
A Framework for Spatio-Temporal Query Processing

Over Wireless Sensor Networks

Alexandru Coman Mario A. Nascimento Jörg Sander

University of Alberta
Edmonton, Canada

{acoman,mn,joerg}@cs.ualberta.ca

Abstract

Wireless sensor networks consist of nodes with the
ability to measure, store, and process data, as well
as to communicate wirelessly with nodes located
in their wireless range. Users can issue queries
over the network, e.g., retrieve information from
nodes within a specified region, in applications
such as environmental monitoring. Since the sen-
sors have typically only a limited power supply,
energy-efficient processing of the queries over the
network is an important issue. In this paper, we
introduce a general framework for distributed pro-
cessing of spatio-temporal queries in a sensor net-
work that has two main phases: (1) routing the
query to the spatial area specified in the query;
(2) collecting and processing the information from
the nodes relevant to the query. Within this
framework, different algorithms can be designed
independently for each of the two phases. We also
propose novel algorithms for this framework, one
for the first phase and two for the second phase. In
an extensive experimental evaluation we study the
performance of these algorithms in terms of en-
ergy consumption, under varying conditions. The
results allow us to recommend the most energy
efficient solution, given a network and a spatio-
temporal query.

1 Introduction

Recent technological advances, decreasing production costs
and increasing capabilities have made sensor networks suit-
able for many applications, including environmental moni-
toring, biological contamination detection, warehouse man-
agement, traffic organization and battlefield surveillance.
Today’s sensors are no longer just simple sensing de-

vices wired to a central monitoring site, but they have
computation, storage and wireless communication capabil-
ities. Most of these devices are battery operated, which
highly constrains their life-span, and it is often not pos-
sible to replace the power source of thousands of sensors.
Energy efficient data processing and networking protocols
must therefore be developed to make the long-term use of
such devices possible. While the network research commu-
nity has studied energy efficient protocols in the context of

ah-hoc networks, the database community has been con-
fronted mostly with time and size constraints, but rarely
with energy limitations. Therefore, the ability to apply
traditional data processing techniques in sensor networks
is limited, and different solutions must be found.
In this paper we focus on energy efficient query pro-

cessing in sensor networks. In particular, we are inter-
ested in answering historical spatio-temporal queries such
as “What was the temperature yesterday morning in Ed-
monton’s west end?”. We study this problem in a sensor
network where each sensor is only aware of the existence of
the other sensors located within its communication range,
and the query can be initiated locally at any sensor. To
the best of our knowledge, query processing in such a sen-
sor network environment has not been investigated before.
The advantages of this environment are network robust-
ness, a balanced use of sensors’ energy resources and a wide
range of application scenarios that can take advantage of
the proposed solutions.
We propose the STWin framework for processing

historical spatio-temporal queries in sensor networks,
i.e., queries that specify the spatial area and temporal
range the answers must belong to. As sensor nodes spend
most of their energy supply during communication [1], we
aim at minimizing the amount of data exchanged among
nodes during query processing. Our framework has two
phases. First, we search for a path from the query origi-
nator node to a sensor located within the query’s spatial
window. Second, the located sensor assumes query coor-
dinator role, gathers the answers from all query relevant
sensors and ships them back to the query originator. We
use a greedy routing algorithm in the first phase, while for
the second phase we propose two algorithms, one based on
parallel flooding, the other using a depth first strategy.
In summary, the contributions of this paper are:

• we study the processing of spatio-temporal queries in
a sensor network where each node only knows about
the network nodes located within its wireless range;

• we introduce the STWin query processing framework;

• we propose three algorithms to be used within the
STWin framework;

• we evaluate experimentally the performance of these
algorithms and discuss their benefits and drawbacks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes some of the research work related to ours.

Section 3 presents the sensor network settings as well as the
characteristics of the query and data. Section 4 details our
solution for spatio-temporal query processing. Section 5
presents the experimental evaluation of the proposed algo-
rithms, and Section 6 concludes the paper.

2 Related Work

The Cougar project [17] is one of the most related to ours as
it also investigates techniques for query processing over sen-
sor data. However, unlike ours, their research focuses on a
sensor networks environment where there is a central ad-
ministration that knows the location of all sensors. In
[4] the authors focus on processing long-running queries,
modelled as persistent views over the distributed sensor
database. As the sensors are connected to a continuous
power source, they are not concerned about the energy use.
In the same scenario but with emphasis on energy efficient
query processing, they extend their work in [18] and ana-
lyze a wider range of problems, such as routing and crash
recovery, basic query plans and in-network aggregation.
In [9], Madden et al. focus on query processing in a

sensor environment where the information about the exist-
ing sensors is available in a catalog. Sensor nodes simply
collect and transmit the raw data to the powered sensor
proxies that are in charge of further processing and routing
the answers to the users. The authors focus on minimiz-
ing the used energy by adapting the sensors’ sampling and
data package transmission rates. They introduce the Fjord
architecture for management of multiple queries. Designed
for Berkley Mica motes and running on top of TinyOS,
TinyDB [11] is a distributed query processor that runs on
each of the sensor nodes. The authors focus remains on op-
timizing data acquisition for long-running queries, no data
being stored locally at the nodes. To reduce the energy
consumption, they also propose TAG [10], an aggregation
service for networks of TinyOS motes.
Beaver et al. [2] propose a solution for in-network ag-

gregation, which exploits the temporal correlation in a se-
quence of sensor readings to reduces the energy used during
query processing. Their solution, called TiNA, also allows
the user to specify a temporal coherency tolerance when
an approximate answer is sufficient, which lowers the en-
ergy costs. Similar to TinyDB and Cougar, TiNA is de-
signed for a sensor environment where sensors simply for-
ward their measurements to answer a long-running query,
without storing any historical data.
The authors in [8] focus on sensor data processing, and

propose solutions for data stream joins over the sensor data
in tracking or monitoring application. The performance of
their solution decreases sharply with increasing number of
sensors, with more evaluation being required to establish
the validity of their methods for large scale sensor deploy-
ments. In [6], the authors propose one of the first index
structures for sensor networks. The solution is based on
the R-tree and it seems to be energy and time efficient,
but no evaluation is presented. Xu and Lee [16] propose
a window-based query processing technique in a network
of moving sensors, where sensors only take measurements
and provide data upon users’ request. Though interesting,
their solution has no experimental evaluation.
In the area of networks research, much work has been

done in ad-hoc wireless networks. One of the most rele-

vant issues for efficient query processing in sensor networks
is position based routing, that is, network routing when
the destination node is known and addressed by means
of its location. Stojmenovic [15] offers an excellent sur-
vey of techniques for position based routing in ad-hoc net-
works. In our scenario, a sensor node is only aware of the
network nodes located within its wireless communication
range, which complicates the routing decisions. In such
a case position based routing algorithms with guaranteed
delivery cannot be readily re-used.

3 Background and Settings

We assume a sensor network with fixed nodes that have
equal roles in the network’s functionality. Each node has
a CPU, long term storage, its own energy source and it is
connected to other members of the network through wire-
less communication. All sensor’s components have limited
capabilities and the power source can be depleted quickly
if not used efficiently.
Due to the wireless network characteristics, a node can

communicate directly only with the sensors located within
its wireless range, which form its neighborhood. A node
can send a message individually to one of its neighbors, or
it can use broadcasting to send the message simultaneously
to all of its neighbors. When a message has to be sent
to all or most neighbors, it is cheaper to broadcast the
message than to send it individually to the neighbors. A
sensor communicates with nodes other than its neighbors
using a multi-hop routing protocol over the network. There
are two main types of messages in query processing: query
messages (which transport the query) and answer messages
(which transport the query answers).
Each node knows its location (e.g., it may use GPS dur-

ing node activation), as well as the location of its neighbors
(collected during network activation). Sensor nodes may
have several sensors, e.g., for temperature, humidity, mag-
netism, and light. In this paper we consider sensors that
observe the state of a measured entity at the sensor location
only. This is different from range sensing (e.g., movement
sensing used in tracking [7, 14]), which measures the state
of an entity not necessarily located at a sensor’s position,
but in its vicinity. Sensors take measurements periodically,
and the collected values are stored locally for future query-
ing. Data collection is performed continually, which can
be viewed as an infinite stream. As infinite data cannot
be fully stored, we adopt the stream storage solutions for
fixed storage space proposed in [19]. The solution uses tem-
poral aggregations over the data stream at multiple time
granularities. The aggregation level for a data record is
dependent on the age of the record, with only the most
recent data fully stored. The aggregation levels and their
granularity are decided before the network deployment and
are dependent on the measured data and the storage size.
Each sensor node stores and manages locally its mea-

surements. Each measurement has attached to it a time-
stamp corresponding to the time of measurement. Each
type of sensor has associated a measurement interval,
which defines the interval between successive data collec-
tions and is identical for all sensor nodes. We consider
the data in the sensor network as a specialized distributed
database, with temporal data stored in a node’s database.
Each node has a location, which gives spatial properties

to data. Thus, on a global view, the sensor networks is a
distributed database storing spatio-temporal data.
We are interested in processing historical spatio-

temporal queries, denoted by HSTQ(qID,sw,tw), where sw
represents a spatial window, tw represents a temporal win-
dow and qID uniquely identifies a query. The answer to
the query is formed by all sensor measurements from the
given area sw during the time range tw. Sensor nodes have
equal capabilities and therefore a query can originate at
any node with query answers located in some (possibly
all) of the nodes. Some sensor network scenarios [11, 17]
consider the so-called long-running queries, where a user
wants the continuously monitor the measured entities. We
do not consider this type of query in this paper.

4 Spatio-Temporal Query Processing

Given a historical spatio-temporal query HSTQ(qID,sw,tw)
at a sensor node, the problem is to efficiently locate and re-
trieve the answers, given the limited knowledge each node
has about the overall network. As a major constraint on
sensor nodes is their limited energy supply, we focus on en-
ergy efficient techniques. It has been shown that the energy
required by sensing and computation is up to three orders
of magnitude less than the energy used for communica-
tion [12]. Therefore we use the energy cost of communica-
tion as the measure of efficiency. This cost is proportional
to the number and the size of exchanged messages.
In this section we discuss first a basic query processing

algorithm for sensor networks. Next, we present an origi-
nal framework for processing spatio-temporal queries and,
within this framework, we propose three new algorithms.

4.1 Basic Query Processing Algorithm

A straightforward way to locate the query answers, which
we call FullFlood, is contacting every network node. The
query originator node broadcasts the query to its neigh-
bors, which in turn broadcast the query to their neigh-
bors, and so on, until all nodes have received the query.
Due to query message broadcast, each node will receive
the same query several times. For each query, a node
processes only the first query message received, discard-
ing subsequent query messages. When a query is received,
the node first broadcasts the query, then it selects the lo-
cally stored data relevant to the query (if any), it waits
for its neighbors’ answers and merges them with its own,
and finally it returns the answer to the neighbor that it
received the query from. Once the query originator node
has received the relevant data from all nodes, it can answer
the query. The messages flow for FullFlood algorithm is
shown in Figure 1.
The FullFlood algorithm is guaranteed to find the

query answer for a connected sensor network, but it in-
curs high communication costs due to the large number of
messages required to contact all nodes. The algorithm is
similar to a parallel breadth first search in a network graph,
where sensor nodes are vertices and edges represent direct
communication links between sensors. Assuming there is
no communication delay, the query will reach each node on
the shortest path (with respect to number of hops) from the
query originator. As query messages are broadcast along
all paths, the first message reaching a node must have trav-

sensor node

query originator

query message

wireless range

answer message

query’s window

Figure 1: The FullFlood algorithm - message flow

elled over the shortest path. After a query is processed
locally, each node returns the answer to the neighbor it re-
ceived the query from, and therefore answers are returned
over the shortest path to the query originator.

4.2 Query Processing with STWin

If there is only one node relevant to the query, the opti-
mal solution is contacting the node on the shortest path
from the query originator and returning the answers over
the same path. When the query answer involves several
nodes, communicating with these nodes on the shortest
path between the query originator and each of them is no
longer optimal. Figure 2 shows an example. Forwarding
the query over the shortest paths (routes (a) and (c)) re-
quires 6 query messages in order to reach both relevant
nodes, while route (b) requires only 5 messages. On the
other hand, returning the nodes’ answer over the shortest
path is still optimal (assuming there is no aggregation of
answers). As the energy usage is proportional to the mes-
sage size and the same amount of answer data must be
transfered over any of the possible return paths, sending
the answers over the shortest path is the cheapest. Finding
an optimal solution when there are several query relevant
nodes requires each network node to know the network
layout, as well as possibly expensive local computation for
finding the optimal route for each particular query. Due
to sensors’ limitations, it is not feasible for each node of
a large sensor network to find and store the full network
layout, as well as make expensive processing.
On the other hand, contacting all sensor nodes as in

FullFlood algorithm is not the most energy efficient ap-
proach.

(a)

(c)

(b)

Figure 2: Routing example

A heuristic solution for query processing is contacting
only the query relevant nodes, and a few extra nodes for
routing the query and the answer if the query originator is
not located inside the query’s spatial window. A heuristic
contacting only a subset of all network nodes should use a
lower number of messages than FullFlood, which in turn
may lead to lower energy consumption. An additional ad-
vantage of such a solution is reduced network congestion,
which improves the query response time. Also, if only a
subset of the network nodes is involved in processing each
query, then several queries could be efficiently processed

sensor node

query originator

query coordinator

query message

answer message

query’s window

wireless range

(a) GreedyDF (b) WinFlood (c) WinDepth

Figure 3: The algorithms within the STWin framework - message flow

simultaneously in different parts of the network. We pro-
pose the STWin (Spatio-Temporal WINdow) framework
for query processing in which such a heuristic can be im-
plemented. In this framework, we divide the query pro-
cessing into two phases, one for locating a path from the
query originator node to a sensor inside the query’s spatial
window, the other for gathering the query answer from the
relevant nodes and returning it to the query originator.

• Phase 1: Given a query at a node NQ, called query
originator, we want to find a path to a node located
in the query’s spatial window. This node will assume
query coordinator role NC for Phase 2.

• Phase 2: The coordinator node NC initiates the
query processing within the query’s spatial window.
The processing algorithm must locate all relevant
nodes, gather the results and return them to the query
coordinator NC . The coordinator will then return the
answer to the query originator node NQ on the rout-
ing path discovered in Phase 1.

These two phases form a general query processing
framework, where various algorithms can be used in each
phase. In the following we propose one algorithm for the
first phase and two algorithms for the second phase.

4.2.1 Phase 1: GreedyDF

The GreedyDF algorithm uses a greedy technique to find a
routing path from the query originator node to a node NC

located at the center of the query’s spatial window. Other
possibilities for choosing NC exist, and which node is the
best to select asNC for a query is an open question. Choos-
ing the center node is a good compromise between the like-
lihood of a heuristic to find at least a node in the query
area and the length of the path over which answers from
the coordinator node will be returned to the query orig-
inator node. The query originator forwards the query to
its neighbor located closest to NC , which in turn forwards
the query to its neighbor closest to NC , and so on. If node
NC is found, then node NC initiates Phase 2. The routing
may reach a sensor node that is closer to NC than any of
its neighbors, in which case the query cannot be forwarded.
If the reached node is located in the query’s area, the node
assumes coordinator role NC and initiates Phase 2, else
an empty answer is returned. The GreedyDF algorithm
uses a small number of messages, but it does not guaran-
tee that a routing path to a node in the query’s spatial
window will be found. Greedy-based routing methods for
position based routing in ad-hoc networks have been shown
to nearly guarantee delivery for dense network graphs, but
to fail frequently for sparse graphs [15]. Variants to this
heuristic would include using a different neighbor selection

method or backtracking the search when query forwarding
cannot be done. We choose to not use backtracking solu-
tions as they cannot guarantee answer location within a
small number of steps, while ultimately degenerating to a
slow network flood with higher communication costs due
to the extra messages required for the backtracking steps.
The message flow for the GreedyDF algorithm is depicted
in Figure 3(a).

4.2.2 Phase 2: WinFlood and WinDepth

For the second phase of STWin we propose two algorithms.
The WinFlood algorithm consists of a constrained parallel
flooding, where a node broadcasts the query to its neigh-
bors only if its own location is inside the query’s spatial
window. The constrained flooding starts at the query co-
ordinator node NC and stops when the query reaches nodes
outside the spatial window. Figure 3(b) show the message
flow for theWinFlood algorithm. TheWinFlood algorithms
is similar to a constrained parallel breadth first search in
the network graph.

An alternative solution is the WinDepth algorithm,
which is based on depth first search policy. In WinDepth
each node may forward the query only to those neighbors
located within the query’s spatial window. When a node
receives a query, it adds its node ID in the query header so
that the query path is remembered. Then it selects a neigh-
bor located within the spatial window that has not received
the query yet (determined based on the query header), and
forwards the query to this neighbor. When the neighbor
returns the partial query answer, the node checks again if
there is any other of its neighbors that is relevant to the
query and has not received it yet. If there is such a neigh-
bor, it forwards the query to this node and waits again
for the neighbor’s answer. This process is repeated until
all of a node’s neighbors located within the window have
answered the query, at which point all the partial answers
received are merged with the locally stored answers and
the new partial answer is returned to the neighbor that
the node received the query from. The message flow for
the WinDepth algorithm is shown in Figure 3(c).

TheWinFlood algorithm uses broadcast messages to for-
ward the query, while in WinDepth nodes send individual
messages to neighbors located within the window. As the
cost of one broadcast message is generally lower than the
cost for a group of one-to-one messages, it may be cheaper
to use broadcasting and stop the query forwarding when
an exterior node is reached. An advantage of WinFlood
is that it is faster than WinDepth for the same number
of contacted nodes and likely more cost efficient within a
small window due to the use of broadcast messages. On the
other hand,WinDepth contacts a smaller number of nodes,

 0

 0.5

 1

 1.5

 2

 2.5

 1000 2000 4000 8000 16000A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Number of sensors (log-scale)

FullFlood
STWinDepth
STWinFlood

 0

 1

 2

 3

 4

 5

 6

1% 5% 10% 25%A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Query size - spatial area(%)

FullFlood
STWinDepth
STWinFlood

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 20 40 60 80 100A
vg

. E
ne

rg
y

U
se

d
pe

r
S

en
so

r
(m

J)

Query size - temporal range (#measurements)

FullFlood
STWinDepth
STWinFlood

(a) (b) (c)

Figure 4: The effect of several parameters on the average energy used per network sensor for the investigated algorithms

Parameter Default Value

Area covered 1000x1000 meters
Wireless range 50 meters
Number of sensors 2000
Tuple size <value,time-stamp> 8 bytes
Query size <qID,sw,st> 24 bytes
Query (spatial window) 1% (of area)
Query (temporal window) 60 measurements

Table 1: Parameters of query and sensor network

which makes more nodes available to answer other queries,
and it causes less network congestion, which helps improve
the query response time if several queries are processed
simultaneously in the network.
In the following section we evaluate experimentally the

proposed algorithms and discuss the effects of several fac-
tors on the energy used during query processing.

5 Experimental Evaluation

We implemented a sensor network simulator in order to
study the performance of the presented algorithms. The
sensors’ placement follows a uniform distribution over a
two dimensional region. We represent a historical spatio-
temporal query HSTQ by the coordinates of a spatial area
(sw), a temporal range (tw) and its query ID (qID). The
query’s spatial window covers 1% of the monitored region
(that is 10% on each spatial coordinate), unless otherwise
noted. The temporal window covers 60 measurements,
where each measurement is represented by a <value,time-
stamp> pair. A summary of query and sensor network pa-
rameters and their default values used in our experimental
evaluation is presented in Table 1.
We compare the algorithms in terms of the average en-

ergy used per network node for communication while pro-
cessing a query. According to [13], the energy used to trans-
mit and receive one bit of information in wireless commu-
nication is given by:

Energy
transmit

= α+ γ × dn (1)

Energy
receive

= β (2)

where d is the distance to which a bit is being transmit-
ted, n is the path loss index, α and β capture the en-
ergy dissipated by the communication electronics and γ
represents the energy radiated by the power-amp. In our
experiments, we use the following values for these param-
eters [3]: α = 45 nJ/bit, β = 135 nJ/bit, n = 2, and
γ = 10 pJ/bit/m2. As typical sensors do not have sophis-
ticated communication electronics capable of adapting the

transmission range [5], we assume all messages are trans-
mitted as far as the wireless communication range.

For the algorithms within the STWin framework,
we call STWinDepth the combination of GreedyDF
with WinDepth, and STWinFlood the combination of
GreedyDF withWinFlood. All experimental measurements
are averaged over 100 randomly generated sensor networks,
with 10 random queries over each network.

First, we investigated the effect of node density on the
performance of GreedyDF. For networks with 2000 or more
nodes, GreedyDF is able to find a routing path from the
query originator to a node inside the query’s spatial win-
dow for most of the tested networks. In the majority of the
successful cases, the reached node is located in the proxim-
ity of the center of query area. To have a fair comparison,
the following measurements consider the energy used by an
algorithm while processing a query only when each algo-
rithm located all answers for that query.

Figure 4(a) presents the effect of the number of sensors
on the energy usage of each algorithm. As node density
increases, FullFlood sends a larger number of messages
to nodes not relevant to the query, which leads to higher
energy costs. The increase in sensor density leads to an in-
crease in the number of nodes holding relevant data, which
affects the costs of all algorithms, as a larger answer set
must be returned to the query originator. With more nodes
available for routing, the GreedyDF algorithm may be able
to find a shorter path to the query coordinator node, an
advantage for both STWinDepth and STWinFlood as
less energy will be used for locating the query coordinator
and a shorter path is used to return the answers from the
coordinator node to the query originator. On the other
hand, the coordinator node will send a larger answer set to
the query originator in both STWinDepth and STWin-

Flood. The increase in the number of relevant nodes af-
fects more STWinDepth than STWinFlood. This is due
to the depth first policy used by WinDepth for query rout-
ing, as this policy contacts most relevant nodes on one
query forwarding path. This behavior causes the larger
answer set to be returned over a longer path to the query
coordinator, which increases the energy usage.

The negative effects of this behavior of STWinDepth

can be also seen in Figure 4(b), where the query size is
increased. A larger query area affects the FullFlood al-
gorithm less than the other two methods as only the com-
munication cost for returning the answers increases for this
algorithm, while the energy used for locating these answers
stays constant. With the query’s spatial window increas-
ing, STWinFlood uses flooding over a larger set of nodes,

ultimately degenerating into the FullFlood algorithm for
large query windows. In both STWinDepth and STWin-

Flood, the answers from a larger spatial window are sent
back to the query originator over a longer path (as the
answers are first collected by the coordinator node) com-
pared to the FullFlood method, which returns all an-
swers over the shortest path. For large query windows,
FullFlood uses less energy per node than STWinFlood

for 2000 nodes, but STWinFlood performs better than
FullFlood for large queries in denser networks (the cor-
responding graphs are not shown due to space limitations).
Figure 4(c) shows the effect of a query’s temporal range

on the energy consumption. A variation in the query’s
temporal range only affects the size of the answer messages,
and leads to a linear variation of the energy used by these
messages. The increase in energy usage is the smallest
for FullFlood as the algorithm returns the answers over
the shortest path to the query originator. STWinFlood

performs better than STWinDepth because the relevant
answers are returned on the shortest path to the query
coordinator in STWinFlood, and both algorithms share
the answer return path (discovered by GreedyDF) from the
coordinator node to the query originator.

6 Conclusions

While the technological advances have lead to sensors with
reduced sizes and increased capabilities, the sensor data
management is still in its incipient stages. The challenges
are multiple, and the database research has to move its
focus from considering time as a main optimization goal
toward energy efficiency or a combination of both time and
energy. The size of the database is no longer a primary
challenge, with the focus moving to the distributed nature
of the database and query processing.
In this paper we made a few steps toward energy ef-

ficient query processing in a sensor network environment
where each sensor is aware of only its neighbors. In this
scenario, we proposed the STWin query processing frame-
work, where the query is first forwarded to a query coor-
dinator node within the query’s spatial window, followed
by an efficient query processing involving only the relevant
nodes. Within this framework, we proposed the GreedyDF
algorithm for the first phase, andWinDepth andWinFlood
algorithms for the second phase.
The experimental results showed that STWinFlood is

more energy efficient in most situations than simple flood-
ing as well as the solution involving just depth-first based
algorithms. Only for very large query windows in networks
with low sensor densities, the FullFlood algorithm per-
forms slightly better in terms of energy usage, and it is
more robust for locating all relevant answers (however, it
causes network congestion, reducing the network’s capa-
bility to process several queries simultaneously). STWin-

Flood performs slightly better than STWinDepth for
small query windows, the differece in performance dramat-
ically increasing for queries over large areas. An advantage
of STWinDepth is that there are at most two nodes work-
ing in each query processing step, which allows the rest of
the network to process other queries or simply sleep to save
energy. For most cases, STWinFlood has shown low en-
ergy usage consistently, and therefore we recommend it for
sensor networks where each node is only aware of the other

nodes located within its wireless range. The STWinFlood

combines the strengths of both depth first and breadth first
techniques while limiting their drawbacks.
In this paper we introduced techniques for query

processing when the user in interested in retrieving all the
relevant information. In other situations, an aggregated
query answer may be sufficient. We are currently investi-
gating new algorithms within the STWin framework that
would allow efficient in-network aggregation during query
processing.

Acknowledgments. This work was partially sup-
ported by NSERC. We would like to thank Ioanis Niko-
laidis for his valuable comments and fruitful discussions.

References

[1] I.F. Akyildiz et al. Wireless sensor networks: A survey.
Computer Networks, 38(4):392–422, 2002.

[2] J. Beaver et al. Power-aware in-network query processing
for sensor data. In Proc. of Hellenic Data Management
Symposium, pages 1–17, 2003.

[3] M. Bhardwaj. Power-aware systems. Master’s the-
sis, MIT, 2001. http://www-mtl.mit.edu/research/ic-
systems/uamps/pubs/theses/.

[4] P. Bonnet et al. Towards sensor database systems. In Proc.
of IEEE MDM, pages 3–14, 2001.

[5] A. Demers et al. Energy-efficient data management for
sensor networks: A work-in-progress report. In Proc. of
Upstate New York Workshop on Sensor Networks, 2003.

[6] M. Demirbas and H. Ferhatosmanoglu. Peer-to-peer spatial
queries in sensor networks. In Proc. of Intl. Conf. on Peer-
to-Peer Computing, pages 32–39, 2003.

[7] Q. Fang et al. Counting targets: Building and managing
aggregates in wireless sensor networks. Technical Report
P2002-10298, Palo Alto Research Center, 2002.

[8] M.A. Hammad et al. Stream window join: Tracking moving
objects in sensor-network databases. In Proc. of SSDBM,
pages 75–84, 2003.

[9] S. Madden and M.J. Franklin. Fjording the stream: An
architecture for queries over streaming sensor data. In Proc.
of ICDE, pages 555–566, 2002.

[10] S. Madden et al. TAG: a tiny aggregation service for ad-hoc
sensor networks. In Proc. of OSDI, pages 131–146, 2002.

[11] S. Madden et al. The design of an acquisitional query pro-
cessor for sensor networks. In Proc. of SIGMOD, pages
491–502, 2003.

[12] V. Raghunathan et al. Energy aware wireless microsensor
networks. Signal Processing Magazine, 45(2):40–50, 2002.

[13] T. Rappaport. Wireless Communications: Principles and
Practice. Prentice-Hall Inc., 1996.

[14] S. Shakkottai et al. Unreliable sensor grids: Coverage, con-
nectivity and diameter. In Proc. of INFOCOM, 2003.

[15] I. Stojmenovic. Position based routing in ad hoc networks.
IEEE Communications Magazine, 40(7):128–134, 2002.

[16] Y. Xu and W.C. Lee. Window query processing in highly
dynamic sensor networks: Issues and solutions. In Proc. of
Workshop on GeoSensor Networks, 2003.

[17] Y. Yao and J. Gehrke. The Cougar approach to in-network
query processing in sensor networks. SIGMOD Record,
31(3):9–18, 2002.

[18] Y. Yao and J. Gehrke. Query processing in sensor networks.
In Proc. of CIDR, 2003.

[19] D. Zhang et al. Temporal and spatio-temporal aggrega-
tions over data streams using multiple time granularities.
Information Systems, 28:61–84, 2003.

