
Content-Based Sub-Image Retrieval
Using Relevance Feedback

Jie Luo
Dept. of Computing Science
University of Alberta, Canada

jieluo@cs.ualberta.ca

Mario A. Nascimento
Dept. of Computing Science
University of Alberta, Canada

mn@cs.ualberta.ca

ABSTRACT
This paper presents the use of relevance feedback to the
problem of content-based sub-image retrieval (CBsIR). Rel-
evance feedback is used to improve the accuracy of successive
retrievals via a tile re-weighting scheme that assigns penal-
ties to each tile of database images and updates the tile
penalties for all relevant images retrieved at each iteration
using both the relevant (positive) and irrelevant (negative)
images identified by the user. Performance evaluation on
a dataset of over 10,000 images shows the effectiveness and
efficiency of the proposed framework. Using 64 quantized
colors in the RGB color space, the system can achieve a sta-
ble average recall value of 70% within the top 20 retrieved
(and presented) images after only 5 iterations, with each
such iteration taking about 2 seconds.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
image databases; H.3.1 [Information Storage and Re-
trieval]: Content Analysis and Indexing—abstracting meth-
ods, indexing methods.

General Terms
Algorithms, Experimentation.

Keywords
Content-Based Sub-Image Retrieval, Relevance Feedback,
CBIR

1. INTRODUCTION
Most of the content-based image retrieval (CBIR) sys-

tems perform retrieval based on a full image comparison,
i.e., given a query image the system returns overall similar
images. It is not unusual that users are also interested in
images from the database that contain an image (perhaps
an object) similar to a query image (note that there is no

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
MMDB’04, November 13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-975-6/04/0011 ...$5.00.

restriction as to where the query (sub)image may be within
a relevant image). This so-called content-based sub-image
retrieval (CBsIR) problem has been defined as follows [6]:
given an image query Q and an image database S, retrieve
from S those images Q′ which contain Q according to some
notion of similarity. The sub-image retrieval problem we
consider is similar to region-based image retrieval (RBIR),
e.g. [4][7], since the goal can also be to retrieve images
at object-level. However, the difference between these two
problems stands out as the CBsIR problem is to search for
an image, given as a whole, which is to be contained within
another image, whereas in RBIR one is searching for a re-
gion, possibly the result of some image segmentation. For
instance, in the Blobworld project [4] the query image is seg-
mented into regions and the retrieval task is that of finding
database images that have a region similar to a give region
from the query image. The CBsIR is more intuitive since
users can provide a query image as in traditional CBIR, and
unlike RBIR, it does not rely on any type of segmentation
preprocessing.
Most early researches on CBIR have been focused on de-

veloping effective global features [5], which are not suitable
for representing images at object-level. To solve the CBsIR
problem, we proposed in [13] an approach called HTM (Hier-
archical Tree Matching) which used a tree to model a hierar-
chical decomposition of an image, encoding the color feature
of image tiles which are in turn stored as an index sequence.
The retrieval of relevant images is accomplished effectively
and efficiently by comparing the query’s tree structure with
all subtrees of the tree structure for the database images.
The main contribution of this paper is to improve the

retrieval performance obtained in [13] by applying two tech-
niques: a more powerful yet compact representation for the
tile features to embody the user’s perceptions of image con-
tent, and relevance feedback (RF), to learn the user’s inten-
tions. For the first, we use a recent alternative for CBIR
called BIC (Border/Interior pixel Classification) [12]. It de-
pends on a simple yet powerful image analysis algorithm,
whose result can be efficiently stored and compared. RF is
an interactive learning technique which has been demon-
strated to boost performance in CBIR systems [8][9][10].
Despite the great potential of RF shown in CBIR systems
using global representations, and also in RBIR systems, to
the best of our knowledge there is no research that uses it
within CBsIR.
The remainder of this paper is organized as follows. In

the next section we briefly review the CBsIR framework in-
troduced in [13], summarize the BIC method for CBIR and

how we adopt it for the CBsIR system. The tile re-weighting
scheme and the RF strategy using query refinement as well
as the incorporation of user’s judgement in the image simi-
larity measure are discussed in Section 3. In Section 4, we
present and discuss experimental results. Finally, Section 5
concludes the paper and offers directions for future work.

2. BACKGROUND: HTM AND BIC
Region-based image retrieval systems with a similar re-

trieval goal, e.g., [4, 7], use automatic image segmentation
algorithms which usually lead to a super segmentation of
the image when trying to achieve homogeneous visual prop-
erties. Sometimes the obtained regions are only part of a real
object which a user would likely identify by looking at the
image and should be combined with some neighbor regions
so as to represent a meaningful object. Complex distance
functions are generally used to compare poorly segmented
images at query time. Also, the number and size of regions
per image are variable and a precise representation of the
obtained regions may require substantial storage overhead.
Aiming to overcome the issues above, we proposed in [13]

a new method called HTM (Hierarchical Tree Matching) for
the CBsIR problem. It has three main components: (1)
a tree structure that models a hierarchical partition of im-
ages into tiles using color features, (2) an index sequence
to represent the tree structure (allowing fast access during
the search phase), (3) a search strategy based on the tree
structures of both database images and the query image.
To model an image, a grid is laid on it yielding a hier-

archical partition and tiles. Although granularity could be
arbitrary, we have obtained good results using a 4×4 grid
resulting in a three-level multiscale representation of the im-
age (similarly to what was done in [3] and [6]). The hierar-
chial partition of an image and its resulting tree structure
are illustrated in Figure 1. There are three levels in the hi-
erarchical structure. The highest level is the image itself.
For the second level the image is decomposed into 3×3 rect-
angles with each side having half the length of the whole
image, yielding 9 overlapping tiles. The lowest level consists
of 4×9=36 rectangles, since each tile of the second level is
partitioned into 4 non-overlapping sub-tiles. Note that, to
exclude redundance in the CBsIR system, only the indices of
the 4×4=16 unique tiles in the lowest level are stored with
a small structure for relationship information. The average
color of the image tiles in the RGB color space is associ-
ated to the nodes in the tree stuctures for images. Thus,
every database image is represented as a series of tiles, each
of which is mapped to a subtree of the tree modeling the
image. It should be noted that although similar, the tree
model of the hierarchical partition is not the well-known
Quadtree [2]. Our tree structure models the overlapping tiles
at intermediate levels from the hierarchical partition, while
the Quadtree is used to describe a class of hierarchical data
structures whose common property is that they are based on
the principle of recursive decomposition of non-overlapping
tiles.
An index sequence representing the predefined parent-

child relationship (given by the predefined order of sequence
in the index) for the tree structure is stored on secondary
storage and used for fast retrieval. Details about the in-
dex sequence structure can be found in elsewhere [13]; in
short, it resembles a priority tree where the relative order
among the tree nodes reflect the relative order of the entries

and which can be efficiently mapped onto an array struc-
ture. Such an structure allows one to efficiently traverse the
necessary indices for computing (sub)image similarity.
The searching process is accomplished by “floating” the

tree structure of the query image over the full tree struc-
ture of the candidate database image, shrinking the query’s
tree structure so that it is comparable with the candidate
database image’s trees at each level of the hierarchical struc-
ture. The minimum distance from tree comparisons at all
hierarchical levels, indicating the best matching tile from a
database image, is used as the distance between the database
image and the query. Different from [6], the HTM search
strategy considers local information of images’ tiles repre-
sented by leaf nodes in the subtree structures. The average
of distance values among the corresponding leaf nodes is
taken for the distance between the tree structures of query
image and a certain tile of the database image at any hier-
archical level. Experiments detailed in [13] show that this
yields better retrieval accuracy compared to related work at
the cost of small storage overhead.
The image analysis algorithm of BIC [12] classifies pixels

as either border or interior, and two normalized histograms
are computed considering only the border pixels and the
interior pixels respectively. That is, for each color two his-
togram bins exist: one in the border pixel histogram and one
in the interior pixel histogram. This allows a more informed
color distribution abstraction and captures implicitly a no-
tion of texture.
For histogram comparison, the dLog distance function is

used to diminish the effect that a large value in a single his-
togram bin dominates the distance between histograms, no
matter the relative importance of this single value [5][11].
The basic motivation behind this is based on the obser-
vation that classical techniques based on global color his-
tograms treat all colors equally, despite of their relative
concentration. However, the perception of stimulus, color
in images in particular, is believed to follow a “sigmoidal”
curve [11]. The more relative increment in a stimulus is
perceived more clearly when the intensity of the stimulus
is smaller than when it is larger. For instance, a change
from 10% to 20% of a color is perceived more clearly than
a change from 85% to 95%. Indeed it has been a well
observed phenomena regarding many other phenomena in-
volving how sensitive one is (including animals) to differ-
ent stimuli [1]. Thus, the distance function is defined as:

dLog(a, b) =
∑M

i=0 |f(a[i])−f(b[i])| where f(x) = 0 if x = 0;
1 if 0 < x ≤ 1 or dlog2xe+1 otherwise, and a[i] and b[i] rep-
resent the ith bin of histograms a and b respectively. Note
that if we normalize the histograms bins in the [0, 255] range
of integer values, instead of usual [0, 1] continuous range,
the f(x) function will return integers in the range [0, 9],
requiring only 4 bits of storage per histogram bin. This al-
lows substantial reduction in storage, and yet a quite fine
discretization of the bins.
The BIC approach was shown to outperform several other

CBIR approaches and, as such, we adopt it in the CBsIR
system to extract and compare the visual feature of each
tile with the goal of improving the retrieval accuracy when
compared with the simpler approach adopted in [13], where
for each tile only the average color was recorded and used
for image indexing. Next, we introduce RF into our CB-
sIR system (combined with the HTM schema and the BIC
method) in order to improve retrieval performance.

A B

C D

b dca

...

...

e f g h

i

p

 1st level 2nd level 3rd level

 image I

 Original

A

I

B

 a b

C D

 e f b c f g c d g h i p

Figure 1: Hierarchical partition of an image and the resulting tree structure.

3. RELEVANCE FEEDBACK FOR CBSIR
Researches in RBIR [9][14] have proposed a region weight-

ing scheme for relevance feedback (RF). In this paper we
propose a tile re-weighting scheme that specializes the tech-
nique presented in [9] to accomodate our tile-oriented (not
region-oriented) HTM approach for CBsIR. It should be em-
phasized that instead of considering all the images in the
database to compute the parameters for region weight [14]
(which is computationally expensive), our tile re-weighting
scheme uses only the positive and negative examples iden-
tified by the user to update the tile penalty of the positive
images only, which is much more efficient. Moreover, the
region re-weighting scheme in [9] uses a predefined similar-
ity threshold to determine whether the region and the im-
age is similar or not, otherwise the comparison of region
pairs would become too expensive since images might con-
sist of different and large number of regions. This threshold
is sensitive and subject to change for different kinds of im-
age datasets. Thus, how to obtain the right threshold is yet
another challenge for the RF method in RBIR. However,
our RF method for the CBsIR problem does not need any
threshold because the number of obtained tiles is the same
and small for each database image and there exists implicit
relationship between the tiles, which makes it easier to com-
pare them.
In our system, the user provides feedback information

by identifying positive and negative examples from the re-
trieved images. The basic assumption is that important tiles
should appear more often in positive images than unimpor-
tant tiles, e.g., “background tiles” should yield to “theme
tiles” in positive images. On the other hand, important tiles
should appear less often in negative images than unimpor-
tant tiles. Following the principle of “more similar means
better matched thus less penalty”, we assign a penalty to ev-
ery tile that represents the database image for the matching
process. The user’s feedback information is used to estimate
the tile penalties for all positive images, which also refines
the ranking of images. Note that during the RF iterations,
users do not need to specify which tile of a certain positive
image is similar to the query1.
Next, we introduce some definitions used to formalize the

overall RF process.

Definition 1: The distance between two tiles Ta and Tb

from images Ia and Ib respectively, is:

DT (Ta, Tb) =

∑m

i=1 Dist(Feature(Tai
), F eature(Tbi

))

m

wherem is the number of unique leaf nodes in the tree struc-
tures at any hierarchical level (if already at the leaf level,

1This would only make the problem simpler at an additional
cost to the user. Nonetheless, we plan to address this in the
future.

m = 1). The Dist function is to be instantiated with some
particular distance measure based on the result of the fea-
ture extraction done by the Feature function on the tiles,
e.g., BIC’s dLog() function defined in the previous section.
¥

Definition 2: The penalty for a certain tile i from a database
image after k iterations is defined as: TPi(k), i = 0, · · · , NT ,
where NT+1 is the number of tiles per database image, and
TPi(0) is initialized as

1
NT+1

. ¥
For instance, in Figure 1, NT+1 = 1+9+16, i.e., is equal

to the number of nodes in the tree structure representing the
hierarchical partition of a database image; for the lowest
level, only unique nodes count.

Definition 3: For each tile from a positive image, we de-
fine a measure of the distance DTS between tile T and an
image set IS = {I1, I2, · · · , In}. This reflects the extent to
which the tile is consistent with other positive images in the
feature space. Intuitively, the smaller this value, the more
important this tile is in representing the user’s intention.
Assuming that I0

i denotes the whole image of image Ii

and that Ij
i denotes the jth tile of image Ii, DTS is de-

fined as: DTS(T, IS) =
∑n

i=1 exp(DT (T, I0
i)), if T is at

full tree level; if T is at subtree level, then DTS(T, IS) =∑n

i=1 exp(minj=1..NT DT (T, Ij
i)), where NT in this case is

the number of tiles at the current subtree level. ¥
Assuming that I is one of the identified positive example

images, we can compute the tile penalty of image I which
consists of tiles {T0, T1, · · · , TNT }. The user provides posi-
tive and negative examples during each kth iteration of feed-
back, denoted respectively as IS+(k) = {I+

1 (k), · · · , I+
p (k)}

and IS−(k) = {I−1 (k), · · · , I−q (k)}, where p + q is typically
much smaller than the size of the database.
Based on the above preparations, we now come to the

definition of tile penalty.

Definition 4: For all images (only being positive), the tile
penalty of Ti after k iterations of RF is computed (and nor-
malized) as:

TPi(k) =
Wi ×DTS(Ti, IS+(k))

∑NT

j=0(Wj ×DTS(Tj , IS+(k))

where Wi = 1 −
DTS(Ti,IS−(k))

∑
NT
j=0

DTS(Tj ,IS−(k))
, acts as a penalty, re-

flecting the influence of the negative examples. ¥
This implies the intuition that a tile from a positive ex-

ample image should be penalized if it is similar to negative
examples. Basically, we compute the distances DTS be-
tween a particular tile T and the positive image set IS+ as
well as the negative image set IS− respectively to update
the penalty of that tile from a positive example image. The
inverse of the tile’s distance from the negative image set is
used to weight its corresponding distance from the positive
image set.

Trees for Tiles

T1,T2,...,T9

 TPdb1(1)= 0.090

 TPdb4(1)= 0.112

 TPdb7(1)= 0.117

T1

 TPdb2(1)= 0.082

 TPdb5(1)= 0.105

T2

T4

T5

T7 T8

 TPdb3(1)= 0.086

 TPdb6(1)= 0.100

 TPdb9(1)= 0.090

T3

T6

T9

 TPdb8(1)= 0.113

TPdb0(1) = 0.105

Tree for Tile T0

T0

Query Image Positive Example I1

Figure 3: Comparison of tile penalty for database image I1 before and after feedback.

Initially retrieved images

 User’s Feedback

Query Q Image I3Image I2

Positive

Image I1

Positive

Negative

Figure 2: Initial set of retrieved images with user’s
feedback.

Let us now illustrate the above methodology with a sim-
ple example, which also motivates the notion of tile penalty.
For simplicity, assume that the color palette consists of only
three colors: black, gray and white. Figure 2 shows the
top 3 retrieved images and the users’ judgement. Image I1

is marked as a positive example since it actually contains
the query image, which exactly represents the sub-image re-
trieval problem we are dealing with. Image I2 is also marked
as a positive example because it is the enlargement of the
query image (and therefore containing it as well).
For the sake of illustration, assume a two-level multiscale

representation of database images is used as in Figure 3.
The tile penalties for tiles per database image are initialized
as 0.1 for the 10 tiles, i.e., TPi(0) = 0.1, i ∈ [0, 9]. Now,
take tile T1 for example. According to Definition 3, we need
to compute the distances DTS between T1 and the posi-
tive/negative image set. In order to do this, firstly, the dis-
tances between T1 and all tiles at the corresponding subtree
levels of all the images in the positive/negative image set
should be obtained by Definition 1. Then, using Definition
4 the new penalty of T1 is updated from 0.1 to 0.090 accord-
ingly. The penalties for other tiles are updated in the same
way during each feedback iteration. We illustrate the new
values of all tile penalties for database image I1 as a positive
example after one feedback iteration in Figure 3. We can see
that after the user provides feedback information, some tiles
lose some weight while others gain. For instance, T1, T2, T3

and T9 receive less penalties now because they only con-
tain the color of grey and/or black which is/are also in the
query. T0, T4, T5, T7 and T8 are penalized more since they all
contain the color white. The new weights for these tiles gen-
erally follow the trend that more percentage of white color
more penalty. T6, which is a rotation of the query image
maintains its weight for this iteration. This means that our

system is to some extent also capable of perceiving changes
such as rotation.
The RF process using query refinement strategy is based

on the tile re-weighting scheme and all positive and nega-
tive example images. The main concern is that we need to
maintain as much as possible the original feature of query
image while introducing new feature elements that would
capture more new relevant images. Considering the hierar-
chical tree structure of the query image, we use the most
similar tile (with minimum tile penalty) at every subtree
level of each positive image to update the query feature at
the corresponding subtree level.

Definition 5: The updated query feature after k iterations
is:

qnk
l [j] =

∑p

i=1(1− TPminil
(k))× Posk

il
[j]

∑p

i=1(1− TPminil
(k))

where qnk
l is the new feature with M dimensions for a subtree

(tile) at the lth level of the tree structure for the query image
after k iterations, TPminil

(k) is the minimum tile penalty
for a subtree (tile) found at the lth level of the tree structure
for the ith positive image after k iterations, Posk

il
is the

feature for the subtree (tile) with minumum tile penalty at
the lth level of the ith positive image’s tree structure after k
iterations, and p is the number of positive images given by
the user at this iteration. ¥
Intuitively, we use the weighted average to update the

feature for a subtree (tile) of the query, based on the features
of those tiles that have minimum tile penalties within the
respective positive images. In this way, we try to approach
the optimal query that carries the most information needed
to retrieve as many relevant images to the query as possible.
With the updated query feature and tile penalties for pos-

itive images, we can now define the distance between images
and the query for ranking evaluation at each feedback iter-
ation. In order to locate the best match to the query sub-
image, our image similarity measure tries to find the minu-
mum from the distances between the database image tiles
and the query (recall that both the database image and the
query sub-image have been modeled by the tree structure
in the same way) at corresponding hierarchical level in the
tree structure, weighted by the tile penalty of corresponding
database image tiles.

Definition 6: The distance between the (updated) query
image Q and a database image I at the kth iteration is:

DIk(I, Q) = mini=0..NT TPi(k − 1)×DT (Ii, Qj)

where NT +1 is the number of all subtrees in the tree struc-
ture (tiles) of a database image, and TPi(k − 1) is the tile
penalty for the ith tile of image I after k − 1 iterations. ¥
For the comparison of full tree structures, i = 0 and j = 0,

indicates both the full tree structure of the database image
and the query image. For the comparison of subtree struc-
tures, i = 1..Nl for each 1 ≤ j ≤ (L − 1), where Nl is
the number of subtree structures at the lth level of the tree
structure and L is the number of levels of the tree structure,
mapped from the hierarchical partition. j indicates the sub-
tree structure at a particular level of the query image’s tree
structure, as a result of shrinking the original query tree
structure to make the comparison with the subtree struc-
tures of database images comparable.
Thus, the overall RF process for the CBsIR system can

be summarized in the following pseudo algorithm:

1. The user submits a query (sub)-image with no concern
about whether the query is a tile or similar to any tile
of any database image;

2. The system retrieves the initial set of images using a
similarity measure, which consists of database images
containing tiles similar to the query sub-image;

3. The system collects the positive and negative feedback
examples identified by the user;

4. For each positive image, update the tile penalties of
those tiles representing this image using positive ex-
amples and negative examples;

5. Update the query using positive images and their newly
updated tile penalties;

6. Use the revised query and new tile penalties for database
images to compute the ranking score for each image
and sort the results;

7. Show the new retrieval results and go to step 3.

4. PERFORMANCE STUDY
We test the proposed relevance feedback approach for

the CBsIR system using a broad-domain image dataset. It
consists of 10,150 color JPEG images: a mixture of the
public Stanford10k2 dataset and some images from one of
COREL’s CD-ROMs, each of which falls into a particular
category – we use 21 such categories3. Some categories do
not have rotated or translated images, but others do. On
average, each answer set has 11 images, and none of the
answer sets has more than 20 images, which is the amount
of images we present to the user for feedback during each
iteration. We manually crop part of a certain image from
each of the above categories to form a query image set of 21
queries (one for each category). Images of the same cate-
gories serve as the answer sets for queries—one sample query
and respective answer set are shown in the Appendix (Fig-
ure 7). The size of the query image varies, being on average

2http://www-db.stanford.edu/∼wangz/image.vary.jpg.tar.
3The union of http://db.cs.ualberta.ca/mn/CBIRone/ and
http://db.cs.ualberta.ca/mn/CBIRtwo/

18% the size of the database images. The following per-
formance results are collected from the online demo4 on a
computer running Linux 2.4.17 with two Pentium III CPUs
and 256MB of main memory.
For certain applications, it is more useful that the system

brings new relevant images (found because of the update of
query feature from previous feedback) forward into the top
range rather than keeping those already retrieved relevant
images again in the current iteration. For other applica-
tions, however, the opposite situation applies and the user
is more interested in obtaining more relevant images during
each iteration including those s/he has already seen before.
Besides, it is more helpful that the system learn the user’s
intention within as fewer iterations as possible. Given these
observations, we use two complementary measures for pre-
cision and recall as follows:

• Actual Recall: the percentage of relevant images re-
trieved at each iteration over the number of relevant
images in the answer set.

• Actual Precision: the percentage of relevant images
retrieved at each iteration over the number of retrieved
images at each iteration.

• New Recall: the percentage of relevant images that
were not in the set of the relevant images retrieved
during previous iterations over the number of relevant
images. (Measured only after the first iteration, i.e.,
after the first feedback cycle.)

• New Precision: the percentage of relevant images that
were not in the set of the relevant images retrieved
during previous iterations over the number of retrieved
images. (Also measured after the first iteration.)

The new recall and precision explicitly measure the learn-
ing aptitude of the system; ideally it retrieves more new
relevant images as soon as possible.
Moreover, we also try to measure the total number of

distinct relevant images the system can find during all the
feedback iterations. This is a history-based measure that
implicitly includes some relevant images “lost” (out of the
top presented images) in the process. We call them cumu-
lative recall and cumulative precision defined as follows:

• Cumulative Recall: the percentage of distinct relevant
images from all iterations so far (not necessarily shown
at the current iteration) over the number of relevant
images in the predefined answer set.

• Cumulative Precision: the percentage of distinct rele-
vant images from all iterations so far over the number
of retrieved images at each iteration.

Table 1 exemplifies the measures mentioned above, as-
suming the answer set for a query contains 3 images A, B,
C and the number of images presented as the answer is 5.
In our experiments, the maximum number of iterations

explored is set to 10 (users will give feedback 9 times by
pointing out which images are relevant (positive)/irrelevant
(negative) to the query) and we present the top 20 retrieved
images at each iteration. Note that in our system the series
of feedback iterations between queries are independent, i.e.,

4http://db.cs.ualberta.ca/mn/CBsIR.html

Table 1: Illustration of Cumulative/New/Actual Recall and Precision (assuming that 5 images are returned
per iteration and that A, B and C are relevant).

Iteration Retrieved Relevant Images Cumulative Recall/Precision New Recall/Precision Actual Recall/Precision

1 A 33.33%/20% –/– 33.33%/20%
2 A 33.33%/20% 0%/0% 33.33%/20%
3 B,C 100%/60% 66.67%/40% 66.67%/40%

the information collected from the user is not integrated into
the search for the next queries, even if the very same query is
submitted to the system again. This consideration is based
on the observation of the subjectivity of human perception
and the fact that even the same person could perceive the
same retrieval result differently at different times.
For the retrieval accuracy of relevant images using 64

quantized colors in the BICmethod, the results are shown in
Figure 4 and Figure 5 by the measures proposed above. As
it can be seen from both figures, after only 5 iterations the
actual recall and precision values increased by 55% and 60%
respectively, then reaching very stable values (also reflected
by the new recall and precision curves). It is also note-
worthy to mention that the stable actual precision value of
nearly 40% is not as low as it may seem at first. The an-
swer sets have an average of 11 images and since the user is
presented with 20 images, the maximum precision one could
get (on average) would be about 50% as almost half of the
displayed images could not be considered relevant by con-
struction. This interpretation leads to the proposal of the
following measure:

• Normalized Precision: the actual precision over the
maximum possible actual precision value.

Interestingly enough, careful consideration of such a mea-
sure however shows that is equivalent to the usual notion
of (actual) recall. Indeed, consider R and A to be the sets
of relevant answers and the retrieved answers with respect
to a given query. The actual precision is then defined as
|R ∩ A|/|A|. The maximum precision value one can obtain
is |R|/|A|. When the former is divided by the latter one
obtains |R ∩A|/|R| which is precisely the very definition of
actual recall.
This leads to the argument that precision-based measures

are not well suited for this type of scenario, where non-
relevant images are very likely to be included in the answer
set regardless of their relevance. The actual recall, being
concerned only with the relevant images is a more realistic
measure. Under this argument, 70% of stable actual recall
(or normalized precision) seems to be quite reasonable.
We also obtained about 85% for cumulative recall and

about 50% for cumulative precision. The reason for the
higher values than those for actual recall and actual pre-
cision is because some relevant images that may be “lost”
in subsequent iterations are always accounted for in these
measures.
Figure 6 shows the average cost, measured in seconds, to

process a query during each iteration, i.e., to access all disk-
resident data, complete the learning from the user’s feedback
at the current iteration (not applicable to the first iteration),
obtain the distance between the query image and database
images and sort them by their resulting ranks. When us-
ing 64 quantized colors, the first iteration takes, on average,

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

R
ec

al
l

of Iteration

Actual
Cumulative

New

Figure 4: Recall measures.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10

Pr
ec

is
io

n

of Iteration

Actual
Cumulative

New

Figure 5: Precision measures.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

Se
ar

ch
 T

im
e

(s
ec

.)

of Iteration

Figure 6: Average processing time of each iteration.

slightly less than 2 seconds, whereas each subsequent itera-
tion requires about 2.5 seconds. This slight increase is due to
the overhead for computing and updating the tile penalties.
In order to extract image features from the image database

applying the BIC method and generate the metadata file,
the use of 64 quantized colors requires about 25 minutes
on a computer runing Linux 2.4.20 with AMD Athlon XP
1900+ CPU and 1GB of main memory. This procedure can
nevertheless be done off-line. The storage cost for the disk-
resident metadata is 10.5 MB (only about 20% the size of
the image database).
In summary, our proposed relevance feedback-based ap-

proach for content-based sub-image retrieval was able to
achieve a very good retrieval accuracy with small space cost
and fast retrieval time including the overhead due to the
feedback learning.

5. CONCLUSIONS AND FUTURE WORK
In this paper, the query refinement method in relevance

feedback is integrated with the CBsIR system by applying
a tile re-weighthing scheme to assign penalties to tiles that
compose database images so as to better approach the user’s
intention. The tile penalties of positive images based on
both the positive and negative examples identified by users
are used to update the query for an improvement of retrieval
accuracy of the next iteration. Also, a compact and efficient
CBIR approach was used to boost the power of HTM strat-
egy for CBsIR. Experimental results demonstrate the clear
performance improvement by this framework compared to
that of the previous CBsIR system [13], which used only av-
erage color as the feature representation for image tiles and
allowed only one iteration of retrieval.
Some venues for future work include integrating other

learning algorithms into CBsIR, handling the difference in
image resolution between possible queries and target images,
and accomplishing a more friendly user interface that allows
real time query definition/refinement. In order to address
the scalability of the proposed techniques efficient access
structures, likely metric ones, for the hierarchical trees are
also necessary.

Acknowledgments
This work was supported in part by the Natural Sciences
and Engineering Research Council (NSERC), Canada, the
Alberta Informatics Circle of Research Excellence (iCORE),
and the Canadian Cultural Content Management Research
Network, a Network financed through Heritage Canada’s
New Media Research Networks Fund.

6. REFERENCES
[1] J. C. Falmagne. Psychophysical measurement and
theory. In Handbook of Perception and Human
Performance, Vol. I, chapter 1. Willey Interscience,
1986.

[2] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-wesley Publishing Company, Inc,
1990.

[3] K-S. Leung, R. Ng. Multiresolution Subimage
Similarity Matching for Large Image Databases. In
Proc. of SPIE - Storage and Retrieval for Image and
Video Databases VI, pages 259–270, 1998.

[4] C. Carson, M. Thomas, S. Belongie, J. M. Hellerstein,
J. Malik. Blobworld: A system for region-based image
indexing and retrieval. In Proc. of 3rd Intl. Conf. on
Visual Information Systems, pages 509–516, 1999.

[5] G. Lu. Multimedia Database Management Systems.
Artech House, 1999.

[6] N. Sebe, M. S. Lew, D. P Huijsmans. Multi-Scale
Sub-Image Search. In Proc. of the 7th ACM Intl. Conf.
on Multimedia (Part II), pages 79–82, 1999.

[7] J. Li, J. Z. Wang, G. Wiederhold. IRM: Intergrated
Region Matching for Image Retrieval. In Proc. of ACM
Intl. Conf. on Multimedia, pages 147–156, 2000.

[8] Y. Rui, T.S. Huang. Optimizing Learning in Image
Retrieval. In Proc. of IEEE Intl. Conf. on Computer
Vision and Pattern Recognition, pages 236–245, 2000.

[9] F. Jing, B. Zhang, F. Lin, W. Ma, H. Zhang. A Novel
Region-Based Image Retrieval Method Using Relevance
Feedback. In Proc. of the 3rd Intl. ACM Workshop on
Multimedia Information Retrieval, pages 28–31, 2001.

[10] T.S. Huang, et al. Learning in Content-Based Image
Retrieval. In Proc. of the 2nd Intl. Conf. on
Development and Learning, pages 155–162, 2002.

[11] M. A. Nascimento, V. Chitkara. Color-Based Image
Retrieval using Binary Signatures. In Proc. of ACM
Intl. Symp. on Applied Computing, pages 687-692, 2002.

[12] R. O. Stehling, M. A. Nascimento, A. X. Falcao. A
Compact and Efficient Image Retrieval Approach
Based on Border/Interior Pixel Classification. In Proc.
of the 11th Intl. Conf. on Information and Knowledge
Management, pages 102–109, 2002.

[13] J. Luo, M. A. Nascimento. Content Based Sub-Image
Retrieval via Hierarchical Tree Matching. In Proc. of
the 1st ACM Intl. Workshop on Multimedia Databases,
pages 63–69, 2003.

[14] F. Jing, M. Li, L. Zhang, H. Zhang, B. Zhang.
Learning in Region-Based Image Retrieval. In Proc. of
the 2nd Intl. Conferenence on Image and Video
Retrieval, pages 206–215, 2003.

APPENDIX
Figure 7 shows one example query image and the relevant
answer set, i.e., any image outside this set retrieve when
this query is posed is considered non-relevant. Note that
it is possible that others could find other images also rele-
vant. Unfortunately this is very difficult to take into account
unless a larger scale experiment involving several different
subjects is deployed.
Figures 8 shows which images of such an answer set, and

their respective ranks, were retrieved in the first iteration,
i.e., before any feedback was given. (Recall that only the 20
top ranked images are shown to the user.) When these three
images are provided as positive examples, the answer set be-
comes much better. Figure 9 shows now that not only all im-
ages previously obtained were ranked higher but also more
new images were found and also ranked high. Note that the
the actual precision for these two iterations would be 15%
and 25% respectively, whereas the actual recall would be
37.5% and 62.5% respectively. We believe the latter to be
a more realistic measure of effectiveness since, in the case
of this query, actual precision could be not be higher than
40% regardless of how well once could retrieve the relevant
images.

Query Image Answer Set

Figure 7: A sample query (sub)image and its relevant answer set.

Rank: 1 Rank: 12 Rank: 18

Figure 8: Rank of the relevant images obtained after the first iteration (no feedback given).

Rank: 1 Rank: 2 Rank: 3

Rank: 4 Rank: 5

Figure 9: Rank of the relevant images obtained after the second iteration (feedback given once).

