CMPUT 675: Approximation Algorithms Winter 2005

Lecture 14: Mar 4

Lecturer: Mohammad R. Salavatipour Scribe: Frederick Vizeacoumar

Last lecture, we defined the problem of Packing edge-disjoint Steiner trees. This lecture we will be discusing
about the same problem but in directed graphs. As we will see the approximation factor we obtain is much
worse than the one for undirected case (wehre we had an O(1)-approximation). The main reason behind it
is a hardness result for this version of the problem that will be presented next lecture.

14.1 Packing Edge Capacitated Directed Steiner Trees (PED)

Packing edge capacitated directed Steiner tree probelm is defined as follows:

Input: Given a directed graph G = (V, E) with a set T C V of terminals which includes a vertex r called
root. We also have capacity on the edge ¢, € Z*on every edge e € E.

Goal: Find the maximum number of directed Steiner trees covering all the terminals, such that at most ¢,
trees contain e, for every e € E.

In general this problem is NP-hard. In fact, it can be shown that even finding two edge-disjoint directed
Steiner trees when |T'| = 3 is NP-hard. So the question is how good of an approximation algrorithm we can
find for this problem. In this lecture, we will see an O(m?*¢)-approximation where m = |E|.

14.1.1 The Primal-Dual formulation

We can formulate the problem as an IP in the same manner we did for the undirected version of the problem.
Let F be the set of all directed Steiner Trees of G. We will have a 0/1 indicator variable z for every directed
Steiner tree F' € F. First, we obtain an integer programming formulation of the problem and then derive
its LP-relaxations.

mazimize Y, Tp
FeF

subject toVee E, Y. xp <C,
F:e€F

TR € {0,1}

The LP-relaxation is obtained by replacing the constraint zp = {0,1} with zp > 0.

mazximize Y, Tp

subject to Ve € E, > zr < C,
F:eeF

.’EFZO
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Next, we derive the dual LP:

minimize Y,  Ye

subject toVF € F, >, ye>1
ecF

Ye >0

The separation oracle for this LP is the problem of finding minimum edge-weighted directed Steiner tree.
We use Theorem 13.8 from the last lecture can be adpated to prove the following:

Theorem 14.1 There is an a-approrimation for fractional PED if and only if there is an a-approzimation
for minimum weighted directed Steiner tree problem.

The problem is that minimum directed Steiner tree problem is a hard to approximate within a factor of
Q(log® € n) for any € > 0. However, there is a polynomial time O(n¢)- approximation for this problem, for
any fixed € > 0.

Theorem 14.2 (Charikar, Chekuri, Cheung, Dai, Goel, Guha, M. Li’99) For any fized e > 0, there
is a polytime O(n)-approzimation for minimum directed Steiner tree problem.

Therefore, using this theorem and Theorem 14.1 we obtain:
Corollary 14.3 There is an O(n¢)-approzimation algorithm for fractional PED.

A feature of algorithm of Theorem 14.1 is that it obtains an approximate solution to the LP in which only
a polynomial zg’s are non-zero. We are going to do randomized rounding on this LP to find an integral
solution with the desired approximation ratio. The following lemma is the captures the heart of the proof:

Lemma 14.4 (Main Lemma) Let I be an instance of PED and Iy be the corresponding fractional problem
(the primal LP) and and let ©* be the (objective) value of a (not necessarily optimal) feasible solution
{z}. : F € F} to Iy such that the number of non-zero x¥’s is polynomially bounded and each x}, < 1. Then,

we can find in polynomial time, a solution to I with value at least 0(%).

Proof: The idea is used randomized rounding and round every z3} to 1 (i.e. pick tree F) with probability

% for some A to be defined. This value of A will help in adjusting so that there is no violation of constraints
on edges.

We will use the following simple and well-known deviation bound.

Lemma 14.5 (Chernoff-Hoeffding Bounds) Let X1,Xo,...,X, be a set of ¢ independent random variables
with X; € {0,1} and let X = Y] X;. Then for 0 <4 < 1:

Pr[X < (1 — §)E[X]] < e TEXI/2,
Also, the following simple lemma (whose proof is straightforward) will help us.
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Lemma 14.6 Assume that A = {a1,...,a,} is a set of n non-negative reals and let Ay be the set of all
subsets of size k of A. If Y, a; < Q , then E{ail,...,aik}eAk @i iy - - - a5, < (7)(Q/n)E.

Let Xp be the random variable that is 1 if we pick tree F' and 0 otherwise. Then for X = ", . Xp (i.e.
the total number of trees picked by the algorithm), we have:

=3 PrXp=1]= A =‘07.
FeF FecF

For every edge e € E, define the bad event A, to be the event that the capacity constraint of e is violated,
i.e. more than ¢, trees containing e are picked. Our goal is to show that with some positive probability, none
of these bad events happen (i.e. all A.’s hold) and that the total number of trees picked is not too small. We
want to find a good upper bound for Pr[A.]. For every edge e, denote the number of trees F' with z} > 0
that contain e by .. By this definition:

ce+1
Prid.] <Y I =5, /7
i=1
where the summation is over all subsets {Fy,, ..., Fy,_,,} of size c. + 1 of trees with z7, > 0 that contain

edge e. Therefore, using Lemma, 14.6:

ce+1 ce+1 ce+1 2
PI‘[Ae] < we Ce < ed}e Ce <=,
Coe+1 At Ce+1 At A2

where we have used the fact (}) < (%2)* for the second inequality. It is intuitively clear that if A, holds then
it does not increase the probability of any other A.,. In other words, events A, are “positively correlated”.
Therefore:

®

2

Pr[ A\ 4] > ] PriAc] > 1_—)

ecE ecE

So, the probability that at least one event A, happens is at most (1 — i—i)m Also, by Lemma, 14.5, for
0<d<1: Pr[X < (1 -8)E[X]] < e 9°¢"/2X, Thus:

Pr[(X < (1-&E[X])V(Te € E: A.)] < e ¢ /2 11— (1 —e2/A%)™

If we can show that for suitable & and A: (1 — e2/A2)™ > e=9°¢"/2X then we can efficiently find a selection
of trees such that X > (1 — §)p*/\ and that no edge constraint is violated, using the method of conditional

2
probability. So we need to show that (1 — —) > e~

We can assume that ¢* > 20.e../m. Otherwise, we can find just one Steiner tree and return it. This is
clearly within a factor O(y/m) of the solution ¢*.

We choose § = £ and A = ey/m. Then

On the other hand




2

Therefore (1 — ;—2)"‘ > e~ 2. Thus with positive probability, X is at least 3 of its expected value which is
% and no bad event A, happens. [ K
The overall algorithm for the problem of packing edge-capacitated directed Steiner trees will be as follows.
First we use Corollary 14.3 to obtain an approximate fractional solution Iy with objective value ¢* such that
p* > cpy/ m? for some constant ¢ and the given € > 0. Then we apply a preprocessing step to the fractional
solution. For every Steiner tree F' with zr > 1 we “take out” |z | copies of that tree and put it in the final
integral solution, we decrease zr by |zr|, and also we update the capacities of the edges accordingly. This
decomposes z into a (multi)set of Steiner trees F; and a fractional part (with each entry zp < 1). We will
“round” the fractional part x to an integer solution (using Lemma 14.4). For the rest of the proof we may
assume that the fractional solution x has each entry < 1, since the other case reduces to this one.

Note that the approximate fractional solution x contains only a polynomial number of Steiner trees with
non-zero fractional values. If we substitute ¢* in Lemma 14.4 we obtain an approximation algorithm that
finds a set F' of directed Steiner trees such that F' has the required size. The total approximation factor of
this algorithm is O(m2+¢).
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