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Abstract—This paper presents schemes to generate effective
feature vectors of low dimension, and also presents a cluster–
based algorithm, where sensors form clusters on–demand for
the sake of running a classification task based on the produced
feature vectors. The features generated through our proposed
schemes are evaluated using K-Nearest Neighbor (k-NN) and
Maximum Likelihood (ML) classifiers. The proposed schemes
are effective in terms of classification accuracy, and can even
outperform previously proposed approaches, but, in addition,
they are also efficient in terms of communication overhead.

Index Terms—Sensors, Acoustic Classification, Features Selec-
tion, Data Fusion, Decision Fusion.

I. INTRODUCTION

Vehicle tracking on acoustic data is based on the fact that
different vehicles produce distinctly different acoustic signals
because their engine and propulsion mechanisms are unique
[1]. Recently, attention has concentrated on target classification
based on acoustic signals using wireless sensor networks [2],
[3]. Sensor networks provide redundancy in terms of sensing
and processing units. For example, signal measurements can
be recorded at multiple sensors. These measurements can then
be exploited in a number of ways. Two popular approaches,
[2], are data fusion (DAF) and decision fusion (DEF).

Implementing decision or data fusion requires sensors to
collaborate efficiently with each other to perform classifica-
tion. We use a sensor network to perform the classification
task within a limited and non-fixed subset of the network,
which we call a cluster. Clusters can be formed on-demand
when a signal suggesting the presence of a vehicle is detected
by a minimum number of sensors. The purpose of on-demand
based clustering is that a static logical structure is not needed
to be maintained until an actual classification operation is to
be performed.

In this context, we describe in Section II a clustering
scheme, which forms the basis of our distributed classification
framework. Using the same we can evaluate the benefits
of DAF and DEF in various scenarios. We evaluate these
approaches and scenarios using K-Nearest Neighbor (k-NN)
and Maximum Likelihood (ML) classifiers, discussed in Sec-
tion III. These classifiers operate upon suitable feature vectors,
which are critical for achieving good classification results.
In Section III we describe simple feature extraction schemes
that yield low dimensional, yet representative, feature vectors
of the captured acoustic signals. In Section IV, we present

performance evaluation results in terms of classification ac-
curacy and energy expenditure trade-offs. Finally, Section V
summarizes the findings of the paper and outlines our future
research goals. (For an extended version of this paper please
refer to [4].)

II. ON–DEMAND CLUSTERING

We consider a network of static sensor nodes, and a subset
of the network that forms a cluster. The classification task is
to be performed collectively by the nodes within a cluster. We
denote by T the time during which a vehicle is classified. We
assume that no more than one vehicle is within the network
during T , all sensors have a synchronized global clock, and
all sensors gather data every Wt (< T ) time units.

Path of the vehicle

Sensors

Acoustic signal

(a) Vehicle detection.

Cluster Cluster head

(b) Cluster formation.

Fig. 1. A scenario of vehicle classification in a sensor network.

The problem at hand is to organize the sensors in the
form of a cluster, to collectively classify a vehicle that is
crossing the sensor network area as shown in Figure 1. When
a vehicle enters the network, a number of nodes can detect its
presence by measuring its acoustic energy using a detection
algorithm similar to the one in [5]. A sensor that detects
the vehicle broadcasts a detection message (which includes
the signal strength of the acoustic signal it recorded) to its
neighbors and enters the active state. An active node that finds
its signal strength greater than its neighboring active nodes,
and has received at least Nt detection messages, becomes a
clusterhead. Otherwise, it waits for Wt before measuring the
signal strength again, and, if appropriate, sending a detection
message. Nt is an important parameter because, in the interest
of classification accuracy, a certain minimum number of active
nodes is needed (see section IV). The clusterhead broadcasts
a clusterhead message, to let all neighboring active nodes
know its presence. The clusterhead is free to select only those
neighbors that have reported a good signal strength (assuming



it selects at least Nt), but in the remaining of this paper
we assume that the clusterhead selects all neighboring active
nodes.

The clusterhead message includes a membership list of the
active nodes selected to form the cluster. All active nodes
that find themselves on the membership list reply with a
confirmation message to finalize the cluster formation. Active
nodes that receive multiple clusterhead messages select as
clusterhead the one that has greater signal strength. Once part
of a cluster, an active node does not send further detection
messages and also ignores the detection messages from other
active nodes until the classification time, T , expires.

Once a cluster is formed, the classification process operates
in two steps:

1) The clusterhead prepares and broadcasts a schedule. The
schedule consists of task assignments for all (active)
nodes in the cluster. A typical task for an active node
is to compute the similarity measure of an unknown
sample with respect to the training samples as specified
in the schedule. Recall also, that all active nodes in a
cluster have their own feature vectors ready to be used
for classification purpose.

2) After performing their assigned task, the sensors report
back to the clusterhead with their individual results
(e.g., a decision or distance measurement computed
in response to the first step). After collecting results
the clusterhead makes a decision on the class of the
unknown vehicle.

When DAF is used, all sensors in a cluster send their feature
vectors to their clusterhead. The clusterhead combines all re-
ceived feature vectors (including one from itself) and executes
the classification task using, e.g., k-NN or ML classifiers.
When DEF is employed, all sensors in a cluster execute the
classification task using their own feature vectors, and make
their own decision on the class of the unknown vehicle. The
sensors then provide the clusterhead with their decisions. The
clusterhead determines the class of the unknown vehicle to be
that of the majority of decisions.

III. CLASSIFICATION TECHNIQUES AND FEATURES

SELECTION

If we assume d to be the length of the feature vectors, and
l to be the number of training samples in each of the c classes
then the number of computations performed by a sensor to
classify an unknown sample is proportional to d × l × c and
d2 when employing k-NN and ML respectively. Selection of
d is thus critical as we would like to reduce the computational
load from sensors, of-course, without compromising on the
quality of solution. In addition, the size of a feature vector
is also crucial for communication costs in sensor networks
(recall DAF). That is, a larger d causes a higher rate of energy
consumption for the communication among the sensors.

Other researches have used different techniques to extract
feature vectors from acoustic signatures. Duarte et. al. in [3],
first choose 100 FFT points from the fast Fourier transform of
512 data points sampled at a rate of 4.960 kHZ. Then, they

average the 100 FFT points by pairing consecutive points to
get a 50 dimensional feature vector. Brooks et. al. [2] also
used a 50-dimensional FFT feature vectors extracted from the
time series data. Wang et. al. [6] used PCA to choose the 15
largest eigenvalues to form the eigenspace for their training
and test data. Unfortunately, selecting the first few principal
components provides only a measure of statistical significance
without guaranteeing to yield the best subset of features. The
reason is that PCA finds feature combinations that model the
variance of a data set, but these may not be the same features
that separate the classes.

These pre-existing methods are either simply not meeting
the demands of energy conservation in sensor networks [3],
or they are generic in nature, e.g., PCA, and computationally
expensive, while not even yielding the best results. More
importantly, however, they do not address the issue of relat-
ing dimensionality of the feature vectors with the objective
of energy conservation. What is required is to satisfy two
competing demands: that of creating feature vectors that
are low on dimensions, and that of being able to produce
good classification results. Towards that goal we present two
schemes for feature extraction from the acoustic signatures of
vehicles.

A vehicle sound is a stochastic signal and, in practice, the
sound of a moving vehicle observed over a short period of time
can be treated as a stationary signal [7]. In our case we use the
signal’s duration to be 51.6 ms, i.e., 256 data points sampled at
a frequency of 4.960 kHz. In our study we considered power
spectral density (PSD) based features. This feature is generated
by taking PSD estimates of 256 data points yielding a linear
vector of 128 PSD points with a resolution of 38.75 Hz. In
the rest of the discussion a PSD point is also called a band
of frequencies, or simply a dimension, because a PSD point
represents a collection of consecutive frequencies.

Our proposed schemes start by considering all 128 dimen-
sions, and subsequently pruning many of them. The basis of
our proposed schemes, and the first pruning criteria is that
most of the power in a vehicle’s sound lies in the lower
frequencies. To create a feature vector our schemes start by
choosing only those dimensions that correspond to frequencies
that have the maximum power as reported by the samples of
the corresponding training class.

Specifically, let f j
i be a frequency band that has the

maximum power as reported by the sample j in the class
i. Let Si be the set of all f j

i ’s reported by all samples j
in the class i. Note that |Si| ≤ l, i.e., some samples in
class i may report on a common dimension. This particular
situation is favorable for producing feature vectors that are
low on dimension, and yet be effective. Our intuition is that a
dimension that has been reported by a large number of samples
in a class is more suitable to characterize that particular class
than a dimension which has not. Following this intuition, we
rearrange Si. First, we count the number of times each unique
dimension has appeared in Si to obtain their rank. Then, we
order the dimensions in Si in decreasing order of rank. After
rearranging, Si, we further prune some more dimensions by



selecting a percentage, ρ, of top ranked dimensions from Si

to constitute another set, Sρ
i . By this pruning criteria, we

eliminate those dimensions that are less frequent in the training
class. This process is repeated, in order to derive the Sρ

i set
for each class i = 1,2...c.

We propose two schemes to select elements (dimensions)
from sets Sρ

i to create the feature vectors, which will be
stored in the sensor nodes. In the first approach the sets Sρ

i

are combined to obtain the set S =
⋃

i Sρ
i . We name this

approach an independent feature selection (IFS) scheme. In
the second approach, features are selected by considering only
those dimensions from sets Sρ

i that are common to all classes,
that is, S =

⋂
Sρ

i ∀i. We name this latter approach global
feature selection (GFS), as dimensions are common to all
training classes. A potential problem that might occur in the
GFS scheme is that the final set S may remain empty if there
is no common dimension among the sets Sρ

i . Since we can
control the size Sρ

i by setting an appropriate value for ρ, we
can handle this exception by increasing the value of ρ. If the
set S remains empty even for ρ = 1.0, the first element from
all sets Sρ

i is chosen to be inserted into the final set, S.
IFS and GFS feature vectors can be obtained in advance

from a training set. The feature vectors of the training samples
are then uploaded to the sensors before their deployment. After
deployment, the sensors can extract 128 PSD points from the
time series of the sampled acoustic signal of an unknown
vehicles, and can directly fetch IFS/GFS feature vectors of
the unknown sample using the selected dimensions learned
from the training phase.

IV. EXPERIMENTAL STUDY

In this section we present the results of our experimental
study where we evaluate the performance of our distributed
classification schemes as well as the merits of feature vectors
generated through our proposed feature extraction schemes.
We are mainly interested in comparing accuracy results with
the results from already existing studies. With that in mind,
we chose an acoustic dataset that has been used elsewhere
for similar studies. The dataset we consider was generated
during the 3rd SensIT situational experiment (SITEX02),
organized by DARPA/IXOs SensIT program. We call this the
SensIT dataset (http://www.ece.wisc.edu/∼sensit). The dataset
is standardized to remove shifting and scaling factors by using
the normal form [8] of the original time series data.

One of the challenges in our experimental study was to
simulate a distributed environment of a sensor network. The
signal of an unknown vehicle captured by a sensor may be
different from the signal from the same vehicle captured by
another sensor at approximately the same time. This is due
to the placement of the sensors. In order to create multiple
synthetic copies of an acoustic signal, to represent what dif-
ferent sensors would have acquired, we adopted the following
procedure: For each acoustic signal selected from our dataset
to play the role of the unknown sample, we create multiple
copies of the same, attenuating the original signal based on
the distance of the sensors from the moving vehicle. Then, we

introduced time difference of arrival lags for the sensors based
on their relative position with respect to the moving target. We
also added white noise for each of the sensor’s signal. Finally,
we standardize the (attenuated and noised) synthetic signal,
by applying the normal form. This procedure is repeated for
every testing signal in our dataset. For the sake of simplicity
we assume the environment to be such that reverberation and
Doppler effect can be safely ignored as negligible.

We consider two performance metrics: (i) classification
accuracy, and (ii) energy expenditure. A sample is considered
correctly classified if the true class is predicted. In the k-NN
method similarity between any two samples is computed using
L1 distance metric. Energy expenditure is computed based on
the number of bits transmitted by a sensor. We assume the
same radio model as in [9], according to which a sensor spends
50+0.1×R3 nJ/bit of energy to send one bit at R distance.
We note that the cost of assembling the cluster is the same
for both data and decision fusion approaches and therefore it
has no impact on distinguishing which scheme is more energy
efficient

Before implementing the proposed classification schemes
we studied the relationship between the size of the training
classes and the size of the feature vectors generated through
our proposed IFS/GFS schemes. Our findings, described in
detail elsewhere [4], can be be summarized as follows.

With a particular training class size, when we allow to select
more of the top ranked dimensions (by increasing ρ), the size
of feature vector naturally increases for both of the schemes.
However, after one point, namely when the training class size
increases from 108 samples/class to 180 samples/class, the
size of the feature vector does not change much. This behavior
happens because when the size of the training class is sufficient
the consensus among the samples of the training classes is
high, hence, adding more samples into the training classes does
not affect the consensus much. As expected, with a similar
setting of parameters for IFS and GFS schemes, GFS produced
feature vectors of smaller size.

We used both IFS and GFS to generate feature vectors for
the k-NN and ML classifiers. k-NN and ML classifiers ob-
tained different classification accuracies with various settings
of IFS and GFS schemes. The best classification accuracies
are reported here and compared with the previously achieved
best accuracies on the same dataset. In particular the results
reported in this section were obtained with a training class of
45 samples/class and ρ value of 0.3 for GFS scheme in the
k-NN classifier, and 63 samples/class and ρ value of 0.5 for
IFS scheme in the ML classifier. With this setting, the average
size of the feature vectors was found to be 8, which is almost
1/6th the size of the features vectors used in [2], [3]. In general,
selecting 30-50% of the top ranked dimensions (i.e. a ρ value
in the range [0.3,0.5]) produced the best results.

Table I summarizes and compares our classification results
with the results from the previous studies on the same dataset
using various decision and data fusion approaches.

In the study of Brooks et. al. [2], various scenarios of data
fusion and decision fusion were considered using single and



TABLE I
COMPARISON OF CLASSIFICATION ACCURACIES.

Accuracy (%)
Results k-NN ML
from DEF DAF DEF DAF
This paper 77.89 77.63 89.46 89.20
Brooks [2] – – 77.90 81.30
Duarte [3] 69.36 – 68.95 –
Wang [6] – 84.68 – –

multiple sensors. We were mainly interested in evaluating the
impact of feature vectors in various settings of data and deci-
sion fusion approaches using the well known classifiers and a
cluster logical structure. Their compared results presented in
Table I are from the acoustic modality with decision fusion
from multiple sensors. The results from the study of Wang et.
al. [6] on acoustic data compared in Table I are based on a data
fusion approach for which they modified the multi-resolution
integration (MRI) algorithm originally proposed by Prasad et.
al in [10]. Duarte et. al. [3], used acoustic as well as seismic
modality in their study. Their results presented in Table I are
based on the local classification with decision fusion using the
acoustic modality.

Through Table I, we have compared the best results from
the studies mentioned previously with the best of our results
obtained with various settings of data and decision fusion
schemes proposed here. In particular our decision fusion
approach, DEF, using GFS feature vectors produced the best
classification accuracy of 89.46% as compared to all other
results presented for the ML classifier.

Clustering has significant impact on the results obtained
through data and decision fusion approaches. As shown in
Table II accuracy for both approaches improves slightly as we
increased the cluster size. The reason for improved accuracy is
that increasing the number of sensors in the cluster increases
the probability of making a correct prediction. However, after
a sufficient number of sensors are available within the cluster,
20 in the case of our experiments, adding more sensors did
not seem to improve the accuracy.

TABLE II
ACCURACY AND COST FOR DIFFERENT CLUSTER SIZES.

Accuracy (%) Cost (μJ/sensor)
Cluster k-NN ML k-NN ML
Size DEF DAF DEF DAF DEF DAF DEF DAF
3 70 68 88 83 17 21 17 21
5 70 71 89 89 19 25 19 24
10 72 73 88 89 29 38 26 37
20 74 77 89 89 67 83 67 82
40 78 76 89 88 209 240 210 239

Clustering has much more impact on the energy expendi-
tures than on the accuracy. As can be seen in Table II, when the
number of sensors in the single cluster increases from 3 to 40
sensors the energy expenditures increased substantially. The
reason is that the increased number of sensors causes more
communication exchanges between the cluster members. In

particular, the data fusion approach, DAF, incurred more cost
due to the transmission of feature vectors by the sensors.

V. CONCLUSIONS AND FUTURE DIRECTIONS

Classifying audio signals is an important application in
wireless sensor networks. We proposed two distributed clas-
sification schemes, which take into account the inherently
distributed nature of the problem and produce competitive
classification results. Our proposed feature extraction schemes
are generic, and may find applications in other areas where fea-
ture selection is a difficult task due to the high dimensionality
of feature vectors. One limitation of our proposed schemes
that requires further work is finding the right size of training
classes, and setting an appropriate value for ρ.

In the context of our application domain, another promising
venue for further work is to allow the classification process
to be a continuous along the vehicle’s path. Towards that goal
we are currently investigating how to perform the classification
task at several different clusters, and how clusters should com-
municate with each other in order to improve the classification
accuracy, while energy efficient.
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