CMPUT 675: Approximation Algorithms Winter 2005

Lecture 10: Feb 11
Lecturer: Mohammad R. Salavatipour Scribe: Junfeng Wu

In the next few lectures we will be talking about several cut problems.

10.1 Multiway cut

Consider the minimum s, t-cut problem:

Definition 10.1 Given an undirected graph G(V, E) with weights w(e) > 0 for every edge e € E and given
two terminals s,t € V, find a minimum cut between s,t (i.e. a set of edges whose removal disconnect s,t).

This problem can be solved by using max-flow algorithms and the following theorem.

Theorem 10.2 (max-flow/min-cut) The value of maz-flow between s and t in G is equal to size of the
minimum S, t-cut.

Now suppose that instead of two terminals, we are given a set S = {Si, ..., Sk} of terminals and want to find
a min-cut that separates all the terminials.

Definition 10.3 Multiway cut: Given an undirected weighted graph G(V,E) and S = {s1,...,s1} of
terminals, find a minimum weight set C' of edges such that all the terminals are disconnected in G — C.

This problem is NP-hard for k¥ > 3. Here, we are going to present a (2 — £)-approximation algorithm for
this problem. The idea is to take a union of cuts each of which separates at least one s; from the other ones.
We can find each of these cuts using max-flow.

Definition 10.4 A set of edges is called an s;-cut if removing that set separates s; from S — s;.

Note that if we consider all the terminals in S —s; as one single terminal ¢ then using the max-flow algorithms
we can find an s;-cut in polynomial time.

Multiway Cut:
for it +— 1to k do
let C; be a minimum s;-cut
Discard the largest C; and return the union of the other ones, call it C.

Theorem 10.5 This is a 2(1 — %)—approa:imation algorithm for multiway cut.

10-1

10-2 Lecture 10: Feb 11

Proof: First observe that C is a multiway cut: WLOG assume that the discarded cut is Cg, i.e. C = Uf;ll C;.
Thus C disconnects s; from all other terminals for each 1 < ¢ < k. Thus s; must be disconnected from other
as well.

Nowe consider an optimal solution A and consider G — A. Since A is a multiway cut G — A has > k
components. Because of the optimality of A, G — A has < k components (otherwise we have removed edges
that have created components that don’t contain any terminal, we can put those edges back). Thus G — A
has exactly k components. Let Gy, ..., G be the components of G — A and let A; be the edges between G;
and G — G}, i.e. the cut (G;,G — G;). Note that Ule A; = A and since every edge of A belongs to exactly
two of A;’s: Zle w(A;) = 2w(A), where w(.) returns the total weights of edges of a set of edges. Since C;
is a minimum cut separateing s; from the rest of the graph: w(C;) < w(4;). Thus:

k
1
w(@) < (1-p) D w(C)
i=1
L
< 1-9) > w(Ay)
i=1
1
< 2(1- E)w(A).
|
Here is a tight example for the analysis of this algorithm: Consider a graph on 2k vertices vy, ..., vg, S1,-- -, Sk
where vy, ...,v; form a cycle of size k with each edge having weight 1 and each (terminal) s; is connected

(only) to v; with an edge of weight 2— € for an arbitrary small € > 0. Then for each terminal s;: w(C;) =2—¢
and therefore w(C) = (k — 1)(2 — €). But the optimal solution is to remove all the k edges of the cycle. So

w(OPT) = k and % =(2-¢)(1-1).

A %—approximation algorithm: chapter 19, using a clever LP formulation. The best known approximation
algorithm for this problem is a 1.3438-approximation algorithm by Karger, Klein, Stein, Thorup, and Young
(STOC '99).

10.1.1 Min Steiner k-cut and min k-cut

Definition 10.6 Given a connected weighted undirected graph G(V, E), find a minimum weight set C of
edges that G — C has k components.

Unlike multiway cut, this problem belongs to P for any fixed k, but it remains NP-Complete for arbitrary
k. There is a common generalization of both multiway cut and min k-cut, called Steiner k-cut.

Definition 10.7 Steiner k-cut: given a connected undirected weighted graph G(V,E), a set X CV of
terminals, and integer k; find a minimum weight cut that creates k components, Vi, ..., Vi, such that V;NX # ¢
for 1 <i<k.

If | X| = k then we have the multiway cut problem. If X = V then we have the min k-cut problem. We
present a 2(1 — %)—approximation algorithm for Steiner k-cut.

Let T(V, Er) be a tree on V (but may contain edges that are not in E). For each uv € Er, T — uv has
two components on vertex sets S and V — S. Consider the cut (S,V — S) in G. We call this cut the cut
associated with uv. If T satisfies the following two properties then we call it a Gomory-Hu tree:

Lecture 10: Feb 11 10-3

1. w(uww) in T is the weight of the cut associated with uv,

2. Yu,v € G, the minimum wu, v-cut in G has the same weight as the minimum wu, v-cut in 7T'.
It can be proved that:
Lemma 10.8 we can compute a Gomory-Hu tree in polytime.

Steiner k-cut Algorithm:
Compute a G-H tree
For k — 1 iteration do:
pick the smallest edge in T' that separates a pair of terminals (in X) that are not already separated.
Return the union of the cuts associated with these edges, call it C.

Lemma 10.9 The algorithm returns a Steiner k-cut.

Proof: Clearly each component generated has at least one terminal. Also, each cut (corresponding to an
edge of T') increases the number of components by 1. Since the algorithm has k — 1 iterations, there will be
k connected components at the end. []

Theorem 10.10 This is a 2(1 — %)—appromimation algorithm for Steiner k-cut.

Proof: Assume that A is an optimal solution and let Vi,...,V; be the components of G — A. Define
A; = (V;,V = V;). Each V; has at least one vertex of X. Choose a terminal from each each V; and call it
t;, 1 <1i < k. Without loss of generality, assume that w(A;) < w(As) < ... < w(Ag). We show that there
are k — 1 cuts defined by the edges of T' whose weights are dominated by the weights of A;,..., Ax_1. Since
each edge of A belongs to exactly two A;’s:

Let 7' C T be the set of edges of T that correspond to the cuts A, ..., A;. Consider the graph on vertex
set V and edges set T'. Now shrink each V; (1 < ¢ < k) into a single vertex ¢;. We obtain a connected graph
(because T was origianlly connected). Delete extra edges until we are left with a tree on ty,...,#, call it B.
Note that the & — 1 edges that remain in B belong to T', too. Put directions on the edges of B such that
each edge is directed toward tj. This helps in defining a correspondence between the edges of B and sets
Vi,...,Vk_1: each edge of B corresponds to one set V; (1 <i <k — 1), i.e. the one which has the terminal
that the edge is coming out of in the rooted tree. Consider an edge uv of B corresponding to a leaf, say t;.
By property 2 of G-H trees: w(uwv) is the weight of a minimum w,v-cut in G. Therefore, the weight of this
edge is at most w(A4;). We can now remove this vertex and edge from the tree and do the same argument.
Since we pick the k — 1 lightest edges of T' (that separate terminals from X), this implies that:

k—1 kE—1
Therefore:
k—1 k—1 L 1
w(C) < w(C) <Y wldi) < (1= 1) Y w(di) <201 - Dw(4)

