CMPUT 675: Approximation Algorithms

Winter 2005

Scribe: Eddie Rafols

Lecture 25: Apr. 13

Lecturer: Mohammad R. Salavatipour

25.1 2P1R Proof Systems

Raz's verifier is a 2 Prover 1-round proof system for a language L with parameters c and s (where c is usually 1 and s is usually 1- ϵ) is a probabilistic verifier V with access to two proofs Π_1 and Π_2 such that an input g for g, g sends one query to each of g and g and:

- if $y \in L \to \exists \Pi_1$ and Π_2 such that Pr[V accepts] = c
- if $y \notin L \to \forall \Pi_1$ and Π_2 such that $Pr[V \text{ accepts}] \leq s$

The PCP Theorem shows that for every $L \in NP$, there is a 2P1R with $c = 1, s = 1 - \delta$ for some $\delta > 0$.

Every problem in NP can be reduced to MAX-3SAT. We construct a 2P1R proof system with the above parameters for MAX-3SAT. Given a formula ϕ , the proofs Π_1 and Π_2 are supposed to encode a truth assignment to ϕ . For every variable $x_i \in \phi$, the value of $\Pi_1[i] \in \{0,1\}$ is the value of x_i . For every $C_j \in \phi$, $\Pi_2[j] \in \{1,\ldots,7\}$ is one of seven satisfying assignments for C_j . V picks a random clause C_j and a random variable, say x_i , from that clause accepts if and only if $\Pi_1[i]$ is consistent with $\Pi_2[j]$.

- if ϕ is a "yes" instance \rightarrow proofs Π_1 and Π_2 form a satisfying truth assignment $\rightarrow V$ accepts with probability 1
- if ϕ is a "no" instance \to at most $(1 \epsilon)m$ clauses can be satisfied \to there is a probability of at least $\frac{\epsilon}{3}$ that the answers from Π_1 and Π_2 are inconsistent $\to V$ accepts with probability $< 1 \frac{\epsilon}{3}$ (where $\frac{\epsilon}{3} = \delta$)

Can we amplify this probability by repetition?

A k-repetition for this 2P1R proof system is as follows: verifier V^k chooses k clauses (randomly) and a variable (randomly) from each. We have proof entries $\Pi_1[i_1\ldots i_k]\in\{0,1\}^k$ (representing assignments to k-tuples of variables $i_1\ldots i_k$) and $\Pi_2[j_i\ldots j_k]\in\{1,\ldots,7\}^k$ (representing satisfying assignments to k clauses $C_{j_1}\ldots C_{j_k}$). V^k accepts if and only if all answers are consistent.

This corresponds to the following repetition of label cover: from an instance $\mathcal{L}(\mathcal{G}(\mathcal{V},\mathcal{W},\mathcal{E}),[\mathcal{M}],[\mathcal{N}],\{\Pi_{vw}\})$, we build $\mathcal{L}^k(\mathcal{G}'(V',W',E'),[M'],[N'],\{\Pi'_{vw}\})$ where:

- $V' = V^k$ (k-tuples of V)
- $W' = W^k$
- $\bullet \ [M]' = [M]^k$
- $[N]' = [N]^k$
- $(V', W') \in E' \Leftrightarrow (v_{i_j}, w_{i_j}) \in E, \ \forall i, j \ 1 \le j \le k \ (V' = (v_{i_1}, \dots, v_{i_k}), W' = (w_{i_1}, \dots, w_{i_k}))$

25-2 Lecture 25: Apr. 13

- $\Pi'_{vw}(b_1,\ldots,b_k) = \Pi_{v_{i_1},w_{i_1}}(b_1), \Pi_{v_{i_2},w_{i_2}}(b_2),\ldots,\Pi_{v_{i_k},w_{i_k}}(b_k)$
- if $OPT(\mathcal{L}) = 1 \to OPT(\mathcal{L}^k) = 1$

We expect that if $OPT(\mathcal{L}) \leq 1 - \delta$ then $OPT(\mathcal{L}^k) \leq (1 - \delta)^k$, but this is not true.

Theorem 25.1 (Raz 1998) Parallel Repetition Theorem if $OPT(\mathcal{L}) \leq 1 - \delta \rightarrow OPT(\mathcal{L}^k) \leq (1 - \delta)^{\Omega(k)}$ i.e. if ϕ is a no instance of SAT, V^k accepts with probability $2^{-\Omega(k)}$

Note: $[M'] = [7^k]$ and $[N'] = [2^k]$

Theorem 25.2 There is a reduction from SAT to an instance $\mathcal{L}(G(V, W, E), [7^k], [2^k], \{\Pi_{vw}\})$ of label cover such that:

- if ϕ is a yes instance $\rightarrow OPT(\mathcal{L}) = 1$
- if ϕ is a no instance \rightarrow $OPT(\mathcal{L}) = 2^{-ck}$ for some constant c < 1

and $\mathcal{L} = n^{O(k)}$

Corollary 25.3 if NP is not a subset of $O(n^{poly \log(n)})$ then there is no $2^{\log^{1-\epsilon}n}$ -approximation for label cover for any $\epsilon > 0$.

25.2 Hardness of Set Cover

A set-system with parameters m and l consists of:

- *U* a universe (of elements)
- $C_1, \ldots, C_m, \bar{C}_1, \ldots, \bar{C}_m$ are subsets of U
- For any set of ℓ subsets from C_i 's and \bar{C}_i 's that does not include a C_j 's and \bar{C}_j together, the union does not cover U.

Theorem 25.4 Given m, ℓ there is a set system with $|U| = O(\ell \log m \cdot 2^{\ell})$.

Consider a label cover instance $\mathcal{L}(G(V, W, E), [7^k], [2^k], \{\Pi_{vw}\})$ (where k = loglog n and $|\mathcal{L}| = n^{O(\log\log n)}$). We can assume that |V| = |W| (e.g. create copies of vertices in V with the same neighbors). We build an instance of set cover S such that:

- if $OPT(\mathcal{L}) = 1 \rightarrow OPT(\mathcal{S}) \le |V| + |W|$
- if $OPT(\mathcal{L}) \leq \frac{1}{\log^3 |\mathcal{L}|} \to OPT(\mathcal{S}) \geq \Omega(\log |\mathcal{S}|)(|V| + |W|)$

Lecture 25: Apr. 13 25-3

25.2.1 Construction

Consider a set system with $m=N=2^k$ and for ℓ (to be specified later). For every edge $e=(v,w)\in G$ we have a (disjoint) (m,ℓ) -set system with universe U_e . The union of all U_e 's (for all the edges e) is the universe for the set cover instance. Let $\mathcal{U}=\bigcup_{e\in G}U_e$ and let C_1^{vw},\ldots,C_m^{vw} be the subsets of U_e . For every vertex $v\in V$ and every label $i\in[2^k]$ we have a set $S_{v,i}$. (similarly for every label $j\in[7^k]$ we have a set $S_{w,j}$.

i.e.
$$S_{v,i} = \bigcup_{w:(v,w)\in E} C_i^{vw}$$
 and $S_{w,j} = \bigcup_{v:(v,w)\in E} \bar{C}_{\prod_{vw}c_j}^{vw}$

Lemma 25.5 if $OPT(\mathcal{L}) = 1$ then $OPT(\mathcal{S}) \leq |V| + |W|$.