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Abstract

Despite the proposal of numerous tree-based access
structures for high dimensional similarity searches, tech-
niques based on a sequential scan have been shown to be
simple yet quite efficient alternatives. Given that random
accesses to disk are expensive, a linear scan of the (smaller)
pre-processed dataset is often much more efficient than even
a relatively small number of random disk accesses yielded
by tree-based indices. In this paper we present a technique
which uses a pseudo-partition of a general metric space
analog to the VA-file’s partition of the vector space. The
rationale is to use a number of pivot objects in the met-
ric space, each one determining a number of hyper-rings
in this space. The intersection of those rings, determine
pseudo-cells analog to the VA-file cells in the vector space.
In order to speedup query processing the data set is clus-
tered (using any applicable clustering technique). Clusters
not intersecting cells intersected by the query region cannot
contribute to the answer set. Thus, only a few clusters are
searched using an I/O efficient linear scan of the cluster’s
data. The proposed technique, which we call the M-GRID,
is by construction, applicable to both general metric spaces
and to traditional vector spaces as long as a metric distance
function is used. The M-GRID is robust to several parame-
ters and experiments with synthetic and real data sets show
that it is able to perform nearest neighbor queries up to 10
times faster than the VA-File.

1 Introduction

Managing and querying high-dimensional data is im-
portant in many domains such as time sequence data [2],
protein sequence data [19], density-based clustering algo-
rithms [12] and multimedia data [20]. For instance, an im-
age’s colors and textures are typically mapped onto high-
dimensional vectors for enabling similarity searches.

In the context of high-dimensional data and metric data,
an important type of query is the nearest neighbor query.
Given a query object q, a database O of objects oi, and a

metric distance function d(i, j) a nearest neighbor query re-
trieves the object which is closest to the query object, i.e.,
{oNN ∈ O|∀oi ∈ O : d(oNN , q) ≤ d(oi, q)}. This query
can be easily generalized to retrieve the K-nearest neighbors
of a query object, in this paper we focus on the latter.

It is well known that effective indexing of the data is
necessary for efficient query processing. Indexing high-
dimensional data is a harder problem mainly due to the di-
mensionality curse. Often as the dimensionality of the fea-
ture space increases, the difference in the distance between
the nearest and the farthest object decreases [5]. As well,
it has been shown [23] that the performance of many ac-
cess methods may degenerate to a sequential scan once the
number of dimensions is sufficiently large. In particular, it
has been argued in [23] that a sequential reading of a set
of pages on disk is faster than randomly reading as few as
20% of the same set of pages, which can likely be the case
for high-dimensional data.

The VA-File [23] is a conceptually simple yet very
efficient access method for similarity search in high-
dimensional data. It partitions the data space into a grid and
creates an approximation for each data object based on the
grid cell that contains the object. At query time, the VA-file
sequentially scans the file containing these approximations,
which is smaller than the size of the original data file. This
allows most of the VA-File’s disk accesses to be sequential
which are much less costly than random disk accesses. One
drawback of this approach is that the VA-File requires a re-
finement step where the original data file is accessed using
random disk accesses. Experiments in [23] have shown
that, in order to keep the number of random disk accesses
reasonable, the file containing the approximations should be
at least 25% of the size of the original data file. Also, as the
number of nearest neighbors retrieved gets larger, the num-
ber of random disk accesses in the refinement step increases
quickly, even if the accuracy of the approximations is finer.
Another drawback of the VA-File is it can only index vec-
tor data under a metric distance, e.g., feature vectors in the
Euclidean space.

In this paper we build on the VA-file’s idea by presenting
a general solution to high-dimensional indexing applicable



to both metric data and vector data. Our main contribution
in this paper is to show how to construct a pseudo-grid1 for
any metric space, including the Euclidean space, for effi-
cient similarity searches. Initially, the data set is clustered
off-line, using any suitable clustering algorithm. Then, at
query time, the pseudo-grid is used to prune the clusters
which cannot be part of the answer. Experimental results
show that the our technique, which we call the M-GRID,
can perform nearest neighbor query processing up to 31
times faster than a sequential scan of the original data set
and up to 16 times faster than the VA-File. In addition,
our method works in general metric spaces, including vector
data under metric distances, can be easily implemented, and
scales gracefully with respect to several of parameters, e.g.,
number of nearest neighbors retrieved. To the best of our
knowledge, despite the large amount of research in metric
indexing [10], no one has explored this idea. Moreover, of-
ten in that domain researchers are interested in minimizing
computational cost, i.e., CPU cost, whereas in this work we
aim at the more relevant database problem of minimizing
I/O cost of similarity queries.

The rest of this paper is structured as follows. In the next
section the intuition supporting the M-GRID is presented as
a motivation for the next sections. Section 3 describes how
to construct a pseudo-grid for metric spaces and how to use
it to perform efficient nearest neighbor searches. Section 4
displays experimental results showing the efficiency of the
M-GRID in performing nearest neighbor search compared
to the VA-File and a sequential scan using both real and syn-
thetic data sets. Related work to indexing high-dimensional
data and metric data is described in Section 5. A conclusion
and summary of our findings is given in Section 6.

2 Motivation

It is a well known result, e.g., [3, 8, 13], that when pro-
cessing similarity queries in a general metric space, ob-
jects can be correctly pruned using the triangular inequal-
ity property. Given a database O of objects oi, all one
needs is a set of reference objects P = {pj |pj ∈ O},
called pivots (typically |P | � |O|), and the set of dis-
tances from each database object to all pivots objects, i.e.,
D = {d(pj , oi)|∀oi ∈ O∧∀pj ∈ P}. (Note that both sets P

and D can be pre-computed off-line.) Given a query object
q and a range r an object oi cannot be prunned by P if and
only if |d(pj , oi) − d(pj , q)| < r ∀pj ∈ P . That is, a large
number of objects oi can be potentially discarded without
one having to compute the actual distance d(oi, q). Com-
puting d(., .) at query time can be impractical. For instance,
in [22] the authors compute the similarity between images

1It is not possible to create an actual grid in general metric space be-
cause there may be no actual data space with dimensions for partitioning
the space.

by solving a (possibly large) network flow problem. There-
fore, not having to compute d(., .) at query time in order to
prune a large number of candidate objects can represent a a
significant gain in query processing time.

To illustrate this argument, consider the objects in Fig-
ure 1, where there is a single pivot object p1. For the query
object q and range r, a pruning ring for p1 is defined by
two radii, (d(p1, q) − r) and (d(p1, q) + r) where d(x, y)
is a metric distance function that measures the distance be-
tween any two database objects x and y. Any object outside
the pruning ring can be safely discarded. In Figure 1, o1

lies outside p1’s pruning ring. As such, the triangular in-
equality says that d(q, o1) + d(p1, q) ≥ d(p1, o1), hence
d(q, o1) > r and therefore o1 cannot be a possible answer
to query q. This way, by using d(p1, q) and d(p1, o1) (which
is precomputed), the cost of computing d(q, o1) is avoided.
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Figure 1: Pruning objects in Metric Space using the trian-
gular inequality

The VA-File partitions the data space by dividing it into
a grid of cells. This allows objects to be approximated by
the cells where they lie. The idea of creating a pseudo-grid
can be generalized to a metric data space. Instead of divid-
ing each dimension into slices, pivots in the data set can be
selected and rings can be formed based on a set of range
distances to the pivots. The “cells” in this partitioned space
are then considered as the intersection of those rings. For
instance, in Figure 2 the pivots are p1 and p2 and the rings
are created based on a set of range distances to those pivots.

Similarly to what was done in other works, e.g., [13],
each object in the the data set can be mapped into a vec-
tor space, i.e., oi = 〈(d(oi, p1), d(oi, p2), · · · , d(oi, pj)〉.
Typically, P is of low cardinality, which means that the
mapped vector space is of low dimensionality, and can be
clustered efficiently and effectively using a number of clus-
tering methods.
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Figure 2: The rings splitting up the data space into cells

Clusters that do not touch pruning rings intersected by
the query range can now be safely discarded. Those that
are not discarded have to be further searched. Assuming
that the objects in the clusters are physically clustered in
the disk as well (which can be enforced when assembling
the clusters), one can take advantage of the fact that a linear
scan can be performed efficiently in order to prune objects
within the clusters. In summary, there are two search phases
at query time, in the first clusters are pruned and conse-
quently all objects lying within them, and in the second ob-
jects within non-pruned clusters are investigated. Figure 2,
illustrates this idea for a given q and radius r. The shaded
cells intersect the query region, i.e., the region defined by
the circle around q. By employing the notion of a grid, a
cluster can be pruned if it does not touch any cells which
also intersect the query region. In the figure only clusters C
and E touch cells intersecting the query region and therefore
clusters A, B, D, F and G can be pruned from the answer set
without computing any of the actual distances between ob-
jects in those clusters and the query object. However, all
objects within clusters C and E would have to be verified.
Since they should be, by construction, clustered in the disk
as well, that can be done efficiently.

3 The M-GRID

Given the rationale above we can now propose a new ac-
cess method for both vector data (under a metric distance)
and general metric data. We call this method the M-GRID.
The M-GRID is a dynamic, metric access structure and is
designed to reduce the processing time of similarity search
queries for high-dimensional vector data sets and metric
data sets. The M-GRID clusters objects by their positions
in a pseudo-grid based on their distances to pivot objects.

Cells in the pseudo-grid are determined by the distance the
rings are from the pivots (Figure 2) which allows clusters to
be pruned if the cluster does not touch any cells intersecting
the query region. In order to take advantage of sequential
disk accesses, the M-GRID performs most of its disk ac-
cesses sequentially within the clusters, being an I/O efficient
metric access method. In addition the M-GRID is compu-
tationally inexpensive as the majority of the distances com-
puted at query time are in a low dimensional space. The ac-
tual, and potentially expensive, distance functions are typ-
ically only computed for a small number of candidates ob-
jects within few clusters.

3.1 Building the M-GRID

Given a database of object O and a metric distance
d(., .), there are four main steps in creating the M-GRID:

• Selecting the set P of pivots objects. Since the only
information one can use to prune objects at search time
is the distance between the query and the pivots and
the pre-computed distances between the database ob-
jects and the pivots, it is important to choose pivots that
can use those distances to prune objects effectively. A
good pivot selecting algorithm selects pivots that are
able to discriminate well between the distances to pairs
of randomly chosen objects from the data set. Pivots
can be selected from the data set in a variety of ways,
e.g., using the HF algorithm [13], using the Incremen-
tal Selection (IS) algorithm [9], or even randomly. We
have found, through experimental results, that the IS
algorithm provides a very effective way to select good
pivots for general metric spaces.

• Pre-computing the set of distances D between every
data object and all pivots. These are computed in
order to allow the use of the triangular inequality at
query time. Note that this can be done off-line without
any impact on query processing time.

• Creating the rings, hence creating the cells in a
pseudo-grid. The rings are created so there is an equal
number of objects in each ring for each pivot. This al-
lows more dense regions of the data space to be cov-
ered by more rings and increases the number of ob-
jects pruned during similarity search. The intersection
of such rings form the “cells” in a low-dimensional
mapped space, the so-called pseudo-grid for metric
data (see Figure 2 for a two-dimensional example).

• Clustering the data objects. The technique chosen
to clustering the data objects is orthogonal to the M-
GRID’s usage. Even though in this paper we use the
K-means clustering algorithm [15] for simplicity and
ease of implementation, this is not a requirement—any



other clustering technique applicable to vector space
could be used. Naturally, different techniques are
likely to yield different clusters which may improve (or
not) the M-GRID’s performance. Since the number of
pivots tends to be small, the data set can be clustered
efficiently. Objects are clustered based on their dis-
tances to pivots so objects occurring in the same rings
should be placed in the same clusters.

The main structure of the M-GRID consists of three log-
ical levels. The first level contains the pivots, the distances
the rings are from each pivot and the mean of each cluster.
The number of pivots, k, tends to be small, in the range of
δ to 2δ where δ is equal to the fractal (intrinsic) dimension-
ality of the data set [13]. The storage space for this level is
small and assumed to be stored in main memory.

The second level consists of the Cluster-Cell Array (CC-
Array). Each cell is represented in the CC-Array by two el-
ements, (Cptr , Cempty), where Cptr is a pointer to the clus-
ter closest to the cell and Cempty is one bit which indicates
whether the cell is empty or contains objects (Figure 3(a)).
This level is also assumed to fit in main memory. Our exper-
iments show that good performance can be obtained using
four pivots and ten rings per pivot. This yields a CC-Array
requiring only about 20 Kbytes.
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Figure 3: Two levels of the M-GRID’s structure: (a) CC-
Array, stored in main memory, and (b) the clusters, whose
contents are physically clustered on disk

The closest cluster to each cell is determined by comput-
ing the distance from the center of each cell to the mean of
each cluster. The CC-Array structure for an empty cell, i.e.,
one which does not intersect any cluster, also point to the
nearest cluster because the first cluster to visit is determined
by the cell the query object is in, even if the cell is empty.
Also, the pointers are used for the insertion and deletion al-
gorithms to determine the cluster to insert or delete the ob-
ject. Storing whether each cell contains any objects is useful

to prevent visiting clusters based on a cell that does not con-
tain any objects but intersects the query region and points to
a cluster that would not otherwise be visited. Figure 3(a)
illustrates this discussion. Cell 1 contains zero objects but
points to cluster B, while the Cempty for Cell 3 is equal to 1,
indicating Cell 3 contains at least one object and the pointer
for the cell points to cluster D. For instance, in Figure 2,
the dark-shaded cell to the right of cluster D is empty but
intersects the query region and its pointer will also point to
Cluster D (its nearest cluster). By using 1 bit for the cell to
indicate the cell is empty, we can avoid visiting Cluster D
in this example. It should be noted that each cell can only
point to one cluster, i.e., the cluster it is closest to in the
metric grid. While a cell can only point to one cluster, sev-
eral different cells can point to the same cluster. The actual
number of objects in each cell is stored separately on disk
and is only used to aid inserting and deleting objects from
the M-GRID.

The third level of the M-GRID (Figure 3(b)) contains the
clustered objects in the data set. It is very important to en-
force that each object in the same cluster is physically clus-
tered on disk. This allows clusters to be accessed efficiently
using sequential disk accesses during query processing.

Given the size of the pseudo-grid, i.e., number of piv-
ots and number of rings, the object data set, and a metric
distance d(., .), the steps for building the M-GRID can be
summarized as follows:

1. Compute and store the set of pivots (pj ∈ P ), e.g.,
using the IS algorithm [9].

2. For each pair (oi, pj), oi ∈ O and pj ∈ P , compute
and store d(oi, pj).

3. Determine the ring distances for each pivot such that
each ring contains approximately the same number of
objects

4. Using 〈(d(oi, p1), d(oi, p2), · · · , d(oi, pj)〉 as the |P |-
dimensional coordinates for each data object oi, cluster
them using any suitable clustering algorithm. Compute
and store the mean object of each cluster

5. For each entry in the CC-Array (there are as many
as the resulting number of cells after partitioning the
pseudo-grid), set Cptr to the nearest cluster and set
Cempty = 0 if the cell is empty, otherwise set it to
1.

3.2 Similarity Search (KNN) in the M-GRID

K-Nearest Neighbor (KNN) algorithms work by initially
finding a range to query which is further tightened as bet-
ter (closer) neighbors are found during query processing.
For the M-GRID, the idea is to find an initial range query



and prune away clusters which cannot be part of the answer.
Only those cells that intersect the current query range and
whose clusters have objects may be searched using an effi-
cient linear scan of the data set.

The first step is to compute the distance between the
query object q and each pivot pj . The cell containing the
query object (Cq) is determined by calculating which ring
for each pivot the query object belongs to using its distance
to each of the pivots. The CC-Array can then be used to
obtain the cluster pointer associated to Cq . This cluster is,
by construction, a cluster close to q, and as such can be used
as the first cluster to be visited and provide an initial query
radius. Recall that since clusters are stored in a way that
their objects are physically clustered on disk, they can be
searched efficiently. At this point the distance between q

and the Kth nearest neighboor found thus far can be used
to tighten the query radius. Any clusters not intersecting
cells which intersect the updated query region, can be safely
pruned. Using Figure 2 as an example for a 5 NN search,
one can see that cluster C would be the first one to be vis-
ited, determining the query radius r. All other clusters but
E could then be discarded.

After the first cluster is visited and some clusters are
pruned, the distance from Cq to the mean of each cluster not
yet pruned or visited is computed, sorted in ascending order
and stored in the Active Cluster List (ACL). The order of
the clusters in the ACL determines the order they may be
visited. Similarly to how it was done when visiting the first
cluster, each cluster (in the ACL order) is searched, and
the distances between q and all objects in that cluster are
computed. If a closer object than the current Kth nearest
neighbor is found, this object is used to update the current
set of KNNs as well as the current KNN distance. The ACL

needs to be recomputed since the query radius is tightened
by the update on the KNN distance. This process continues
until all clusters in the ACL have been visited or pruned.

In summary, the search procedure works are follows:

1. Find an initial search radius by searching for candidate
objects within the cluster closest to the cell where the
query belongs.

2. Prune all clusters which do not not intersect the initial
query range.

3. Search through all clusters not yet pruned, by increas-
ing distance to the query object, updating the current
KNN as closest neighbors are found.

4. Since the query radius (KNN distance) may have been
updated, check again for clusters which may now be
pruned and repeat the last step above until there are no
more clusters to investigate.

It is easy to see that, by its very design, the search pro-
cedure described above does not dismiss any object which

could be part of the correct answer, i.e., there is no false-
negatives. As well, since a cluster or objects inside cluster
are only discarded if they cannot be possibly be within the
closest KNN, it is safe to state that the search yield correct
results.

The M-GRID aims primarily at reducing the number of
disk accesses by avoiding to search within clusters unless
necessary. Clusters are stored sequentially on disk, so the
objects in each cluster are accessed sequentially. Only one
random disk access is needed to find the beginning of the
cluster on disk, therefore the number of random disk ac-
cesses is equal to the number of clusters visited, which the
M-GRID aims at minimizing. The M-GRID is designed for
K-nearest neighbor queries but can be easily modified to
process range queries. To process range queries, the algo-
rithm can be changed so the K-NN radius is equal to the
radius of the range query and, unlike K-NN queries, the ra-
dius is fixed. All clusters intersecting the radius of the range
query will be retrieved and all objects closer than the radius
will be returned as the answer to the range query.

3.3 Inserting and Deleting Objects

As mentioned earlier, the M-GRID is a dynamic indexing
structure, and therefore can handle the insertion and dele-
tion of objects in the database. To insert an object into the
M-GRID, the cell containing the object (Cin) is identified
using its distances to each of the pivots. The cluster to in-
sert the object is determined by looking up in the CC-Array
the cluster Cin points to. If Cempty = 0, i.e., then that bit
must be set to 1 to indicate the cell contains at least one ob-
ject. The number of objects in the cell is also incremented
by 1. The object is inserted into the closest cluster to Cin

and the mean of the cluster is recomputed.
Objects can be deleted from the M-GRID by removing

the object from its cluster. Similar to an insert, the cell Cdel

containing the object od to be deleted is identified and the
cell is looked up in the CC-Array to determine the cluster
containing od. Note that since the cell contains at least one
object, od itself, the cluster containing od is the closest to
that cell. The number of objects in the cell is decremented
by 1 and if no other objects reside in the cell, Cempty is set
to 0. The mean of the cluster is then recomputed.

4 Experimental Results

We tested the performance of the M-GRID using a vari-
ety of synthetic data sets. The data sets are designed to test
the scalability of the M-GRID with respect to varying the
cardinality of the data set, varying the number of clusters in
the data set, varying the percentage of noise in the data set,
varying the number of dimensions of the data set, varying
the maximum distance objects in clusters can be from the



seeds of the clusters, varying the number of pivots and the
number of rings used in the M-GRID and, finally, varying
the number of nearest neighbors retrieved during similar-
ity search. The values used for the generated data sets are
shown in Table 1.

We assigned objects to clusters non-uniformily, i.e.,
some clusters in the data set contain much more objects than
others to simulate more realistic data sets. Note that chang-
ing the number of objects or the number of clusters in the
data set, does not affect the distribution of the number of
objects in each cluster, it just changes the average number
of objects in each of the clusters. The distance the objects
are from the seeds of the clusters is also non-uniform. We
use the L1 metric distance in our experiments because it has
been shown to be more effective in high-dimensional spaces
at distinguishing the distance between objects than the Eu-
clidean distance (L2 norm) [1]. All data sets are generated
in a unit hyper-cube. For each data set, we used a sam-
ple of 100 random queries, and the page size for all experi-
ments was set to 4 Kbytes. Our measure of efficiency is the
average actual time required to process a K-nearest neigh-
bor query. Using only number of I/Os may be a misleading
measure since the cost of a random I/O is much higher than
a sequential I/O due to the extra seek time within the disk.
Such an overhead, on the other hand, is captured by mea-
suring the actual query processing time. To evaluate the ef-
ficiency of the M-GRID, we compare it to the VA-File and
a sequential scan (denoted by SeqScan) of the data set. For
all experiments, 10 data sets are generated the same way
(following the same distribution) and the average number
of disk accesses is used for the M-GRID and the VA-File.
For the sequential scan, the number of disk accesses is ob-
viously constant for each experiment.

The first experiment is designed to test the scalability
of the M-GRID while varying the cardinality of the data
set. In Figure 4 we see the speedup of the M-GRID com-
pared to a sequential scan of the data set is stable at approx-
imately 22 times with a slight increase in performance of
the M-GRID as the number of objects in the data set is in-
creased. This occurs because as the number of objects in
the data set increases, the number of objects in each cluster
increases. This results in an increase in performance of the
M-GRID because the NN distance is quickly reduced for
most queries, resulting in accessing fewer clusters. For the
same reason, the speedup of the M-GRID compared to the
VA-File increases slightly to greater than 10.

When decreasing the number of clusters (Figure 5), the
number of objects per cluster increases. For the M-GRID, if
any part of the cluster intersects the query region, the entire
cluster is retrieved from disk, and consequently slower per-
formance. Dividing a cluster into smaller clusters will likely
result in retrieving less objects as only some of the resulting
clusters may now intersect the query region. However, this
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Figure 4: Varying the number of objects in the data set
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Figure 5: Varying the number of clusters in the data set

is beneficial only to a certain extent as can be clearly seen in
the figure. At some point the same objects will still need to
be retrieved, just more clusters (with fewer objects per clus-
ter) will be visited, yielding more random I/Os. Figure 5
shows the M-GRID may be more than 30 times faster than
a sequential scan of the data set and 15 times faster than
the VA-File. Note that even when the number of clusters is
very small, the M-GRID is still about twice as fast as the
VA-File.

We consider as noise in the data set objects which are
created randomly and uniformly in the data set and are not
clearly part of any “natural” cluster. By adding noise, one
can investigate the resiliency of the access structure. Fig-
ure 6 shows the M-GRID is resistant to increasing the per-
centage of noise in the data set and the performance of the
M-GRID only decreases slightly when the amount of noise
in the data set is increased up to to 80% of the total num-
ber of objects in the data set. This means the M-GRID can
perform nearest neighbor search efficiently even if the clus-
ters are not well-defined. When 100% of the data set is
noise, the distribution of the data set is basically uniform.
Since the M-GRID is designed to take advantage of some
sort of underlying clustered structure it cannot improve on
the performance yielded by a sequential scan, and it is out-



Table 1. Values used for generating synthetic data sets
Parameter Default Value Min. Value Max. Value

Number of objects 250,000 50,000 1,000,000
Number of clusters 100 5 400
Ratio noise 20% 0% 100%
Data dimensionality 64 32 512
Maximum Distance [% of maximum distance] 1% 0.1% 10%
Number of Pivots 4 2 8
Number of hyper-rings 10 5 20
Number of nearest neighbors 10 1 50
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Figure 6: Varying the percentage of noise in the data set

performed by the VA-File. This occurs because the VA-File
approximates the actual distance of every object in the data
set and actually performs the best for uniform data sets be-
cause the objects in the data set are farther from each other.
This reduces the likelihood of objects occurring in the same
cell for the VA-File and thus having the same approxima-
tions. For a up to a fair amount of noise, e.g., 80%, the M-
GRID is about 8 times faster than the VA-file and 16 times
faster than the sequential scan.

The results for varying the dimensionality between 32
and 512 are shown in Figure 7. Note that the maximum
distance objects can be from the seeds of the clusters, i.e.,
their centers. also remains constant at 1%. However, when
the dimensionality of the data set is increased, 1% of the
maximum possible distance between two objects will also
increase. The figure shows the M-GRID is more than 3(3)
times faster than the VA-File when the number of dimen-
sions is 256, while for dimensionalities of 32 and 64, the
M-GRID is 5 times faster than the VA-File. The relative
performance gain of the M-GRID decreases as the dimen-
sionality increases compared to a sequential scan of the data
set and the VA-File. One reason for this is that the maxi-
mum distance objects in clusters can be is, by default, 1%.
Therefore the size of the clusters increases when increasing
the dimensionality and the total hyper-volume of the clus-
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Figure 7: Varying the dimensionality of the data set

ters increases faster than the maximum distance. Although
the total hyper-volume of the data space also increases, each
dimension is still in the range zero to one. This causes the
chance of clusters overlapping to be higher and increases
the chance of visiting additional clusters, diminishing the
M-GRID’s advantage.

Figure 8 shows the performance of the M-GRID de-
creases as maximum distance the objects are from the cen-
ter of the clusters increases. The main reason for this is
as this distance increases, the distribution of the objects in
the data set becomes more uniform. This causes the K-
nearest neighbor distance to increase significantly, reducing
the ability of the pivots to prune clusters (refer to the pre-
vious discussion of Figure 6). It should be noted that if
the data set can be clustered more effectively, the M-GRID

could be able to prune more clusters and increase its effi-
ciency. (In this paper we are not concerned with the clus-
tering algorithm itself since it is a mere accessory to the
proposed M-GRID.) Even when max d reaches 10%, the
VA-File is only slightly faster than the M-GRID, while both
are faster than a sequential scan of the data set.

The M-GRID has two main input parameters for build-
ing the metric grid, the number of pivots and the number
of rings. Both of these parameters affect the performance
of the M-GRID. Figure 9 shows the affect of varying the
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Figure 8: Varying the maximum distance objects in a cluster
can be from the seed of the cluster
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Figure 9: Varying the number of pivots used by the M-
GRID

number of pivots. Increasing the number of pivots results in
more clusters being pruned. This occurs because the more
pivots we use, the greater the probability that clusters will
not intersect rings which the query region intersects, for at
least one pivot and can be pruned. This results in visiting
less clusters and retrieving less objects from disk. Increas-
ing the number of pivots used by the M-GRID can only in-
crease the performance up to a certain extent, at some point
using more pivots will not result in pruning more clusters.
This occurs because there is always going to be at least one
cluster for every query which must be visited and clusters
which intersect the query region can not be pruned no mat-
ter how many pivots are used. The speedup of the M-GRID

compared to a sequential scan of the original data set in-
creases to 31 and to 6 for the VA-File when the number of
pivots is equal to 8.

Figure 10 shows that increasing the number of rings also
increases the performance of the M-GRID compared to a
sequential scan of the data set and the VA-File. Increas-
ing the number of rings divides the data space into a finer
grid which makes approximating clusters by the cells they
intersect more accurate. This allows some clusters which
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Figure 10: Varying the number of rings used by the M-
GRID

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1  10  20  50

T
im

e 
(s

ec
s)

Number of Nearest Neighbors retrieved

SeqScan
M-Grid
VA-File

Figure 11: Varying the number of nearest neighbors re-
trieved M-GRID

would otherwise border the query region to be pruned and
not be visited. Similar to increasing the number of pivots,
increasing the number of rings also increases the number of
clusters pruned and improves the efficiency of the M-GRID.
As noted above, for every data set there will be some limit at
which increasing the number of rings cannot result in prun-
ing more clusters as some clusters will have to visited re-
gardless.

Next, we test the effect of varying the number of nearest
neighbors K retrieved. Figure 11 shows the largest advan-
tage for the M-GRID is achieved when K = 1. The reason
for this is for small values of K, only 1 or 2 clusters have
to be retrieved (or 1% − 2% of the data set). Increasing
the number of nearest neighbors retrieved past 10 has very
little impact on the performance of the M-GRID because
often the additional nearest neighbors retrieved are found
in the clusters already accessed and additional clusters do
not have to be visited. The K-nearest neighbor distance
usually does not increase rapidly when K is larger. This
causes the number of disk accesses to increase slowly with
increasing K. It should be noted that as K is increased, the
additional disk accesses for the VA-File are random disk



accesses. As K is increased, more objects have to be ac-
cessed randomly from the original data file in the refinement
step. This means the actual time required for the VA-File to
perform NN search will increase rapidly as K is increased,
even if the total number of disk accesses does not increase
as quickly.

5 Related Work

There have been many indexing structures proposed in
the literature to speedup similarity search processing in in-
dexing high-dimensional and metric spaces. These are di-
vided into two main categories: those that index the Eu-
clidean space and those that index all metric spaces. Note
that although the later can also index objects mapped onto
the Euclidean space, since a (metric) Lp norm is often used,
they typically do not explore properties of the embedded
data space.

An early Metric Access Method (MAM) is the BK-
tree [8]. It is based on the triangular inequality property
and attempts to minimize the number of distance calcula-
tions to answer a similarity query. A pivot is arbitrarily se-
lected from the data set and the objects are partitioned into
subtrees based on their distance from the pivot. This pro-
cess continues recursively with each sub-tree being broken
into smaller and smaller groups. During similarity search,
branches which do not intersect the query region are pruned,
and the final answer is determined by computing the ac-
tual distance from each object in branches not pruned to
the query object. Only discrete distance functions are con-
sidered for the BK-tree and the number of disk accesses is
considered insignificant2.

A MAM which also uses a tree approach for indexing
metric data is the Fixed-Queries tree [3]. Its structure is sim-
ilar to the BK-tree except each node at the same level of the
tree uses the same pivot, this reduces the cost of following
more than one path in the tree because additional distances
from the query object to pivots in each sub-tree do not have
to be computed. Fixed-Queries trees prune branches which
do not contain any candidate points in the answer set using
the triangular inequality property. To determine the final an-
swer, the distance between objects in branches not pruned
and the query object are computed. The Fixed-Queries tree
also uses a discrete metric distance function and only con-
siders the number of distance calculations in the cost of sim-
ilarity search.

Another MAM which uses a similar technique to the
Fixed-Queries tree is the MVP-tree [6]. The MVP-tree is a
static, height-balanced tree that builds a hierarchical struc-
ture which partitions the data space into spherical regions
using pivots. Precomputed distances between pivots and

2A hardly reasonable assumption nowadays.

data objects are utilized to prune objects using the triangu-
lar inequality property. The MVP-tree uses more than one
pivot at each node and each sub-tree uses different pivots.

Two additional MAMs are the M-tree [11] and the Slim-
tree [16]. Both the M-tree and the Slim-tree are dynamic
indexing structures which allow insertions of new data ob-
jects without completely rebuilding the tree. Both partition
objects such that each node contains a pivot object, and all
objects in its sub-tree are within a certain distance of the
pivot object. The authors of the Slim-tree also define a mea-
sure of the amount of overlap between two nodes in a metric
space and present a “slim-down” algorithm to try and min-
imize the overlap of nodes. These two methods consider
the number of disk accesses and distance calculations as an
efficiency measure as both can be expensive for metric data.

Two MAMs similar to each other and designed to re-
duce the number disk accesses and distance calculations for
similarity queries are proposed in [7, 13]. Precomputed dis-
tances from the data objects to the pivots are used to prune
objects for similarity searches. The precomputed distances
are read sequentially from disk as sequential disk accesses
are much less expensive than random disk accesses. These
methods can be used on their own or be incorporated into
another index structure such as the R-tree [14] to further
increase similarity query performance.

Many indexing structures have been proposed for data in
the vector space. Two partitioning strategies used with these
indexing structures are data partitioning and space partition-
ing strategies. Indexing structures which use the data par-
titioning strategy are the R-tree [14], SR-tree [17] and the
X-tree [4]. These methods attempt to index the data by par-
titioning the data into minimum bounding regions. An in-
dexing technique which uses the space partitioning strategy
is the VA-file [23], discussed earlier. A method which par-
titions the data space into a grid and clusters the data set is
Clindex [18]. It is only shown to work in vector space, i.e.,
it cannot be used for general metric spaces. Also, Clindex
answers approximate nearest neighbor queries so it does not
guarantee to find the exact answer. A method which uses
both the data partitioning and the space partitioning strat-
egy is the A-tree [21]. The A-tree employs the notion of
approximate bounding regions to improve similarity query
performance. One limitation of these indexing structures is
they cannot index metric data, which is often the case with
multimedia data.

6 Conclusion

In this paper, we presented the M-GRID, a new in-
dex structure for high-dimensional data and metric data.
The M-GRID builds a pseudo-grid structure for any met-
ric space, clusters the data (using any clustering algorithm),
and uses the pseudo-grid and the clusters to answer KNN



queries. Most of the disk access by the M-GRID are sequen-
tial, thus fast. The M-GRID can handle dynamic data and
can be used with vector and non-vector data, which makes
it a very general access structure.

To demonstrate the performance of our technique, we ran
a variety of experiments to using various synthetic data sets.
The M-GRID can perform nearest search up to 42 times
faster than a sequential scan of the data set and up to 10
times faster than the VA-File.

Future work should be done on investigating an optimal
number of pivots and the number of rings to use within the
M-GRID. Further work should also be done on investigat-
ing how the distribution of the data set, after updates, af-
fects the performance of the M-GRID and how can we de-
tect and address this issue. Finally, tests using real data sets
are underway, and may also provide further insight into M-
GRID’s properties
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