CMPUT 675: Approximation Algorithms Winter 2005

Lecture 2 : Jan 14
Lecturer: Mohammad R. Salavatipour Scribe: Xiaomeng WU

2.1 Vertex Cover Problem

Our first approximation algorithms will be for the problem of Vertex-Cover defined last lecture.

Vertex-Cover Problem

e Input

— G : an undirected graph G = (V, E)

— ¢ a cost function on vertices, ¢ : V — Q7T (rational positive)

e Goal: find a minimum cost vertex cover, i.e., a set V' C V such that every edge has at least one
endpoint incident at V.

The special case, in which all vertices are of unit cost, is called the cardinality vertex cover problem. Here
we will give two approximation algorithm for the cardinality V.C.

Perhaps the most natural greedy algorithm for this problem is the following algorithm:

Algorithm 1 VC1

S« 0

while E # () do
let v be a vertex of maximum degree in G
S+« S U{v}
remove v and all its edges from G

end while

return S

NS TN

We will see that the approximation ratio for Algorithm 1 is O(log A), where A is the maximum degree in
graph G.

The second approximation algorithm V(2 appears to be counter-intuitive at the first glance. However, it
has a better performance in that its approximation ratio is a constant.

Lemma 2.1 VC2 returns a vertex cover of G.

Proof: The algorithm V' C2 loops until every edge in the graph G has been covered by some vertex in S. B

Lemma 2.2 VC2 is a 2-approximation algorithm.

2-1

2-2 Lecture 2 : Jan 14

Algorithm 2 VC2

S« 0

2: while £ # () do

3: let (u,v) € E be any edge

4 S+ S U{u,v}

5: delete u,v and all their edges from G
6: end while

7: return S

Proof: Let A denote the set of edges that were selected in line 3 of V(2. An important observation is that
A forms a matching, i.e. no two edges selected in line 3 share an end-point since once an edge is picked, all
the edges that are incident on its endpoints are deleted in line 5. Therefore, in order to cover the edges in
A, any vertex cover must include at least one endpoint of each edge in A. So does any optimal V.C. §*, i.e.
|S*| > |A|. As line 3 selects an edge for which neither of its endpoints is already in S, we have an upper
bound (in fact, it is an exact bound as we will see later) |S| = 2|A|. Thus, we have |S| < 2|S*|. []

The set A of edges that are selected by line 3 in V' C?2 is actually a maximal mathing in the graph G. Given
a graph G, a subset of the edges M C E is a matching if no two edges of M share an endpoint. A mazimal
matching is a matching that cannot be extended to a larger one. In Vertex-Cover problem, if M is a maximal
matching, then |M| < OPT, because at least one endpoint at each edge in M must be in a vertex cover.
The cover picked by V' C2 has cardinality 2|M |, which is at most 20 PT.

Lemma 2.3 The analysis of VC2 is tight.

Examples: A complete bipartite graph K, ,. When we run VC2 on K, ,, it picks up all the 2n vertices,
whereas picking one side of the bipartition gives an optimal solution of size n.

In fact, there is no known algorithm with approximation factor better than 2—o(1) for Vertex-Cover problem.

Open question: Design a 2—O0(1)-approximation algorithm for vertex cover or prove that no such algorithm
exists (modular some reasonable complexity assumption).

For the more general problem of weighted Vertex-Cover we have the following results:

e An algorithm by Bar Yehuda and Even, Monia and Speckcmcyer has ratio:

Inlnn

2lnn

e Algorithms by Hochbaum, Holldorsson and Radhakrishman, Harperlin have ratios respectively:

_lgA+o(1) 2Inln A

2
A
Theorem 2.4 (Hastad 97) Unless P = NP, there is no approzimation algorithm with ratio < % for

Vertex-Cover problem.

Recently, Dinur and Safra [STOC02] have improved this lower bound to 10y/3 — 21. Khot and Regev
[CCCO03], based on a conjecture of Khot (which deals with games defined on 2-prover-1-round proof systems)
have proved that there is no (2 — €)-approximation for Vertex-Cover.

Lecture 2 : Jan 14 2-3

2.2 Set Cover Problem

Set-cover is perhaps the single most important (and very well-studied) problem in the field of approximation
algorithms.

Set-Cover Problem

e Input

— U : a universe of n elements eq,...,en,,
— S : a collection of subsets of U, S = {S1,S2, -+, Sk}

— ¢ a cost function, ¢: S — QT (rational positive)

e Goal: find a minimum cost subcollection of S that covers all the elements of U. In other words,
IC{1,2,---,k} with min }, , ¢(S;) such that |J;.,; S; = U

Vertex-Cover problem is a special case of Set-Cover problem in that: for a graph G(V, E), let U = E, and
S; = {e € E|e is incident within v;}

Let’s start from some definitions before we give out the approximation algorithms for Set-Cover problem.

Definition 2.5 Define the frequency of an element e; € Uto be the number of sets in S that contain that
element. Let f denote the frequency of the most frequent element.

In the special case of Vertex-Cover problem, f = 2. All the algorithms developed for Set-Cover have one
of the following two ratios: O(logn) or f. The first algorithm we will see for S.C. is the obvious greedy
algorithm with approximation ratio O(logn).

Similar to the greedy approximation algorithm for Vertex-Cover problem, the greedy strategy applies to the
Set-Cover problem. Rather than greedily picking the set which covers the most number of elements, we have
to take the cost into account at the same time. Thus, intuitively pick up the most cost-effective set and
remove the covered elements until all elements are covered. For the purpose of analysis of the algorithm, we
need the following two definitions:

Definition 2.6 Define the cost-effectiveness of a set S to be the average cost at which it covers new element,

e, @ = g(f();, where C is the set of elements already covered. We Define the price of an element to be the

cost at which it is covered.

Algorithm 3 Greedy Set-Cover algorithm

1: C «+ Q,T «~ 0

2: while C # U do

3: choose a S; with the smallest «

4: add S; to T, and for each element e € S; — C, set price(e) = «
5. C+ CU{S;}

6: end while

7: return T

Line 4 in the algorithms means when a set S is picked, we can think of its cost being distributed equally
among the new elements covered, to set their prices.

2-4 Lecture 2 : Jan 14

Theorem 2.7 The Greedy Set-Cover algorithm is an H, factor approxzimation algorithm for the minimum
set cover problem, where H, =1+ % + % +---+ %

Proof: Let e1,ea,---,e, be the order at which the elements of U are covered by the algorithm (breaking
the tie arbitrarily). It is easy to see that:

Z e(Si) = Zprice(ek)
k=1

S;eT

We try to estimate price(ey) (at this stage, we have covered eq,es,---,ex—1, and have n — k + 1 uncovered
elements). Let Topr be an optimal solution and Copr be the cost of the optimal solution. At any point
of time, we can cover the elements in U — C' at a cost of at most Copr by picking whatever is left from
the optimum solution. Thus among the sets not selected by the greedy algorithm, there must be a set with
cost-effectiveness < %O_PC?‘ (since we can cover the remaining U — C' elements at a cost of at most Copr).
In the iteration in which element ey was covered, |U — C| = n — k + 1. Since e;, was covered by the most
cost-effective set in this iteration, it follows that

Copr

. <~ Corr
price(ey) < A

As the cost of each set picked is distributed among the new elements covered, the total cost of the set cover
picked is:

n n 1
2 c(S;) mece(ek) < COPTZ o H, -Copr
SieT k=1 k=1

Remark: In fact, the approximation factor of this greedy algorithm for Set-Cover problem is H, where k
is the size of largest set in S.

Here is a tight example for Greedy Set-Cover algorithm: each element eq,es,---, e, by itself is a set, with

cost %, ﬁ, -+ -, 1 respectively; there is also one set contains all the elements e, es, - - -, €, with cost 1+ € for

some arbitrary small e. When run on this instance, the greedy algorithm picks the cover consisting of the

n singleton sets, because in each iteration some singleton is the most cost-effective set. Thus, the algorithm
1

outputs a cover with cost % + =3 +---+ 1= H,. The optimal cover has a cost of 1 +e.

Theorem 2.8 Based on the results of Lund and Yannakakis 92, Feige 86, Raz Safra 97, Suduan 97:
e There is a constant 0 < ¢ < 1 such that if there is a clnn-approximation algorithm for Set-Cover

problem, then P = NP.

e For any constant € > 0, if there is a (1 — €) lnn-approzimation algorithm for Set-Cover problem, where
n is the size of the universal set of the set cover instance, then NP C DTIME(TLO(lnln n)), where
DTIMEC(t) is the class of problems for which there is a deterministic algorithm running in time O(t).

Remark: This theorem holds even for the cardinality Set Cover problem.

By the reduction from V.C. to S.C. and by the remark following Theorem 2.7, it follows that the approxi-
mation ratio of VC1 is O(log A) (since the largest set will have size A).

Here is a tight example for V' C1 algorithm. We will construct a bipartite graph G with parts A and B.
In part A, there are k! nodes with degree k; in group B, there are k subgroups Vi, V5,---, V) of vertices
organized in such a way that

Lecture 2 : Jan 14 2-5

. 1
Vi contains kT

nodes with degree 1,

V5 contains %' nodes with degree 2,

Vi—1 contains % nodes with degree k — 1,

Vi, contains ’% nodes with degree k.

Each vertex in A is connected to exactly one vertex in each group V; from part B. When run on this instance,
if we are unlucky in breaking the ties, then V' C1 will pick vertices from group B, first from subgroup Vj, and
then from subgroup Vj_1, and so on. At the end the algorithm will pick all the vertices in part B, which
has size
k!(1+1+1+---+1):Hk-k!
2 3 k

whereas the optimal solution picks all the vertices in group A which has size k!. Therefore, the ratio of VC'1
is Hy, which is O(log A).

2.3 Using Linear-Programming(LP) to design approximation al-

gorithm
Linear Programming (LP) is the problem of optimizing (i.e., minimizing or maximizing) a linear function of
variables z1, ..., z, subject to a set of linear inequalities. The function being optimized is called the objective
function.

The standard form for LP is as following:

minimize Y. ¢
subject to T ajjz; > by (1 <i<m) (2.1)
Zj Z 0

An simple example:
minimize Tx1 + 22 + 5x3
subject to x1 — 22 + 323 > 10
5x1 + 2x9 —x3 > 6
I1,T2,T3 Z 0

(2.2)

If we require that each variable z; has integer values (e.g. from {0,1}) then we have an Integer Program
(IP). If we relax this condition to z; > 0 then we obtain a Linear Program which is the relazation of the
original IP.

We can solve LP’s in polynomial time (for instance using the ellipsoid algorithm, or using an interior-point
method).

