Expand-vital solver is called for those regions for which
one or more new safe boundary blocks have been found.

3.2 Region Merging

One of the major drawbacks of our previous solver is that it processes basic regions one
by one and ignores the possible relationship between them. Figure 2 shows an example
of two related regions. The previous solver treats regions A and B separately, and neither
region can be solved. However the merged region � �� can be solved easily.

� � � � �
� � � � � �

� � � � � B � �
� � � � A � � � �
� � � �

Fig. 2. Two related regions.

The first algorithm step scans all regions and merges all related regions. Two regions
are defined as related if they have a common boundary block. After the merging step,
the 2-Vital solver is used to recognize safe merged regions.

This method can solve simple cases such as the one in Figure 2. However, since
merging all related regions usually creates a very large merged region, the search space
often becomes too large.

To improve the locality of search, we distinguish between strongly dependent re-
gions, which share more than one common boundary block, and weakly dependent re-
gions with exactly one common boundary block.

Our current solver uses a two-step merging process. In the first step, strongly depen-
dent basic regions are merged. In the second step groups of weakly dependent regions
are formed. A group can contain both basic regions and merged regions computed in
the first step. Figure 3 shows an example.

6

� � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � B � � � � � � E � � � � �
� � � � A � � � � � � � � � � � �
� � � C � � � D � � �
� � X � Y � F

Fig. 3. Strongly and weakly dependent regions.

In this figure, there are total of 6 related black regions A, B, C, D, E, and F. Since
the huge outside region contains surrounding white stones that are already safe, we do
not need to consider the huge outside region.

A complete merge of all six regions yields a combined new region with size 32,
which is too large to be fully searched. Two-step merging creates the following re-
sult: The first step identifies connected components of strongly dependent regions and
merges them. �, � and � are strongly dependent and are merged into a new region
�� � � � � � �. Next � and � are merged into �� � � � �. Region � is not
strongly dependent on any other region and is not merged. The second step identifies
weak dependencies between ��, �� and � and builds the group. �� and �� are weakly

dependent through block � , and �� and � are weakly dependent through block

� . The result is a group of weakly dependent regions ���
 ��
 �� with region sizes
of 15, 14 and 3 respectively. The regions within a group are not merged but searched
separately, as explained in the next section.

The common boundary block between two weakly dependent regions has both in-

ternal and external liberties relative to each region. For example, for block � and
�� � � � �, the liberty Y is internal and the liberty X is external.

3.3 Weakly Dependent Regions

We distinguish between two types of weak dependencies. In type 1, the common bound-
ary block has more than one liberty in each region. For example, in Figure 4 the shared
boundary block of regions A and B has more than 1 liberty in each region. In type 1
dependencies, our search in one region does not consider the external liberties of the
common block.

In type 2 weak dependencies, the common boundary block has only one liberty in at

least one of the regions. In Figure 3 black block � has only 1 liberty in both regions
�� and ��. We need to consider the external liberties for the common block because

7

� � � � � � � � � �
� � � � � � � � � �
� � � � � �
� � � A � B � �

� � � � � �
� � � � � � � � � �

� � � � � � � �
Fig. 4. First type of weakly dependent regions.

moves in one region might affect the result of the other. However, we do not want to
merge these two regions because of the resulting increase in problem size.

The pseudo code in Figure 5 describes the method for processing groups of weakly
dependent regions.

for each weakly dependent group �
if (total size of all regions in � � 14) // 14 is a constant determined empirically

�� = merge all regions in �;
call 2-vital solver for ��

else
for each region � � �

for each shared boundary block � between � and another region �� � �

do a 1-vital search for � in ��;
reduce liberty target for all successfully tested boundary blocks to 1
take unproven (1-vital search not successful) blocks as special blocks;
generate external moves for special blocks (for both attacker/defender);
call 2-vital solver for �.

Fig. 5. Search for weakly dependent groups.

3.4 Other Improvements to the Solver

The following further enhancements were made to the solver since the version described
in [3].

Improved static solver The static solver contains a more complete implementation of
the concepts in [3] than the preliminary version used in the 1997 experiments. Its

8

performance is about 3–4 % better on the same test set. See Section 5.1 for detailed
results.

External eyes of blocks If a boundary block of a region � has one sure liberty else-
where, this information is stored and used in the search for � by lowering the liberty
target for that block.

Time limit instead of depth limit The previous experiments used a fixed-depth 6 ply
search. The current solver uses a time limit instead, which allows it to search much
deeper.

4 Search Enhancements

4.1 Move Generation and Move Ordering

In this work, we focus on proving that a region and its boundary blocks are safe. There-
fore we have concentrated our efforts on generating and ordering the defender’s moves.
For the attacker, all legal moves in the region plus a pass move will be generated. When
processing weakly dependent regions as described in Section 3.3, extra moves outside
of the region might be generated for either attacker or defender. For details of this pro-
cedure please see [4]. The attacker is allowed to immediately recapture a ko. Therefore,
the attacker will always win a ko-fight inside a region.

The solver utilizes Explorer’s generic �� search engine which implements standard
move ordering techniques such as trying the best move from a previous iteration first
and killer moves. There is currently no game-specific move ordering or pruning for the
attacker. For the defender, the following safe forward pruning technique is used: When
a boundary block of a region is in atari, only moves that can possibly avert the captur-
ing threat, such as extending the block’s liberties or capturing the attacker’s adjacent
stones are generated. If no forced moves are found, all legal moves for the defender are
generated.

For ordering the defender’s moves, both a high priority move motivation detector
and a normal scoring system are used. The motivation detector analyzes the purpose of
the attacker’s previous move, and classifies the situation as one of three priorities:

1. The attacker’s move is close to one of the empty cutting points.
2. The attacker’s move extends one or more cutting blocks.
3. Other attacker moves.

For priority 1 and 2 positions, a set of high priority moves according to the attacker’s
motivation is generated first. For priority 1, most likely the attacker is trying to cut, so
the cutting points close to this move, as well as the cutting points’ 8 neighbor points,
have high priority. For priority 2, most likely the attacker is trying to expand its own
cutting block. Capturing this block is an urgent goal for the defender. Therefore, all
liberties of this block are given high priority. The number of adjacent empty points is
used to order liberties.

All moves in priority 3 positions and all remaining moves in priority 1 and 2 posi-
tions are sorted according to a score that is computed as a weighted sum

9

Move score � �� � LIB � �� � NDB � �� � NAB � �� � CB � �� � AP�

The formula uses the following features:

1. Liberties of this defender’s block (LIB).
2. Number of neighboring attacker’s blocks (NAB)
3. Number of neighboring defender’s blocks (NDB)
4. Capture bonus (CB): 1 if an opponent block is captured, 0 otherwise
5. Self-atari penalty (AP): -1 if move is self-atari, 0 otherwise

The following set of weights worked well in our experiments: �� � ��
 �� �
��
 �� � ��
 �� � ��
 �� � ���.

4.2 Evaluation Functions

Heuristic Evaluation Function The evaluation function in [3] used only three values:
proven-safe, proven-unsafe and unknown. Since most of the nodes during the search
evaluate to unknown, we can improve the search by using a heuristic evaluation to dif-
ferentiate nodes in this category. The heuristics are based on two observations:

1. An area that is divided into more subregions is usually easier to evaluate as proven-
safe for our static evaluation function.

2. If the attacker has active blocks with more than 1 liberty, it usually means that the
attack still has more chances to succeed.

Let NSR be the number of subregions and NAB be the number of the attacker’s
active blocks. Then the heuristic evaluation of a position is calculated by the formula

���� � �� � NSR � �� � NAB
 �� � ���
 �� � ���

Exact Evaluation Function The exact evaluation function recognizes positions that
are proven-safe or proven-unsafe. A powerful function is crucial to achieve good per-
formance. However, there is a tradeoff between evaluation speed and power. In our
evaluation function there are two types of exact static evaluations, HasSureLiberties()
and StaticSafe(). HasSureLiberties() is a quick static test to check whether all boundary
blocks of a region have two sure liberties and the opponent cannot live inside the region.
StaticSafe(), is a simplified static safety solver which takes the subregions created by
the search into account. Because it has to compute regions, StaticSafe() is much slower
than HasSureLiberties(). The relative speed of the two methods varies widely, but 5–10
times slower is typical. We use the following compromise rule: If the previous move
changes the size of a region by more than 2 points, then StaticSafe() is used. Other-
wise, the quicker HasSureLiberties() is used. In contrast, [3] used only a weaker form
of HasSureLiberties().

10

5 Experimental Setup and Results

The safety solver described here has been developed as part of the Go program Explorer
[2]. To compare the performance of our current solver with the previous solver [3], our
test set 1 is the same, the problem set IGS 31 counted from the Computer Go Test
Collection [2]. The set contains 31 problems. Each of them is the final position of a 19
� 19 game played by human amateur players.

We also created an independent test set 2. It contains 27 final positions of games
by the Chinese professional 9 dan player ZuDe Chen. Both sets are available at http:
//www.cs.ualberta.ca/˜mmueller/cgo/general.html.

All experiments were performed on a Pentium 4 with 1.6 GHz and a 64MB trans-
position table. The following abbreviations for the solvers and enhancements are used
in the tables:

Benson Benson’s algorithm, as in [3].
Static-1997 Static solver from [3].
Search-1997 Search-based solver, 6 ply depth limit, from [3].
Static-2004 Current version of static solver.
M1 A basic 2-liberties search, similar to the one in [3].
M2 M1 + consider external eyes of blocks as in Section 3.4.
M3 M2 + region merging method as in Section 3.2.
M4 M3 + move ordering and pruning as in Section 4.1.
M5 M4 + improved heuristic and exact evaluation functions as in Section 4.2.
M6 Full solver, M5 + weakly dependent regions as in Section 3.3.

5.1 Experiment 1: Overall Comparison of Solvers

Table 1. Search improvements in test set 1.

Version Safe points Safe blocks Safe regions
Benson 1,886 (16.9%) 103 (9.2%) 204 (25.4%)
Static-1997 2,481 (22.2%) 168 (15.0%) N/A
Search-1997 2,954 (26.4%) 198 (17.6%) N/A
Static-2004 2,898 (25.9%) 212 (18.9%) 321 (40.0%)
M1 4,017 (35.9%) 326 (29.0%) 404 (50.4%)
M2 4,073 (36.4%) 330 (29.4%) 406 (50.6%)
M3 5,029 (44.9%) 444 (39.5%) 495 (61.7%)
M4 5,070 (45.3%) 451 (40.2%) 498 (62.1%)
M5 5,396 (48.2%) 484 (43.1%) 519 (64.7%)
M6 (Full) 5,740 (51.3%) 523 (46.6%) 548 (68.3%)
Perfect 11,191 (100%) 1,123 (100%) 802 (100%)

Table 1 shows the results for all methods listed above for test set 1. The set contains
31 full-board positions with a total of 31 � (19 � 19) = 11,191 points, 1,123 blocks

11

and 802 regions. For methods M1–M6, a long time limit of 200 seconds per region was
used. For results with shorter time limits, see Experiment 2.

Table 2 shows the results for all methods listed above for test set 2. This test set
contains a total of 27 � (19 � 19) = 9,747 points, 1,052 blocks and 742 regions.

Table 2. Search improvements in test set 2.

Version Safe points Safe blocks Safe regions
Benson 1,329 (13.6%) 106 (10.1%) 160 (21.6%)
Static-2004 2,287 (23.5%) 188 (17.9%) 251 (33.8%)
M1 3,244 (33.3%) 273 (25.9%) 320 (43.1%)
M2 3,305 (33.9%) 278 (26.0%) 325 (43.8%)
M3 4,079 (41.9%) 380 (36.1%) 409 (55.1%)
M4 4,220 (43.3%) 394 (37.5%) 420 (56.7%)
M5 4,594 (47.1%) 440 (42.0%) 455 (61.4%)
M6 (Full) 4,822 (49.5%) 483 (45.9%) 481 (64.9%)
Perfect 9,747 (100%) 1,052 (100%) 742 (100%)

In results of test set 1, the current static solver performs similarly to the best 1997
solver. Adding search and adding region merging yield the biggest single improvements
in performance, about 10% each. The heuristic evaluation function and weakly depen-
dent regions add about 3% each. Other methods provide smaller gains with these long
time limits, but they are essential for more realistic shorter times, as in the next experi-
ment.

Results for test set 2 are a little bit worse than for test set 1, but that is true even for
the baseline Benson algorithm. Our conclusion is that test set 2 is just a little bit harder,
and the performance of the solver is comparable to test set 1.

5.2 Experiment 2: Detailed Comparison of Solvers

This experiment compares the six search-based methods M1–M6 in more detail on test
set 1. The static solver can prove 321 out of 802 regions safe. Our best solver M6
can prove 548 regions with a time limit of 200 seconds per region. The remaining 254
regions have not been solved by any method.

A total of (548–321) = 227 regions can be proven safe by search. To further ana-
lyze the search improvements, we divide these regions into four groups of increasing
difficulty, as estimated by the CPU time used.

Group 1, very easy (regions 322–346): This group contains 25 regions. Most regions
in this group have small size, less than 10. All methods M1–M6 solve all 25 regions
quickly within a time limit of 0.1s (0.2s for M1).

Group 2, easy (regions 347–408): This group contains 62 regions. Figure 6 shows
two examples. Table 3 shows the number of regions solved by each method with dif-
ferent time limits. The number in braces is the difference between two methods. The

12

performance of M1 and M2 is not convincing. By using region merging, M3 solves
all 62 regions within 0.5s. The more optimized methods M4–M6 solve all within 0.1s.
Region merging dramatically improves the performance of solving these easy regions.

Group 3, moderate (regions 409–495): This group contains 87 regions. Figure 7
shows two examples. Table 4 contains the test results. In this group, the search en-
hancements dramatically improve the solver. M1 and M2 solve few problems. M3 can
solve 79 regions, but more than half of them need more than 10 seconds. The evaluation
function dramatically speeds up the solver. M5 solves all regions within 10 seconds.
M6, using weakly dependent regions, solves 23 regions within 0.1s, as opposed to 0
for M5. All 87 regions are solved within 5s. In this category M6 outperforms all other
methods.

Group 4, hard (regions 496–548): This group contains the 53 regions that are solved
in 5s–200 seconds by M6. Figure 8 shows three examples. Table 5 contains the test
results. This group includes 20 weakly dependent regions that cannot be solved by M1–
M5. Many of these problems take more than a minute even with M6. They represent
the limits of our current solver.

� � � � � � �
� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � �
� � � � � � � � �

Fig. 6. Two examples of easy problems in group 2. Left: merged white region, size 10. Right:
basic white region, size 11.

Table 3. Search results for Group 2, easy (62 regions).

Version M1 M2 M3 M4 M5 M6
T=0.1s 0 23 38 62 62 62
T=0.5s 29 (+29) 31 (+8) 62 (+24)
T=1.0s 39 (+10) 40 (+9)
T=5.0s 43 (+4) 42 (+2)
T=10s 43 (+0) 44 (+2)
T=50s 43 (+0) 49 (+5)
T=200 seconds 43 (+0) 49 (+0)
Solved 43 49 62 62 62 62

13

� � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � �
� � � � � � � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � � � � � � � �
� � � � � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � � � � � � � � � �

Fig. 7. Two examples of moderate problems in group 3. Left: merged white region, size 16. Right:
basic white region, size 19. One white block has an external eye.

Table 4. Search results for Group 3, moderate (87 regions).

Version M1 M2 M3 M4 M5 M6
T=0.1s 0 0 0 0 0 23
T=0.5s 0 0 14 (+14) 14 (+14) 10 (+10) 37 (+14)
T=1.0s 0 6 (+6) 33 (+19) 33 (+19) 38 (+28) 59 (+22)
T=5.0s 0 6 (+0) 38 (+5) 38 (+5) 68 (+30) 87 (+28)
T=10s 0 8 (+2) 38 (+0) 40 (+2) 87 (+19)
T=50s 0 10 (+2) 73 (+35) 79 (+39)
T=200 seconds 13 (+13) 17 (+7) 79 (+6) 82 (+3)
Solved 13 17 79 82 87 87

6 Conclusions and Future Work

The results of our work on proving territories safe are very encouraging. Using a combi-
nation of new region-processing methods and search enhancements, our current safety
solver is significantly faster and more powerful than the solver in [3]. However, most
large areas with more than 18 empty points remain unsolvable due to the size of the
search space. Figure 9 shows an example. Although this region has only 18 empty
points, our current solver can not solve it within 200 seconds and a 14 ply search. In
order to handle larger areas, it can be improved in the following areas:

14

Table 5. Search results for Group 4, hard (53 regions).

Version M1 M2 M3 M4 M5 M6
T=0.1s 0 0 0 0 0 0
T=0.5s 0 0 0 0 0 0
T=1.0s 0 0 0 0 0 0
T=5.0s 0 0 0 0 0 0
T=10s 0 0 0 0 11 (+11) 11 (+11)
T=100s 0 0 15 (+15) 17 (+17) 21 (+10) 28 (+17)
T=200 seconds 5 (+5) 5 (+5) 17 (+2) 20 (+3) 33 (+12) 53 (+25)
Solved 5 5 17 20 33 53

� � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � �
� � � � �

� �
(a) Merged white region, size 17.

� � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � �
� � � � � � � � � � � �

� � � � �
(b) Two weakly dependent white regions, size 11 and 9.

� � � �
� � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � �

� � � � �
(c) Three weakly dependent white regions, size 13, 14 and 2.

Fig. 8. Three examples of hard problems in group 4.

15

� � � �
� � � � � � � �
� � � � � � � �

� � � �
� � � � �

� � �
Fig. 9. Unsolved region, size 18.

Move generation More Go knowledge could be used for safe forward pruning. In-
stead of generating all legal moves, in many cases the program could analyze the
attacker’s motivations and generate refutation moves. Move ordering and pruning
for the attacker should also be investigated.

Evaluation function Our current exact evaluation function is all-or-nothing, and tries
to decide the safety of the whole input area. If the area becomes partially safe during
the search, this information is ignored. However, it would be very useful in order
to simplify the further search. Also, more research on fine-tuning the evaluation
function is needed.

Region processing We can reduce the search space by treating a large region as sev-
eral weakly dependent small sub-regions. Most subregions will be affected only
by moves in the sub-region and possibly moves close to the boundary in other
sub-regions. In addition, many strongly related regions could be treated as weakly
related regions in practice. Figure 10, slightly simplified from position 16 of test set
1, shows an example. By our definition regions � � � �� are strongly related, and
are merged into a single region of size 25. However, if the partition were ��� and
� �� � � � � � � �� then each merged region would be small and could be
solved. In practice, this happens very often, for example in 7 out of the 31 test po-
sitions in test set 1. Better methods are needed to analyze the relationships between
regions and to process regions more selectively.

Search method In place of ��, a modern search algorithm such as df-pn would prob-
ably work well in this domain.

More future work ideas include:

– Handle special cases such as seki, snapback, double ko.
– Use the solver in Explorer to prove regions unsafe and find successful invasions, or

defend against them.
– Compare the performance against heuristic Go programs in borderline cases where

it is hard to judge statically whether a defensive move is necessary. Such a test
would indicate how much the method can improve the playing strength of Go pro-
grams.

– Develop a heuristic version that can find possible weaknesses in large areas.

16

� � � � � �
� � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � A � B � � � � � � �
� � � � � � � D � F � � H � �
� � � � � � � E � G � � � �

� � � � � C � � � � � �
� � � � � � � � � �

Fig. 10. An example of multiple related regions.

– Compare the performance with Life and Death solvers such as GoTools [7] in posi-
tions where the safety of territory problem is equivalent to a life and death problem.

– Build a solver for small board Go that utilizes this engine.

References

1. D.B. Benson. Life in the game of Go. Information Sciences, 10:17–29, 1976. Reprinted in
Computer Games, Levy, D.N.L. (Editor), Vol. II, pp. 203-213, Springer Verlag, 1988.

2. M. Müller. Computer Go as a Sum of Local Games: An Application of Combinatorial Game
Theory. PhD thesis, ETH Zürich, 1995. Diss. ETH Nr. 11.006.

3. M. Müller. Playing it safe: Recognizing secure territories in computer Go by using static
rules and search. In H. Matsubara, editor, Game Programming Workshop in Japan ’97, pages
80–86, Computer Shogi Association, Tokyo, Japan, 1997.

4. X. Niu. Recognizing safe territories and stones in computer Go. Master’s thesis, University
of Alberta, 2004. in preparation.

5. E. van der Werf, J. van den Herik, and J. Uiterwijk. Learning to score final positions in the
game of Go. In J. van den Herik, H. Iida, and E. Heinz, editors, Advances in Computer Games
10, pages 143 – 158. Kluwer, 2004.

6. R. Vilà and T. Cazenave. When one eye is sufficient: a static classification. In J. van den Herik,
H. Iida, and E. Heinz, editors, Advances in Computer Games 10, pages 109 – 124. Kluwer,
2004.

7. T. Wolf. The program GoTools and its computer-generated tsume go database. In H. Mat-
subara, editor, Game Programming Workshop in Japan ’94, pages 84–96, Computer Shogi
Association, Tokyo, Japan, 1994.

