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Last time we saw an O(m?*+¢)-approximation algorithm (m = |E|) for the problem of Packing Edge Capac-
itated Directed Steiner Trees. As we can see, the approximation ratio is not good, but actually we can not
improve it much because the problem is hard. In this lecture, we are going to study a proof showing the
reason.

15.1 Packing Directed Steiner Trees

First we introduce two different versions of the problem. The problem can be defined based on edge con-
straints or vertex constraints.

Definition 15.1 (Packing Edge Capacitated Directed Steiner Tree (PED)) Input: Given a directed
graph G(V, E), and a set of terminals T CV containing root r. There is a capacity C. € ZT on every edge
e. Goal: Compute the maximal number of Steiner trees such that each edge e is in at most C, trees.

Definition 15.2 (Packing Vertex Capacitated Directed Steiner Tree (PVD)) We have capacities
on Steiner nodes. Find the maximal number of Steiner tree such that every Steiner node v € T belongs
to at most C, tree.

PED and PVD are equally hard. There is a theorem showing that they can be converted into each other.

Theorem 15.3 Given I = (G(V, E),T) is an instance of PED, then there is an instance I' = (G'(V', E'),T")
for PVD such that |G'| = poly(|G|) and I has k Steiner trees (satisfying edge capacities) iff I' has k Steiner
trees (satisfying vertexr capacities).

Proof: (1st direction) Create a new vertex v,, on every edge zy with a capacity equal to the capacity of
that edge. All the other Steiner nodes have oo capacities. The root and the other terminals are the same in
G and G'. Tt can be seen that G has k (directed) Steiner trees satisfying edge capacities if and only if G’
has k (directed) Steiner trees satisfying vertex capacities.

I

X Vi B %

Figure 15.1: A new vertex vz, on edge zy with C,,, = Cqy.

(2nd direction) For each node v € V, G' contains two nodes v1,v2. If v € T then both v; and vs become
terminals in G', and if r € T is the root then r; becomes the root in G'. We add v1vs to E' and give it
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the same capacity as vertex v in G. If v € T, then we give infinite capacity to vivs. Furthermore, for every
edge uv € E we create an edge usv; (with infinite capacity) in E’ and for every edge vw € E we create an
edge vow; (with infinite capacity) in E'. It is easy to see that if 7 is a collection of k Steiner trees in G that
satisfy vertex capacities then there is a collection 7' of k Steiner trees in G' that satisfy edge capacities.
Conversely, suppose that 7" is a collection of k Steiner trees in G’ satisfying edge capacities. Then for every
edge v1vs (corresponding to a vertex v € V(@) with capacity ¢, in G) there are at most ¢, trees containing
that edge. Therefore, by contracting the edges of the form v;v, on each tree of 7' we obtain a collection of
k Steiner trees in G such that for every vertex v there are at most ¢, trees containing it.
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Figure 15.2: Split v into v1 and ve with Cy, 4, = Cl.

Since the two problems can be easily converted into each other, in the remaining of this lecture, we will focus
on PVD only. First we show that even finding two disjoint Steine trees even if |T| = 3 is NP-hard. We will
use a reduction from the following useful problem called 2DIRPATH. The NP-compeleteness of this problem
has been used to prove hardness results for other problems, the most notably one being the disjoint paths
problems.
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(a) G (b) G (c) The two Steiner trees in G’, one
in dash lines and one in bold lines.

Figure 15.3: The problem of 2DIRPATH

Definition 15.4 (2DIRPATH) Given a directed graph G with distinct vertices ©1,y1,%2, and ya.
Question: are there two vertex-disjoint paths, one from x1 to y1 and one from xo to y2?

Theorem 15.5 2DIRPATH is NP-hard.
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Theorem 15.6 Given an instance of PVD with only 8 terminals (including the root), it is NP-hard to find
even two Steiner trees even if all capacities are 1.

Proof: Given a graph G as instance of 2DIRPATH, we construct a graph G’ as follows. We add a root r,
two terminals ¢; and t5, and a set of edges: rz1, rza, yit1, yatz, £1t2, and zaty. If there are (vertex) disjoint
paths z1 Piy; and 22 Pays in G then clearly z1 Piyy U {rzy,yit1, z1t2} and o Poys U {rxs, yats, xat1 } form
two vertex-disjoint directed Steiner trees.

Conversely, if there are two vertex-disjoint directed Steiner trees 71 and T» in G then, since r has only two
outgoing edges, we may assume that rx; € 71 and rzs € Ts. Therefore, there is a path from z; to ¢; in 77,
which must go through y; (since x5 is not in 77), and a path from x5 to ¢ in T, which must go through y,
(since z; is not in Ty). These two paths are vertex-disjoint because T; and T» are vertex-disjoint. [ |

With the knowledge of 2DIRPATH, we can prove the theorem below.

Theorem 15.7 Unless P = NP, every approrimation algorithm for PVD has factor Q(n%_e) (for PED, the
factor is Q(m3~¢)), for any € > 0.

Proof: We will prove a slightly modified version of the theorem with factor Q(n~¢). The proof of the
original factor Q(n3~¢) is similar.

Given an instance I(G(V, E),x1,y1,%2,y2) for 2DIRPATH, we construct a graph H as follows. Let N =
[V(G) ¢ for an arbitrary small € > 0. Create two row of vertices ai,as,---,an and by, bs,---,by. Draw
a line from a; to b; with ¢ # j (the solid lines in the figure) such that no 3 lines intersect at one point.
Every line segment between two intersection points is going to be an edge. All the edges are directed from
top to bottom. Now put a copy of G (for 2DIRPATH) at every intersection point of two solid lines, with
the vertices x1,z2 being the two points that the directed edge that were going into the intersection point
now enter the copy of G and y; and y, being the points that the directed lines that were going out of the
intersection point now go out from. Finally add the edges connecting a; and b; (dash lines in the figure).
Let the set of terminal be T' = {r, by, ba,---,bnx}.

Figure 15.4: Construct a new graph H
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Lemma 15.8 if G is a yes-instance, then H has N vertez-disjoint Steiner tree.

Proof: For every 1 < i < N, consider the following set of edges (which will form a tree T;): edge ra;, all the
directed edges on the line that connected a; to b; (for i # j), edge a;b;, plus the directed path from z; to y;
in every copy of G placed in this graph. First note that each Tj is a Steiner tree and there are N of them.
So we only need to show that they are vertex-disjoint. The only possible places that these trees can have
a common vertex are within the copies of graph G placed at the intersection of the lines. But since G has
vertex-disjoint paths, the paths from x; to y; and from x5 to y» are vertex-disjoint at every copy of G. So
the paths in these trees can “cross” each other without having any vertex in common at every intersection
point (i.e. copy of G). [ |

Lemma 15.9 if G is a No-instance, then H does not even have two vertex-disjoint Steiner trees.

Proof: Let’s assume (by way of contradition) that there are a set of vertex-disjoint Steiner trees £ =
{T1, -, Tx(k>2)}in H.

Claim 15.10 There can not be a directed path from a; to b; (for any i < j) in any Steiner tree of L.

We prove this by induction on i. First consider the case i = 1 and suppose we have a path a; ~ b; (j > 1)
in some tree T,. Then there can not be a path from any a;(¢ > 2) to b; in any Steiner tree T3. The reason
is that any such path must cross the path a; ~» b; at some intersection point, i.e. a copy of G. But because
G is a No-instance, it doesn’t have 2 vertex-disjoint paths from z; to y; and from x5 to yo. This shows that
there cannot be a directed path from a; to any b; for j > 1. For the induction step, let ¢ > 2 and assume
that there is a path Pia;,b;) from a; to b; (j > i) in some tree T,. Let Tg € T be any other tree in 7
and P(r,b;) be a path from r to b; in Ts. We assume this path goes through a;, for some 1 <7 < N. By
induction hypothesis, there is no path from aj,...,a;—1 to b; in any tree. Also, a; € T,. Sol > i. Again, if
we consider the embeddings of these two paths Py (a;,b;) and Pg(r,b;) on the plane, there is an intersection
point (a copy of ) in which these two paths cross each other without having any vertex in common. But
this is impossible because G is a “No” instance.

Therefore, the only possible path from r to by goes through ay. Thus, there can be only one Steiner tree
in 7: the one that contains ay. [

Of course H always has one Steiner tree: the union of all ra; and a;b; for 1 < ¢ < N. By Lemmas 15.8 and
15.9, deciding between N Steiner tree and 1 Steiner tree becomes deciding between if G is a Yes-instance or
No-instance, which is NP-hard. So we have a gap of N. Since H has ©(N*) (every pair of vertices from a;’s
and a pair from b;’s yields an intersection point) copies of G and N = |V(G) ¢, the number of vertices of H
is O(N*N¢) = n. Representing the gap N in terms of the number vertices, we get a hardness of Q(nz=<). m

15.2 Minimum Steiner Forest

Next, we will switch to a new topic. The corresponding chapter in the textbook is chapter 22.

Steiner Forest Problem

Input: given undirected graph G(V, E), capacities C : E — Q%, and a collection of disjoint subsets
Sla"')‘ska S’L gV
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Question: find a min cost subgraph such that the vertices of each S; are in one connected component.

Figure 15.4: Illustration of the problem.

To derived a solution for the problem, we first define the connectivity requirement function r. For any two
vertices u4 and v in graph G,

1 if u, v are in the same set S;;
0 otherwise.

r(u,v) = {

Figure 15.5: §(S) is the set of edges with exactly one end-point in S
Recall that for a set S C V, 6(S) is the set of edges with exactly one end-point in S. The minimal number
of edges that must cross cut S is :

1 JueSve S, r(uv)=1;
0 otherwise.

16 ={
Then we can derive the LP formulation of the problem.
Primal LP

minimize Y Cez,,
such that .55y Ze > f(S) for all S C 'V,
z. € {0,1}.
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Dual LP

maximize ys Y. f(9),
such that > ¢ qys <C,,Ve € E,
ys > 0.



