CMPUT 675: Approximation Algorithms Winter 2005
Lecture 16: Mar 11

Lecturer: Mohammad R. Salavatipour Scribe: Jianjun Zhouw

16.1 Steiner Forest (continue)

Recall the definition of Steiner forest problem:

Input: Given undirected graph G(V, E), capacities C : E — Q%, and a collection of disjoint subsets
S1,+++,Sk, where each S; CV.

Question: Find a min cost subgraph such that the vertices of each S; are in one connected component.
We defined the connectivity requirement function r for any two vertices u and v in graph G as:

1 if u, v are in the same set S;;
0 otherwise.

r(u,v) = {

Recall that for a set S C V, 6(S) is the set of edges with exactly one end-point in S. Then the minimum
number of edges that must cross cut S is :

£ )_{ 1 JueSve S, r(uv)=1;

1 0 otherwise.

From these definitions, we obtained the following primal and dual LP’s for the (relaxation of) Steiner forest
problem:

Primal:
minimize ) Ce.z.,
such that .55y %e > f(S) forall S C 'V,
ze > 0.
Dual:

maximize y, Y, f(9),
such that > 5. cq¥s < Ce,Ve € E,
ys > 0.

Definition 16.1 In the LP formulation of the Steiner Forest problem, we say:

e FEdge e feels dual ys if e € §(S) and ys > 0;

o FEdge e is tight if the total amount of dual that it feels is C..

The algorithm will have a primal-dual schema. We start with a primal and dual empty solution. Of course,
the primal is infeasible and the dual is not optimal. At each iteration, we choose an unsatisfied constraint of
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the primal and raise the corresponding dual variables until some edge goes tight. Then we pick tight edges
and continue. Here we state the primal and dual (relaxed) conditions:

Primal Condition: If z. > 0, then > g 5(s)Ys = Ce. In other words, we only pick tight edges.

Relaxed Dual Condition: If we could prove that the following dual condition holds then it would yield a
2-approximation algorithm: for each set S C V, if y, > 0, then }° 5.5 Te < 2f(5). In other words, for every
cut S which has raised dual variable, the number of edges picked from that cut is at most 2. Unfortunately
we cannot prove this condition. However, we can prove that on average the number of edges picked from
every cut S with yg > 0 is at most 2. This will be sufficient to yield a 2-approximation algorithm.

In the (informal) description of the algorithm above, we said that we find an unsatisfied constraint from the
primal LP and raise the dual values. But there are exponentially many constraints. How do we choose the
dual variables to be raised? We focus only on minimal unsatisfied cuts:

Definition 16.2 Given an assignment to variables x.’s and yg’s:

o A set S CV is unsatisfied if f(S) =1 and no edge from §(S) is picked.

o Active Set: a minimal unsatisfied set (with respect to inclusion).
The following theorem characterizes active sets.
Lemma 16.3 A set is active iff it is a connected component in the currently picked forest and f(S) = 1.

Proof: For any active set S, by definition, f(S) = 1. Suppose S is not a connected component. There are
two cases.

Case 1: S is within some connected component C; (S # C4). Since S is connected with the other part of
(4, there is at least one edge in 6(S) is picked. So S is satisfied, which contradicts the definition of
active sets.

Case 2: S contains more than one connected component. Since f(S) = 1, there is at least one vertex in
S that needs to be connected to some vertex outside S. Denote this vertex by u. Let the connected
component in S that contains u be C;. By definition, f(C) = 1. Since C} is a connected component,
there is no edge from §(C4) is picked. So C} is unsatisfied, which means that S is not minimal. This
also contradicts the definition of active set.

In either case, we get a contradiction. So the lemma is true. ]

Steiner Forest Algorithm:

F + (; foreach SCV, ys + 0;
while there is an unsatisfied set do

simultaneously raise y, for each active set S until some edge e becomes tight;
F + Fu{e};

return F' = {e € F|F — e is not feasible}.
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The figure below shows an example run of the algorithm. Suppose we have two disjoint subset S; = {u,v}
and Sz = {s,t}. At the beginning of the algorithm, u, v, s,t are four active sets, each of which contains one
vertex only. The algorithm raises their y, values simultaneously, and stops at the value of 6 when edge ua
and bv are tight. ua and bv are added to F. Then the algorithm find the next layer of active set, raise their
¥s, and so on. The bold edges are added to F' in the while loop. At the end, all edges in F' except the
redundant edge ua are added to F' and returned.
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Figure 16.1: An example run of the algorithm

First we show that F' and y are feasible primal and dual solutions. It is easy to see that since we never
over-pack an edge, no edge becomes over-tight. Therefore, y is a feasible solution. Before the last step, F’
satisfies all the connectivity requirements. Furthermore, in each iteration, only the dual variables of the cuts
that are running between different connect components are raised. Therefore, F' will be a forest. Also, at
the last step, only redundant edges are removed. So F' is a feasible solution.

Definition 16.4 degp: (C) is the number of edges that leave C in F'.

Lemma 16.5 if C is a connected component in any iteration and f(C) = 0, then degr (C) # 1, i.e.
degp(C) = 0 or degr (C) > 2.

Proof: Suppose degp:(C) =1 and let e be the unique edge of F coming out of C, since e is not redundant,
then there exists a pair u,v with r(u,v) = 1 and v € C and v € C. Therefore, f(C) = 1 # 0, which
contradicts the condition of the lemma. ]

Lemma 16.6 Y, ; Ce <23 gy Ys-

Proof:

Z C, = Z Z Ys (Edges picked are tight)

ecF’ e€F" \ S:ecé(S)

= 2| X w

SCV \ecFni(S)
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= Z degpi (S) - ys
scv

We need to show: gy degr (S)ys <23 gcy Ys-

Let A be the amount to which active sets were raised in one iteration. We show A X} ¢ is active degr’ (S) <
2 x A x (number of active sets).

Consider the graph, called H, on the same vertex set and edge set as F'. For every set of vertices of a
connected component with respect to F', contract all those vertices in H into one single (big) vertex. Call
this new graph H'. Note that H' is a forest and that the degree of each (big) vertex in H' is the same as
the degree of corresponding set of vertices that are contracted. Each vertex of H' that corresponds to an
active set has non-zero degree. By Lemma 16.5, the degree of every vertex in H' that corresponds to a non-
active set is at least 2. Also, because H' is a forest, its average degree is at most 2. Therefore, the average
degree of nodes of H' that correspond to active sets is at most 2. Therefore, A X > ¢ i active degr (S) <
2 x A x (number of active sets), and

Z Ce = Z degF’(S)ys S 2 Z Ys-

ecF! scv scv

Theorem 16.7 This is a 2-approximation algorithm.

Proof: As we mentioned earlier, F’ and y are primal and dual feasible solutions. By Lemma 16.6 their
value is within a factor of 2 from each other. This implies that the value of F' within a factor at most 2 of
the optimal (fractional) solution. |



